Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Fusion systems


Authors: Michael Aschbacher and Bob Oliver
Journal: Bull. Amer. Math. Soc. 53 (2016), 555-615
MSC (2010): Primary 20E25; Secondary 20D05, 20D20, 20E45, 20C20, 55R35
DOI: https://doi.org/10.1090/bull/1538
Published electronically: June 29, 2016
MathSciNet review: 3544261
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is a survey article on the theory of fusion systems, a relatively new area of mathematics with connections to local finite group theory, algebraic topology, and modular representation theory. We first describe the general theory and then look separately at these connections.


References [Enhancements On Off] (What's this?)

  • [Alp1] J. L. Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222-241. MR 0215913
  • [Alp2] J. L. Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups. MR 860771
  • [Alp3] J. L. Alperin, Weights for finite groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 369-379. MR 933373
  • [AB] J. L. Alperin and Michel Broué, Local methods in block theory, Ann. of Math. (2) 110 (1979), no. 1, 143-157. MR 541333, https://doi.org/10.2307/1971248
  • [ABC] Tuna Altınel, Alexandre V. Borovik, and Gregory Cherlin, Simple groups of finite Morley rank, Mathematical Surveys and Monographs, vol. 145, American Mathematical Society, Providence, RI, 2008. MR 2400564
  • [AOV1] Kasper K. S. Andersen, Bob Oliver, and Joana Ventura, Reduced, tame and exotic fusion systems, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 87-152. MR 2948790, https://doi.org/10.1112/plms/pdr065
  • [AOV2] K. Andersen, B. Oliver, and J. Ventura, Reduced fusion systems over $ 2$-groups of small order (in preparation).
  • [A1] Michael Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann. of Math. (2) 106 (1977), no. 2, 353-398. MR 0498828
  • [A2] Michael Aschbacher, Finite group theory, Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 1986. MR 895134
  • [A3] Michael Aschbacher, Normal subsystems of fusion systems, Proc. Lond. Math. Soc. (3) 97 (2008), no. 1, 239-271. MR 2434097, https://doi.org/10.1112/plms/pdm057
  • [A4] Michael Aschbacher, The generalized Fitting subsystem of a fusion system, Mem. Amer. Math. Soc. 209 (2011), no. 986, vi+110. MR 2752788, https://doi.org/10.1090/S0065-9266-2010-00621-5
  • [A5] Michael Aschbacher, Generation of fusion systems of characteristic $ 2$-type, Invent. Math. 180 (2010), no. 2, 225-299. MR 2609243, https://doi.org/10.1007/s00222-009-0229-z
  • [A6] Michael Aschbacher, $ S_3$-free $ 2$-fusion systems, Proc. Edinb. Math. Soc. (2) 56 (2013), no. 1, 27-48. MR 3021403, https://doi.org/10.1017/S0013091512000235
  • [A7] Michael Aschbacher, Fusion systems of $ \mathbf {F}_2$-type, J. Algebra 378 (2013), 217-262. MR 3017023, https://doi.org/10.1016/j.jalgebra.2012.12.018
  • [A8] Michael Aschbacher, Classifying finite simple groups and $ 2$-fusion systems, ICCM Not. 3 (2015), no. 1, 35-42. MR 3385504
  • [A9] Michael Aschbacher, N-groups and fusion systems, J. Algebra 449 (2016), 264-320. MR 3448175, https://doi.org/10.1016/j.jalgebra.2015.10.011
  • [AC] Michael Aschbacher and Andrew Chermak, A group-theoretic approach to a family of 2-local finite groups constructed by Levi and Oliver, Ann. of Math. (2) 171 (2010), no. 2, 881-978. MR 2630058, https://doi.org/10.4007/annals.2010.171.881
  • [AKO] Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834
  • [ALSS] Michael Aschbacher, Richard Lyons, Stephen D. Smith, and Ronald Solomon, The classification of finite simple groups. Groups of characteristic $ 2$ type, Mathematical Surveys and Monographs, vol. 172, American Mathematical Society, Providence, RI, 2011. MR 2778190
