Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

High dimensionality and h-principle in PDE


Authors: Camillo De Lellis and László Székelyhidi Jr.
Journal: Bull. Amer. Math. Soc. 54 (2017), 247-282
MSC (2010): Primary 35Q31; Secondary 35A01, 35D30, 76F02, 53A99, 53C21
DOI: https://doi.org/10.1090/bull/1549
Published electronically: October 20, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we present ``an analyst's point of view'' on the Nash-Kuiper Theorem and, in particular, highlight the very close connection to turbulence--a paradigm example of a high-dimensional phenomenon. Our aim is to explain recent applications of Nash's ideas in connection with the incompressible Euler equations and Onsager's famous conjecture on the energy dissipation in 3D turbulence.


References [Enhancements On Off] (What's this?)

  • [1] A. D. Alexandrov, Intrinsic geometry of convex surfaces, OGIZ, Moscow-Leningrad, 1948.
  • [2] J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the $ 3$-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61-66. MR 763762
  • [3] S. Behr and H. Olbermann, Extrinsic curvature of codimension one isometric immersions with Hölder continuous derivatives, ArXiv e-prints (2016).
  • [4] W. Blaschke, Ein Beweis für die Unverbiegbarkeit geschlossener konvexer Flächen., Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. 1912 (1912), 607-610 (German).
  • [5] Ju. F. Borisov, The parallel translation on a smooth surface. I, Vestnik Leningrad. Univ. 13 (1958), no. 7, 160-171 (Russian, with English summary). MR 0104277
  • [6] Ju. F. Borisov, The parallel translation on a smooth surface. II, Vestnik Leningrad. Univ. 13 (1958), no. 19, 45-54 (Russian, with English summary). MR 0104278
  • [7] Ju. F. Borisov, The parallel translation on a smooth surface. III, Vestnik Leningrad. Univ. 14 (1959), no. 1, 34-50 (Russian, with English summary). MR 0104279
  • [8] Ju. F. Borisov, The parallel translation on a smooth surface. IV, Vestnik Leningrad. Univ. 14 (1959), no. 13, 83-92 (Russian, with English summary). MR 0112098
  • [9] Ju. F. Borisov, $ C^{1,\,\alpha }$-isometric immersions of Riemannian spaces, Dokl. Akad. Nauk SSSR 163 (1965), 11-13 (Russian). MR 0192449
  • [10] Yu. F. Borisov, Irregular surfaces of the class $ C^{1,\beta }$ with an analytic metric, Sibirsk. Mat. Zh. 45 (2004), no. 1, 25-61 (Russian, with Russian summary); English transl., Siberian Math. J. 45 (2004), no. 1, 19-52. MR 2047871, https://doi.org/10.1023/B:SIMJ.0000013011.51242.23
  • [11] Alberto Bressan and Fabián Flores, On total differential inclusions, Rend. Sem. Mat. Univ. Padova 92 (1994), 9-16. MR 1320474
  • [12] Tristan Buckmaster, Onsager's conjecture almost everywhere in time, Comm. Math. Phys. 333 (2015), no. 3, 1175-1198. MR 3302631, https://doi.org/10.1007/s00220-014-2262-z
  • [13] T. Buckmaster, C. De Lellis, and L. Székelyhidi, Jr, Dissipative Euler flows with Onsager-critical spatial regularity, ArXiv e-prints, to appear in Comm. Pure Appl. Math. (2014).
  • [14] Tristan Buckmaster, Camillo De Lellis, Philip Isett, and László Székelyhidi Jr., Anomalous dissipation for $ 1/5$-Hölder Euler flows, Ann. of Math. (2) 182 (2015), no. 1, 127-172. MR 3374958, https://doi.org/10.4007/annals.2015.182.1.3
  • [15] C Burstin, Ein Beitrag zum Problem der Einbettung der Riemannschen Räume in euklidischen Räumen., Rec. Math. Moscou 38 (1931), no. 3-4, 74-85 (German).
