Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Nash's work in algebraic geometry


Author: János Kollár
Journal: Bull. Amer. Math. Soc. 54 (2017), 307-324
MSC (2010): Primary 14-03, 01-02, 14P20, 14B05
DOI: https://doi.org/10.1090/bull/1543
Published electronically: October 11, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article is a survey of Nash's contributions to algebraic geometry, focusing on the topology of real algebraic sets and on arc spaces of singularities.


References [Enhancements On Off] (What's this?)

  • [AK92a] S. Akbulut and H. King, On approximating submanifolds by algebraic sets and a solution to the Nash conjecture, Invent. Math. 107 (1992), no. 1, 87-98. MR 1135465, https://doi.org/10.1007/BF01231882
  • [AK92b] Selman Akbulut and Henry King, Topology of real algebraic sets, Mathematical Sciences Research Institute Publications, vol. 25, Springer-Verlag, New York, 1992. MR 1225577
  • [Bat99] Victor V. Batyrev, Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 1, 5-33. MR 1677693, https://doi.org/10.1007/PL00011158
  • [BCR98] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509
  • [BD84] R. Benedetti and M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism, Compositio Math. 53 (1984), no. 2, 143-151. MR 766294
  • [Bea96] Arnaud Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series, vol. 68, Cambridge University Press, Cambridge, 1983. Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid. MR 732439
  • [CLO92] David Cox, John Little, and Donal O'Shea, Ideals, varieties, and algorithms, An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. MR 1189133
  • [Com14] Annibale Comessatti, Sulla connessione delle superficie razionali reali, Ann. Mat. Pura Appl. 23 (1914), 215-283.
  • [dlVP08] Ch. de la Vallé Poussin, Sur l'approximation des fonctions d'une variable réele et de leurs dérivées par des polynômes et des suites finies de Fourier, Bull. Acad. Sci. Belgique (1908), 193-254.
  • [dF13] Tommaso de Fernex, Three-dimensional counter-examples to the Nash problem, Compos. Math. 149 (2013), no. 9, 1519-1534. MR 3109732, https://doi.org/10.1112/S0010437X13007252
  • [dF16] Tommaso de Fernex, The space of arcs of an algebraic variety, ArXiv e-prints (2016).
  • [dFD16] Tommaso de Fernex and Roi Docampo, Terminal valuations and the Nash problem, Invent. Math. 203 (2016), no. 1, 303-331. MR 3437873, https://doi.org/10.1007/s00222-015-0597-5
  • [DIK00] A. Degtyarev, I. Itenberg, and V. Kharlamov, Real Enriques surfaces, Lecture Notes in Mathematics, vol. 1746, Springer-Verlag, Berlin, 2000. MR 1795406
  • [DL99] Jan Denef and Francois Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201-232. MR 1664700, https://doi.org/10.1007/s002220050284
  • [FdBPP12] Javier Fernández de Bobadilla and María Pe Pereira, The Nash problem for surfaces, Ann. of Math. (2) 176 (2012), no. 3, 2003-2029. MR 2979864, https://doi.org/10.4007/annals.2012.176.3.11
  • [Gra58] Hans Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460-472. MR 0098847
  • [IK03] Shihoko Ishii and János Kollár, The Nash problem on arc families of singularities, Duke Math. J. 120 (2003), no. 3, 601-620. MR 2030097, https://doi.org/10.1215/S0012-7094-03-12034-7
  • [JK13] Jennifer M. Johnson and János Kollár, Arc spaces of $ cA$-type singularities, J. Singul. 7 (2013), 238-252. MR 3094648
  • [JK16] Jennifer M. Johnson and János Kollár, Arcology, Amer. Math. Monthly 123 (2016), no. 6, 519-541. MR 3510969, https://doi.org/10.4169/amer.math.monthly.123.6.519
  • [Kas10] Alexander M. Kasprzyk, Canonical toric Fano threefolds, Canad. J. Math. 62 (2010), no. 6, 1293-1309. MR 2760660, https://doi.org/10.4153/CJM-2010-070-3
  • [Kha02] Viatcheslav Kharlamov, Variétés de Fano réelles (d'après C. Viterbo), Astérisque 276 (2002), 189-206 (French). Séminaire Bourbaki, Vol. 1999/2000. MR 1886761
  • [KM98] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
  • [Kol98] János Kollár, Real algebraic threefolds. I. Terminal singularities, Collect. Math. 49 (1998), no. 2-3, 335-360. Dedicated to the memory of Fernando Serrano. MR 1677128
  • [Kol99a] János Kollár, Real algebraic threefolds. II. Minimal model program, J. Amer. Math. Soc. 12 (1999), no. 1, 33-83. MR 1639616, https://doi.org/10.1090/S0894-0347-99-00286-6
  • [Kol99b] János Kollár, Real algebraic threefolds. III. Conic bundles, J. Math. Sci. (New York) 94 (1999), no. 1, 996-1020. Algebraic geometry, 9. MR 1703903, https://doi.org/10.1007/BF02367244
  • [Kol00] János Kollár, Real algebraic threefolds. IV. Del Pezzo fibrations, Complex Analysis and Algebraic Geometry, de Gruyter, Berlin, 2000, pp. 317-346.
  • [Kol01a] János Kollár, The topology of real algebraic varieties, Current Developments in Mathematics, 2000, Int. Press, Somerville, MA, 2001, pp. 197-231. MR 1882536