  • [Be1] D. J. Benson, Representations and cohomology. I, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1998. Basic representation theory of finite groups and associative algebras. MR 1644252
  • [Be2] David J. Benson, Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Geometry and cohomology in group theory (Durham, 1994) London Math. Soc. Lecture Note Ser., vol. 252, Cambridge Univ. Press, Cambridge, 1998, pp. 10-23. MR 1709949, https://doi.org/10.1017/CBO9780511666131.003
  • [BGH] David J. Benson, Jesper Grodal, and Ellen Henke, Group cohomology and control of $ p$-fusion, Invent. Math. 197 (2014), no. 3, 491-507. MR 3251827, https://doi.org/10.1007/s00222-013-0489-5
  • [BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
  • [Br1] Richard Brauer, Some applications of the theory of blocks of characters of finite groups. IV, J. Algebra 17 (1971), 489-521. MR 0281806
  • [Br2] Richard Brauer, On $ 2$-blocks with dihedral defect groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 367-393. MR 0354838
  • [BCGLO1] Carles Broto, Natàlia Castellana, Jesper Grodal, Ran Levi, and Bob Oliver, Subgroup families controlling $ p$-local finite groups, Proc. London Math. Soc. (3) 91 (2005), no. 2, 325-354. MR 2167090, https://doi.org/10.1112/S0024611505015327
  • [BCGLO2] C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Extensions of $ p$-local finite groups, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3791-3858 (electronic). MR 2302515, https://doi.org/10.1090/S0002-9947-07-04225-0
  • [BL] Carles Broto and Ran Levi, On spaces of self-homotopy equivalences of $ p$-completed classifying spaces of finite groups and homotopy group extensions, Topology 41 (2002), no. 2, 229-255. MR 1876889, https://doi.org/10.1016/S0040-9383(00)00031-8
  • [BLO1] Carles Broto, Ran Levi, and Bob Oliver, Homotopy equivalences of $ p$-completed classifying spaces of finite groups, Invent. Math. 151 (2003), no. 3, 611-664. MR 1961340, https://doi.org/10.1007/s00222-002-0264-5
  • [BLO2] Carles Broto, Ran Levi, and Bob Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), no. 4, 779-856. MR 1992826, https://doi.org/10.1090/S0894-0347-03-00434-X
  • [BLO3] Carles Broto, Ran Levi, and Bob Oliver, Discrete models for the $ p$-local homotopy theory of compact Lie groups and $ p$-compact groups, Geom. Topol. 11 (2007), 315-427. MR 2302494, https://doi.org/10.2140/gt.2007.11.315
  • [BLO4] Carles Broto, Ran Levi, and Bob Oliver, A geometric construction of saturated fusion systems, An alpine anthology of homotopy theory, Contemp. Math., vol. 399, Amer. Math. Soc., Providence, RI, 2006, pp. 11-40. MR 2222502, https://doi.org/10.1090/conm/399/07510
  • [BLO5] Carles Broto, Ran Levi, and Bob Oliver, An algebraic model for finite loop spaces, Algebr. Geom. Topol. 14 (2014), no. 5, 2915-2981. MR 3276851, https://doi.org/10.2140/agt.2014.14.2915
  • [BMO1] Carles Broto, Jesper M. Møller, and Bob Oliver, Equivalences between fusion systems of finite groups of Lie type, J. Amer. Math. Soc. 25 (2012), no. 1, 1-20. MR 2833477, https://doi.org/10.1090/S0894-0347-2011-00713-3
  • [BMO2] Carles Broto, Jesper M. Møller, and Broto Oliver, Automorphisms of fusion systems of finite simple groups of Lie type, arXiv:1601.04566
  • [BP] Michel Broué and Lluís Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), no. 2, 117-128. MR 558864, https://doi.org/10.1007/BF01392547
  • [Bu] W. Burnside, The Theory of Groups of Finite Order, Cambridge Univ. Press (1897).