  • [16] E. Cartan, Sur la possibilité de plonger un espace Riemannien donné dans un espace Euclidien., Ann. Soc. Polon. Math. 6 (1928), 1-7 (French).
  • [17] Arrigo Cellina, On the differential inclusion $ x^{\prime } \in [-1,\,+1]$, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 69 (1980), no. 1-2, 1-6 (1981) (English, with Italian summary). MR 641583
  • [18] A. Cheskidov and R. Shvydkoy, Euler equations and turbulence: analytical approach to intermittency, SIAM J. Math. Anal. 46 (2014), no. 1, 353-374. MR 3152734, https://doi.org/10.1137/120876447
  • [19] Elisabetta Chiodaroli, Camillo De Lellis, and Ondřej Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1157-1190. MR 3352460, https://doi.org/10.1002/cpa.21537
  • [20] Elisabetta Chiodaroli and Ondrej Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system, Arch. Ration. Mech. Anal. 214 (2014), no. 3, 1019-1049. MR 3269641, https://doi.org/10.1007/s00205-014-0771-8
  • [21] Antoine Choffrut, $ h$-principles for the incompressible Euler equations, Arch. Ration. Mech. Anal. 210 (2013), no. 1, 133-163. MR 3073150, https://doi.org/10.1007/s00205-013-0639-3
  • [22] St. Cohn-Vossen, Zwei Sätze über die Starrheit der Eiflächen., Nachrichten Göttingen 1927 (1927), 125-137 (German).
  • [23] Peter Constantin, On the Euler equations of incompressible fluids, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 4, 603-621. MR 2338368, https://doi.org/10.1090/S0273-0979-07-01184-6
  • [24] Peter Constantin, Weinan E, and Edriss S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys. 165 (1994), no. 1, 207-209. MR 1298949
  • [25] Peter Constantin, Charles Fefferman, and Andrew J. Majda, Geometric constraints on potentially singular solutions for the $ 3$-D Euler equations, Comm. Partial Differential Equations 21 (1996), no. 3-4, 559-571. MR 1387460, https://doi.org/10.1080/03605309608821197
  • [26] Sergio Conti, Camillo De Lellis, and László Székelyhidi Jr., $ h$-principle and rigidity for $ C^{1,\alpha }$ isometric embeddings, Nonlinear partial differential equations, Abel Symp., vol. 7, Springer, Heidelberg, 2012, pp. 83-116. MR 3289360, https://doi.org/10.1007/978-3-642-25361-4_5
  • [27] Diego Cordoba, Daniel Faraco, and Francisco Gancedo, Lack of uniqueness for weak solutions of the incompressible porous media equation, Arch. Ration. Mech. Anal. 200 (2011), no. 3, 725-746. MR 2796131, https://doi.org/10.1007/s00205-010-0365-z
  • [28] R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Develop. 11 (1967), 215-234. MR 0213764
  • [29] Bernard Dacorogna and Paolo Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), no. 1, 1-37. MR 1448710, https://doi.org/10.1007/BF02392708
  • [30] S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phys. 329 (2014), no. 2, 745-786. MR 3210150, https://doi.org/10.1007/s00220-014-1973-5
  • [31] S. Daneri and L. Székelyhidi, Jr, Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, ArXiv e-prints (2016).
  • [32] C. De Lellis, The masterpieces of John Forbes Nash, Jr., In preparation.
  • [33] C. De Lellis, contributing editor, John Forbes Nash Jr. (1828-2015), Notices Amer. Math. Soc. 63 (2016 no. 5, 492-506.
  • [34] Camillo De Lellis and László Székelyhidi Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170 (2009), no. 3, 1417-1436. MR 2600877, https://doi.org/10.4007/annals.2009.170.1417
  • [35] Camillo De Lellis and László Székelyhidi Jr., On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 (2010), no. 1, 225-260. MR 2564474, https://doi.org/10.1007/s00205-008-0201-x
  • [36] Camillo De Lellis and László Székelyhidi Jr., The $ h$-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 3, 347-375. MR 2917063, https://doi.org/10.1090/S0273-0979-2012-01376-9
  • [37] Camillo De Lellis and László Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math. 193 (2013), no. 2, 377-407. MR 3090182, https://doi.org/10.1007/s00222-012-0429-9
  • [38] C. De Lellis and László Székelyhidi, Jr., Dissipative Euler flows and Onsager's conjecture, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 7, 1467-1505. MR 3254331
  • [39] C. De Lellis and L. Székelyhidi, Jr, John Nash's nonlinear iteration, Preprint (2016).
