Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Walter D. van Suijlekom
Title: Noncommutative geometry and particle physics
Additional book information: Mathematical Physics Studies, Springer, Dordrecht, 2015, xvi+237 pp., ISBN 978-94-017-9161-8 (hardcover), 978-94-017-9162-5 (electronic), US $69.99 (hardcover); US $54.99 (electronic)

References [Enhancements On Off] (What's this?)

  • [1] A. Ball, M. Marcolli, Spectral action models of gravity on packed swiss cheese cosmology, Classical and Quantum Gravity, 33 (2016) no. 11, 115018
  • [2] J. W. Barrett, Lorentzian version of the noncommutative geometry of the Standard Model of particle physics, J. Math. Phys. 48 (2007), no. 1, 012303, 7. MR 2292605, https://doi.org/10.1063/1.2408400
  • [3] W. Beenakker, T. van den Broek, and W. D. van Suijlekom, Supersymmetry and noncommutative geometry, SpringerBriefs in Mathematical Physics, vol. 9, Springer, Cham, 2016. MR 3380781
  • [4] B. Ćaćić, A reconstruction theorem for almost-commutative spectral triples, Lett. Math. Phys. 100 (2012), no. 2, 181-202. MR 2912480, https://doi.org/10.1007/s11005-011-0534-5
  • [5] A. H. Chamseddine and A. Connes, The spectral action principle, Comm. Math. Phys. 186 (1997), no. 3, 731-750. MR 1463819, https://doi.org/10.1007/s002200050126
  • [6] A. H. Chamseddine and A. Connes, Resilience of the spectral standard model, J. High Energy Phys. 9 (2012), 104, front matter+10. MR 3044924
  • [7] A. H. Chamseddine, A. Connes, and M. Marcolli, Gravity and the standard model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007), no. 6, 991-1089. MR 2368941
  • [8] A. H. Chamseddine, A. Connes, and W. D. van Suijlekom, Grand unification in the spectral Pati-Salam model, J. High Energy Phys. 11 (2015), 011, front matter+12. MR 3455566
  • [9] A. Connes, Gravity coupled with matter and the foundation of non-commutative geometry, Comm. Math. Phys. 182 (1996), no. 1, 155-176. MR 1441908
  • [10] A. Connes, Noncommutative geometry and the standard model with neutrino mixing, J. High Energy Phys. 11 (2006), 081, 19 pp. (electronic). MR 2270385, https://doi.org/10.1088/1126-6708/2006/11/081
  • [11] A. Connes and J. Lott, Particle models and noncommutative geometry, in Recent advances in field theory (Annecy-le-Vieux, 1990), Nuclear Phys. B Proc. Suppl. 18B (1990), 29-47 (1991). MR 1128127, https://doi.org/10.1016/0920-5632(91)90120-4
  • [12] A. Connes and H. Moscovici, The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), no. 2, 174-243. MR 1334867, https://doi.org/10.1007/BF01895667
  • [13] S. Farnsworth and L. Boyle, Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry, New J. Phys. 17 (2015), no. February, 023021, 6. MR 3321217, https://doi.org/10.1088/1367-2630/17/2/023021
  • [14] S. Farnsworth and L. Boyle, Non-associative geometry and the spectral action principle, J. High Energy Phys. 7 (2015), 023, front matter+25. MR 3384192
  • [15] W. Fan, F. Fathizadeh, and M. Marcolli, Spectral action for Bianchi type-IX cosmological models, J. High Energy Phys. 10 (2015), 085, front matter+28. MR 3435554
  • [16] N. Higson, The local index formula in noncommutative geometry, in Contemporary developments in algebraic $ K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 443-536 (electronic). MR 2175637, https://doi.org/10.1007/b94118
  • [17] M. Marcolli, Noncommutative Cosmology, book in preparation.
  • [18] M. Marcolli and E. Pierpaoli, Early universe models from noncommutative geometry, Adv. Theor. Math. Phys. 14 (2010), no. 5, 1373-1432. MR 2826185
  • [19] M. Marcolli, E. Pierpaoli, and K. Teh, The spectral action and cosmic topology, Comm. Math. Phys. 304 (2011), no. 1, 125-174. MR 2793932, https://doi.org/10.1007/s00220-011-1211-3
  • [20] M. Sakellariadou, Noncommutative geometry spectral action as a framework for unification: introduction and phenomenological/cosmological consequences, Internat. J. Modern Phys. D 20 (2011), no. 5, 785-804. MR 2801512, https://doi.org/10.1142/S021827181101913X
  • [21] W. D. van Suijlekom, Renormalizability conditions for almost-commutative manifolds, Ann. Henri Poincaré 15 (2014), no. 5, 985-1011. MR 3192656, https://doi.org/10.1007/s00023-013-0269-1

Review Information:

Reviewer: Matilde Marcolli
Affiliation: Division of Physics, Mathematics, and Astronomy California Institute of Technology
Email: matilde@caltech.edu
Journal: Bull. Amer. Math. Soc. 54 (2017), 167-169
MSC (2010): Primary 58B34, 81R60, 81T75, 83C65
DOI: https://doi.org/10.1090/bull/1555
Published electronically: September 6, 2016
Review copyright: © Copyright 2016 American Mathematical Society
American Mathematical Society