  • [CE] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
  • [Ch] Andrew Chermak, Fusion systems and localities, Acta Math. 211 (2013), no. 1, 47-139. MR 3118305, https://doi.org/10.1007/s11511-013-0099-5
  • [ChOS] Andrew Chermak, Bob Oliver, and Sergey Shpectorov, The linking systems of the Solomon $ 2$-local finite groups are simply connected, Proc. Lond. Math. Soc. (3) 97 (2008), no. 1, 209-238. MR 2434096, https://doi.org/10.1112/plms/pdn011
  • [CP] Murray Clelland and Christopher Parker, Two families of exotic fusion systems, J. Algebra 323 (2010), no. 2, 287-304. MR 2564839, https://doi.org/10.1016/j.jalgebra.2009.07.023
  • [Cr1] David A. Craven, Control of fusion and solubility in fusion systems, J. Algebra 323 (2010), no. 9, 2429-2448. MR 2602388, https://doi.org/10.1016/j.jalgebra.2010.02.025
  • [Cr2] David A. Craven, The theory of fusion systems. An algebraic approach, Cambridge Studies in Advanced Mathematics, vol. 131, Cambridge University Press, Cambridge, 2011. MR 2808319
  • [Cr3] David A. Craven, Normal subsystems of fusion systems, J. Lond. Math. Soc. (2) 84 (2011), no. 1, 137-158. MR 2819694, https://doi.org/10.1112/jlms/jdr004
  • [CG] David A. Craven and Adam Glesser, Fusion systems on small $ p$-groups, Trans. Amer. Math. Soc. 364 (2012), no. 11, 5945-5967. MR 2946938, https://doi.org/10.1090/S0002-9947-2012-05580-2
  • [CrOS] D. Craven, B. Oliver, and J. Semeraro, Simple fusion systems over $ p$-groups with abelian subgroup of index $ p$: II (in preparation).
  • [Da1] E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20-48. MR 0200355
  • [DGMP1] Antonio Díaz, Adam Glesser, Nadia Mazza, and Sejong Park, Glauberman's and Thompson's theorems for fusion systems, Proc. Amer. Math. Soc. 137 (2009), no. 2, 495-503. MR 2448569, https://doi.org/10.1090/S0002-9939-08-09690-1
  • [DGMP2] Antonio Díaz, Adam Glesser, Nadia Mazza, and Sejong Park, Control of transfer and weak closure in fusion systems, J. Algebra 323 (2010), no. 2, 382-392. MR 2564845, https://doi.org/10.1016/j.jalgebra.2009.09.028
  • [DRV] Antonio Díaz, Albert Ruiz, and Antonio Viruel, All $ p$-local finite groups of rank two for odd prime $ p$, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1725-1764 (electronic). MR 2272147, https://doi.org/10.1090/S0002-9947-06-04367-4
  • [Dw] W. G. Dwyer, Sharp homology decompositions for classifying spaces of finite groups, Group representations: cohomology, group actions and topology (Seattle, WA, 1996) Proc. Sympos. Pure Math., vol. 63, Amer. Math. Soc., Providence, RI, 1998, pp. 197-220. MR 1603159, https://doi.org/10.1090/pspum/063/1603159
  • [DK] W. G. Dwyer and D. M. Kan, Centric maps and realization of diagrams in the homotopy category, Proc. Amer. Math. Soc. 114 (1992), no. 2, 575-584. MR 1070515, https://doi.org/10.2307/2159684
  • [DW] W. G. Dwyer and C. W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), no. 1, 37-64. MR 1161306, https://doi.org/10.2307/2152794
  • [FF] Ramón J. Flores and Richard M. Foote, Strongly closed subgroups of finite groups, Adv. Math. 222 (2009), no. 2, 453-484. MR 2538017, https://doi.org/10.1016/j.aim.2009.05.005
  • [Fo] Richard Foote, A characterization of finite groups containing a strongly closed $ 2$-subgroup, Comm. Algebra 25 (1997), no. 2, 593-606. MR 1428800, https://doi.org/10.1080/00927879708825876
  • [Gl1] George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. MR 0202822
  • [Gl2] George Glauberman, A characteristic subgroup of a $ p$-stable group, Canad. J. Math. 20 (1968), 1101-1135. MR 0230807
  • [GbL] G. Glauberman and J. Lynd, Control of weak closure and existence and uniqueness of centric linking systems, Invent. Math. (to appear).
  • [Gd1] David M. Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138-142. MR 0260869
  • [Gd2] David M. Goldschmidt, $ 2$-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70-117. MR 0335627
  • [Gz] A. Gonzalez, Finite approximations of $ p$-local compact groups, Geom. Topol. (to appear).