  • [40] C. De Lellis, D. Inauen, and L. Székelyhidi, Jr, A Nash-Kuiper theorem for $ C^{1,\frac {1}{5}-\delta }$ immersions of surfaces in $ 3$ dimensions, ArXiv e-prints (2015).
  • [41] David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2) 92 (1970), 102-163. MR 0271984
  • [42] Gregory L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78 (1994), no. 3-4, 222-240. MR 1302409, https://doi.org/10.1016/0167-2789(94)90117-1
  • [43] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
  • [44] Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505
  • [45] G. Herglotz, Über die Starrheit der Eiflächen, Abh. Math. Sem. Hansischen Univ. 15 (1943), 127-129 (German). MR 0014714
  • [46] P. Isett, H $ \backslash $''older Continuous Euler Flows in Three Dimensions with Compact Support in Time, ArXiv e-prints (2012).
  • [47] P. Isett, Regularity in time along the coarse scale flow for the incompressible Euler equations, ArXiv e-prints (2013).
  • [48] Philip Isett and Sung-Jin Oh, On nonperiodic Euler flows with Hölder regularity, Arch. Ration. Mech. Anal. 221 (2016), no. 2, 725-804. MR 3488536, https://doi.org/10.1007/s00205-016-0973-3
  • [49] Philip Isett and Vlad Vicol, Hölder continuous solutions of active scalar equations, Ann. PDE 1 (2015), no. 1, Art. 2, 77. MR 3479065
  • [50] Howard Jacobowitz, Implicit function theorems and isometric embeddings, Ann. of Math. (2) 95 (1972), 191-225. MR 0307127
  • [51] M. Janet, Sur la possibilité de plonger un espace Riemannien donné à $ n$ dimensions dans un espace Euclidien à $ \frac {n(n+1)}{2}$ dimensions., C. R. Acad. Sci., Paris 183 (1926), 942-943 (French).
  • [52] Anders Källén, Isometric embedding of a smooth compact manifold with a metric of low regularity, Ark. Mat. 16 (1978), no. 1, 29-50. MR 499136, https://doi.org/10.1007/BF02385981
  • [53] Tosio Kato, Nonstationary flows of viscous and ideal fluids in $ {\bf R}^{3}$, J. Functional Analysis 9 (1972), 296-305. MR 0481652
  • [54] Bernd Kirchheim, Stefan Müller, and Vladimír Šverák, Studying nonlinear PDE by geometry in matrix space, Geometric analysis and nonlinear partial differential equations, Springer, Berlin, 2003, pp. 347-395. MR 2008346
  • [55] Bernd Kirchheim, Emanuele Spadaro, and László Székelyhidi Jr., Equidimensional isometric maps, Comment. Math. Helv. 90 (2015), no. 4, 761-798. MR 3433279, https://doi.org/10.4171/CMH/370
  • [56] Nicolaas H. Kuiper, On $ C^1$-isometric imbeddings. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 58 = Indag. Math. 17 (1955), 545-556, 683-689. MR 0075640
  • [57] P. D. Lax, Deterministic theories of turbulence, Frontiers in pure and applied mathematics, North-Holland, Amsterdam, 1991, pp. 179-184. MR 1110599
  • [58] Hans Lewy, On the existence of a closed convex surface realizing a given Riemannian metric, Proc. Natl. Acad. Sci. USA 24 (1938), 104-106 (English).