  • [Kol01b] János Kollár, Which are the simplest algebraic varieties?, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 4, 409-433 (electronic). MR 1848255, https://doi.org/10.1090/S0273-0979-01-00917-X
  • [Kol02] János Kollár, The Nash conjecture for nonprojective threefolds, Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 137-152.
  • [Kol07] János Kollár, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton University Press, Princeton, NJ, 2007. MR 2289519
  • [Kol14] János Kollár, The structure of algebraic varieties, Proceedings of ICM, Seoul, 2014, Vol. I., Kyung Moon SA, http://www.icm2014.org/en/vod/proceedings.html, 2014, pp. 395-420.
  • [Kro1881] Leopold Kronecker, Zur Theorie der Elimination einer Variabeln aus zwei algebraschen Gleichungen, Königl. Preuss. Acad. Wiss. (Berlin) (1881), 535-600, See also: Leopold Kronecker, Werke: Teubner (1895), Chelsea reprint (1968), Vol. I. pp.113-192.
  • [Kur88] Krzysztof Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 282 (1988), no. 3, 445-462 (French). MR 967023, https://doi.org/10.1007/BF01460044
  • [Man14] Frédéric Mangolte, Topologie des variétés algébriques réelles de dimension 3, Gaz. Math. 139 (2014), 5-34 (French). MR 3183986
  • [Man16] Frédéric Mangolte, Real Algebraic Geometry, Panoramas et synthèses, Soc. Math. France, Paris, 2016,
  • [Mil56] John Milnor, On manifolds homeomorphic to the $ 7$-sphere, Ann. of Math. (2) 64 (1956), 399-405. MR 0082103
  • [Mil61] John Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2) 74 (1961), 575-590. MR 0133127
  • [Mil68] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
  • [Mor58] Charles B. Morrey Jr., The analytic embedding of abstract real-analytic manifolds, Ann. of Math. (2) 68 (1958), 159-201. MR 0099060
  • [Mus02] Mircea Mustaţă, Singularities of pairs via jet schemes, J. Amer. Math. Soc. 15 (2002), no. 3, 599-615 (electronic). MR 1896234, https://doi.org/10.1090/S0894-0347-02-00391-0
  • [MW12] Frédéric Mangolte and Jean-Yves Welschinger, Do uniruled six-manifolds contain Sol Lagrangian submanifolds?, Int. Math. Res. Not. IMRN (2012), no. 7, 1569-1602. MR 2913184
  • [Nash52] John Nash, Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421. MR 0050928
  • [Nash95] John F. Nash Jr., Arc structure of singularities, Duke Math. J. 81 (1995), no. 1, 31-38 (1996). A celebration of John F. Nash, Jr. MR 1381967, https://doi.org/10.1215/S0012-7094-95-08103-4
  • [PS15] Camille Plénat and Mark Spivakovsky, The Nash problem and its solution: a survey, J. Singul. 13 (2015), 229-244. MR 3343624, https://doi.org/10.5427/jsing.2015.13m
  • [Sei36] H. Seifert, Algebraische Approximation von Mannigfaltigkeiten, Math. Z. 41 (1936), no. 1, 1-17 (German). MR 1545601, https://doi.org/10.1007/BF01180402
  • [Sha74] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch; Die Grundlehren der mathematischen Wissenschaften, Band 213. MR 0366917
  • [Shi87] Masahiro Shiota, Nash manifolds, Lecture Notes in Mathematics, vol. 1269, Springer-Verlag, Berlin, 1987. MR 904479
  • [Sil89] Robert Silhol, Real algebraic surfaces, Lecture Notes in Mathematics, vol. 1392, Springer-Verlag, Berlin, 1989. MR 1015720
  • [Sul71] D. Sullivan, Combinatorial invariants of analytic spaces, Proceedings of Liverpool Singularities--Symposium, I (1969/70), Springer, Berlin, 1971, pp. 165-168. MR 0278333
  • [Tho54] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86 (French). MR 0061823
  • [Tog73] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167-185. MR 0396571
  • [Tog88] Alberto Tognoli, Any compact differentiable submanifold of $ {\bf R}^n$ has an algebraic approximation in $ {\bf R}^n$, Topology 27 (1988), no. 2, 205-210. MR 948183, https://doi.org/10.1016/0040-9383(88)90039-0
  • [vdW30] Bartel L. van der Waerden, Topologische Begründung des Kalküls der abzählenden Geometrie, Math. Ann. 102 (1930), no. 1, 337-362 (German). MR 1512581, https://doi.org/10.1007/BF01782350
  • [Wal57] Andrew H. Wallace, Algebraic approximation of manifolds, Proc. London Math. Soc. (3) 7 (1957), 196-210. MR 0087205
  • [Whi34] Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63-89. MR 1501735, https://doi.org/10.2307/1989708
  • [Whi36] Hassler Whitney, Differentiable manifolds, Ann. of Math. (2) 37 (1936), no. 3, 645-680. MR 1503303, https://doi.org/10.2307/1968482

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 14-03, 01-02, 14P20, 14B05

Retrieve articles in all journals with MSC (2010): 14-03, 01-02, 14P20, 14B05


Additional Information

János Kollár
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
Email: kollar@math.princeton.edu

DOI: https://doi.org/10.1090/bull/1543
Received by editor(s): May 30, 2016
Published electronically: October 11, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society