  • [GH] Daniel Gorenstein and Koichiro Harada, Finite groups whose $ 2$-subgroups are generated by at most $ 4$elements, American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathematical Society, No. 147. MR 0367048
  • [GLS1] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592
  • [GLS3] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592
  • [Gr] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1958/59), 430-445. MR 0131454
  • [He1] Ellen Henke, Recognizing $ {\rm SL}_2(q)$ in fusion systems, J. Group Theory 13 (2010), no. 5, 679-702. MR 2720198, https://doi.org/10.1515/JGT.2010.017
  • [He2] Ellen Henke, Minimal fusion systems with a unique maximal parabolic, J. Algebra 333 (2011), 318-367. MR 2785951, https://doi.org/10.1016/j.jalgebra.2010.11.006
  • [He3] Ellen Henke, Products in fusion systems, J. Algebra 376 (2013), 300-319. MR 3003728, https://doi.org/10.1016/j.jalgebra.2012.11.037
  • [He4] Ellen Henke, A characterization of saturated fusion systems over abelian $ 2$-groups, Adv. Math. 257 (2014), 1-5. MR 3187642, https://doi.org/10.1016/j.aim.2014.02.020
  • [He5] E. Henke, Subcentric linking systems, arXiv:1506.01458
  • [JLL] Fabien Junod, Ran Levi, and Assaf Libman, Unstable Adams operations on $ p$-local compact groups, Algebr. Geom. Topol. 12 (2012), no. 1, 49-74. MR 2889545, https://doi.org/10.2140/agt.2012.12.49
  • [Ke1] Radha Kessar, The Solomon system $ {\mathcal {F}}_{\rm Sol}(3)$ does not occur as fusion system of a $ 2$-block, J. Algebra 296 (2006), no. 2, 409-425. MR 2201049, https://doi.org/10.1016/j.jalgebra.2005.09.026
  • [Ke2] Radha Kessar, Introducton to block theory, Group representation theory, EPFL Press, Lausanne, 2007, pp. 47-77. MR 2336637
  • [KL] Radha Kessar and Markus Linckelmann, $ ZJ$-theorems for fusion systems, Trans. Amer. Math. Soc. 360 (2008), no. 6, 3093-3106. MR 2379788, https://doi.org/10.1090/S0002-9947-08-04275-X
  • [KS] Radha Kessar and Radu Stancu, A reduction theorem for fusion systems of blocks, J. Algebra 319 (2008), no. 2, 806-823. MR 2381811, https://doi.org/10.1016/j.jalgebra.2006.05.039
  • [KP] Burkhard Külshammer and Lluís Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), no. 1, 17-71. MR 1069239, https://doi.org/10.1007/BF01233419
  • [LL] Ran Levi and Assaf Libman, Existence and uniqueness of classifying spaces for fusion systems over discrete $ p$-toral groups, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 47-70. MR 3338608, https://doi.org/10.1112/jlms/jdu062
  • [LO] R. Levi and B. Oliver, Construction of $ 2$-local finite groups of a type studied by Solomon and Benson, Geometry and Topology 6 (2002), 917-990 MR 1943386; and Correction to: ``Construction of $ 2$-local finite groups of a type studied by Solomon and Benson'', Geometry and Topology 9 (2005), 2395-2415 MR 2209376
  • [LR] Ran Levi and Kári Ragnarsson, $ p$-local finite group cohomology, Homology Homotopy Appl. 13 (2011), no. 1, 223-257. MR 2803873, https://doi.org/10.4310/HHA.2011.v13.n1.a8
  • [Lb1] Assaf Libman, The gluing problem does not follow from homological properties of $ \Delta _p(G)$, Homology, Homotopy Appl. 12 (2010), no. 1, 1-10. MR 2594678
  • [Lb2] Assaf Libman, The gluing problem in the fusion systems of the symmetric, alternating and linear groups, J. Algebra 341 (2011), 209-245. MR 2824518, https://doi.org/10.1016/j.jalgebra.2011.06.007
  • [Li1] Markus Linckelmann, Fusion category algebras, J. Algebra 277 (2004), no. 1, 222-235. MR 2059628, https://doi.org/10.1016/j.jalgebra.2003.12.010
  • [Li2] Markus Linckelmann, On $ H^\ast ({\mathcal {C}};k^\times )$ for fusion systems, Homology, Homotopy Appl. 11 (2009), no. 1, 203-218. MR 2506133
  • [Lyn1] Justin Lynd, The Thompson-Lyons transfer lemma for fusion systems, Bull. Lond. Math. Soc. 46 (2014), no. 6, 1276-1282. MR 3291264, https://doi.org/10.1112/blms/bdu083
  • [Lyn2] Justin Lynd, A characterization of the $ 2$-fusion system of $ L_4(q)$, J. Algebra 428 (2015), 315-356. MR 3314296, https://doi.org/10.1016/j.jalgebra.2014.10.046
  • [McL] Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
  • [MP] John Martino and Stewart Priddy, Unstable homotopy classification of $ BG_p\sphat $, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 119-137. MR 1356164, https://doi.org/10.1017/S030500410007403X
  • [O1] Bob Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 2, 321-347. MR 2092063, https://doi.org/10.1017/S0305004104007728
  • [O2] Bob Oliver, Equivalences of classifying spaces completed at the prime two, Mem. Amer. Math. Soc. 180 (2006), no. 848, vi+102. MR 2203209, https://doi.org/10.1090/memo/0848
  • [O3] Bob Oliver, Extensions of linking systems and fusion systems, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5483-5500. MR 2657688, https://doi.org/10.1090/S0002-9947-2010-05022-6
  • [O4] Bob Oliver, Existence and uniqueness of linking systems: Chermak's proof via obstruction theory, Acta Math. 211 (2013), no. 1, 141-175. MR 3118306, https://doi.org/10.1007/s11511-013-0100-3
  • [O5] Bob Oliver, Simple fusion systems over $ p$-groups with abelian subgroup of index $ p$: I, J. Algebra 398 (2014), 527-541. MR 3123784, https://doi.org/10.1016/j.jalgebra.2013.09.012
  • [O6] Bob Oliver, Reduced fusion systems over $ 2$-groups of sectional rank at most $ 4$, Mem. Amer. Math. Soc. 239 (2016), no. 1131, v+100. MR 3431946, https://doi.org/10.1090/memo/1131
  • [O7] Bob Oliver, Reductions to simple fusion systems, arXiv:1601.07978
  • [O8] Bob Oliver, Automorphisms of fusion systems of sporadic simple groups, arXiv:1604.05681
  • [OV1] Bob Oliver and Joana Ventura, Extensions of linking systems with $ p$-group kernel, Math. Ann. 338 (2007), no. 4, 983-1043. MR 2317758, https://doi.org/10.1007/s00208-007-0104-4
  • [OV2] Bob Oliver and Joana Ventura, Saturated fusion systems over $ 2$-groups, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6661-6728. MR 2538610, https://doi.org/10.1090/S0002-9947-09-04881-8
  • [Ols] Jørn Børling Olsson, On $ 2$-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), no. 2, 212-241. MR 0376841
  • [On] Silvia Onofrei, Saturated fusion systems with parabolic families, J. Algebra 348 (2011), 61-84. MR 2852232, https://doi.org/10.1016/j.jalgebra.2011.09.028
  • [Pa] Sejong Park, The gluing problem for some block fusion systems, J. Algebra 323 (2010), no. 6, 1690-1697. MR 2588132, https://doi.org/10.1016/j.jalgebra.2010.01.003
  • [PS] Chris Parker and Gernot Stroth, A family of fusion systems related to the groups $ {\rm Sp}_4(p^a)$ and $ {\rm G}_2(p^a)$, Arch. Math. (Basel) 104 (2015), no. 4, 311-323. MR 3325764, https://doi.org/10.1007/s00013-015-0751-8
  • [Pg1] Lluís Puig, Structure locale dans les groupes finis, Bull. Soc. Math. France Suppl. Mém. 47 (1976), 132 (French). MR 0450410
  • [Pg2] Lluís Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), no. 1, 77-116. MR 943924, https://doi.org/10.1007/BF01393688
  • [Pg3] Lluis Puig, The hyperfocal subalgebra of a block, Invent. Math. 141 (2000), no. 2, 365-397. MR 1775217, https://doi.org/10.1007/s002220000072
  • [Pg4] Lluis Puig, Frobenius categories, J. Algebra 303 (2006), no. 1, 309-357. MR 2253665, https://doi.org/10.1016/j.jalgebra.2006.01.023
  • [Pg5] Lluís Puig, Frobenius categories versus Brauer blocks, The Grothendieck group of the Frobenius category of a Brauer block, Progress in Mathematics, vol. 274, Birkhäuser Verlag, Basel, 2009. MR 2502803
  • [Q] Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549-572; ibid. (2) 94 (1971), 573-602. MR 0298694
  • [Rg] Kári Ragnarsson, Classifying spectra of saturated fusion systems, Algebr. Geom. Topol. 6 (2006), 195-252. MR 2199459, https://doi.org/10.2140/agt.2006.6.195
  • [RSt] Kári Ragnarsson and Radu Stancu, Saturated fusion systems as idempotents in the double Burnside ring, Geom. Topol. 17 (2013), no. 2, 839-904. MR 3070516, https://doi.org/10.2140/gt.2013.17.839
  • [RS] K. Roberts and S. Shpectorov, On the definition of saturated fusion systems, J. Group Theory 12 (2009), no. 5, 679-687. MR 2554760, https://doi.org/10.1515/JGT.2009.003
  • [Rz] Albert Ruiz, Exotic normal fusion subsystems of general linear groups, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 181-196. MR 2351616, https://doi.org/10.1112/jlms/jdm051
  • [RV] Albert Ruiz and Antonio Viruel, The classification of $ p$-local finite groups over the extraspecial group of order $ p^3$ and exponent $ p$, Math. Z. 248 (2004), no. 1, 45-65. MR 2092721, https://doi.org/10.1007/s00209-004-0652-1
  • [Sa] Benjamin Sambale, Fusion systems on metacyclic $ 2$-groups, Osaka J. Math. 49 (2012), no. 2, 325-329. MR 2945751
  • [Sg] Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112. MR 0232393
  • [So] Ronald Solomon, Finite groups with Sylow $ 2$-subgroups of type $ 3$, J. Algebra 28 (1974), 182-198. MR 0344338
  • [St] Radu Stancu, Control of fusion in fusion systems, J. Algebra Appl. 5 (2006), no. 6, 817-837. MR 2286725, https://doi.org/10.1142/S0219498806002034
  • [SSy] Radu Stancu and Peter Symonds, Fusion systems for profinite groups, J. Lond. Math. Soc. (2) 89 (2014), no. 2, 461-481. MR 3188628, https://doi.org/10.1112/jlms/jdt074
  • [Su] Dennis P. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, $ K$-Monographs in Mathematics. The 1970 MIT notes, vol. 8, Springer, Dordrecht, 2005. Edited and with a preface by Andrew Ranicki. MR 2162361
  • [T] John G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437. MR 0230809
  • [Xu] Xingzhong Xu, Saturated fusion systems over a class of finite $ p$-groups, J. Algebra 413 (2014), 135-152. MR 3216603, https://doi.org/10.1016/j.jalgebra.2014.05.003

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 20E25, 20D05, 20D20, 20E45, 20C20, 55R35

Retrieve articles in all journals with MSC (2010): 20E25, 20D05, 20D20, 20E45, 20C20, 55R35


Additional Information

Michael Aschbacher
Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
Email: asch@caltech.edu

Bob Oliver
Affiliation: Université Paris 13, Sorbonne Paris Cité, LAGA, UMR 7539 du CNRS, 99, Av. J.-B. Clément, 93430 Villetaneuse, France
Email: bobol@math.univ-paris13.fr

DOI: https://doi.org/10.1090/bull/1538
Keywords: Fusion, Sylow subgroups, finite simple groups, classifying spaces, modular representation theory.
Received by editor(s): December 27, 2015
Published electronically: June 29, 2016
Additional Notes: The first author was partially supported by NSF DMS-1265587 and NSF DMS-0969009.
The second author was partially supported by UMR 7539 of the CNRS
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society