  • [59] Leon Lichtenstein, Grundlagen der Hydromechanik, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 30, Springer-Verlag, Berlin, 1968 (German). MR 0228225
  • [60] T. S. Motzkin and W. Wasow, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Physics 31 (1953), 253-259. MR 0052895
  • [61] S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. of Math. (2) 157 (2003), no. 3, 715-742. MR 1983780, https://doi.org/10.4007/annals.2003.157.715
  • [62] Sylvia Nasar, A beautiful mind, Simon & Schuster, New York, 1998. MR 1631630
  • [63] John Nash, $ C^1$ isometric imbeddings, Ann. of Math. (2) 60 (1954), 383-396. MR 0065993
  • [64] John Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63. MR 0075639
  • [65] Louis Nirenberg, The determination of a closed convex surface having given line element, ProQuest LLC, Ann Arbor, MI, 1949. Thesis (Ph.D.)-New York University. MR 2594071
  • [66] Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337-394. MR 0058265
  • [67] H. Olbermann, Integrability of the Brouwer degree for irregular arguments, ArXiv e-prints (2015).
  • [68] L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279-287. MR 0036116
  • [69] A. V. Pogorelov, Izgibanie vypuklyh poverhnosteĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1951 (Russian). MR 0050909
  • [70] A. V. Pogorelov, Extrinsic geometry of convex surfaces, American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations; Translations of Mathematical Monographs, Vol. 35. MR 0346714
  • [71] I. H. Sabitov, Regularity of convex domains with a metric that is regular on Hölder classes, Sibirsk. Mat. Ž. 17 (1976), no. 4, 907-915 (Russian). MR 0425854
  • [72] Vladimir Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal. 3 (1993), no. 4, 343-401. MR 1231007, https://doi.org/10.1007/BF02921318
  • [73] Ludwig Schläfli, Nota alla memoria del sig. Beltrami, ``Sugli spazii di curvatura costante''., Annali di Mat. (2) 5 (1871), 178-193 (Italian).
  • [74] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math. 50 (1997), no. 12, 1261-1286. MR 1476315, https://doi.org/10.1002/(SICI)1097-0312(199712)50:12$ \langle $1261::AID-CPA3$ \rangle $3.3.CO;2-4
  • [75] R. Shvydkoy, Convex integration for a class of active scalar equations, J. Amer. Math. Soc. 24 (2011), no. 4, 1159-1174. MR 2813340, https://doi.org/10.1090/S0894-0347-2011-00705-4
  • [76] Michael Spivak, A comprehensive introduction to differential geometry. Vol. V, 2nd ed., Publish or Perish, Inc., Wilmington, Del., 1979. MR 532834
  • [77] László Székelyhidi Jr., Relaxation of the incompressible porous media equation, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 3, 491-509 (English, with English and French summaries). MR 3014484
  • [78] László Székelyhidi Jr., From isometric embeddings to turbulence, in HCDTE lecture notes. Part II. Nonlinear hyperbolic PDEs, dispersive and transport equations, AIMS Ser. Appl. Math., vol. 7, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2013, pp. 63. MR 3340997
  • [79] László Székelyhidi Jr, The h-principle and turbulence, ICM 2014 Proceedings Volume (2014).
  • [80] László Székelyhidi Jr, Weak solutions of the Euler equations: non-uniqueness and dissipation, Journées Équations aux derivées partielles (2016).
  • [81] László Székelyhidi and Emil Wiedemann, Young measures generated by ideal incompressible fluid flows, Arch. Ration. Mech. Anal. 206 (2012), no. 1, 333-366. MR 2968597, https://doi.org/10.1007/s00205-012-0540-5
  • [82] T. Tao and L. Zhang, Hölder Continuous Solutions Of Boussinesq Equation with compact support, ArXiv e-prints (2015).
  • [83] T. Tao and L. Zhang, On The Continuous Periodic Weak Solution of Boussinesq Equations, ArXiv e-prints (2015).
  • [84] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136-212. MR 584398
  • [85] Hermann Weyl, Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement., Zürich. Naturf. Ges. 61, 40-72, 1916.
  • [86] R. Züst, A solution of Gromov's Hölder equivalence problem for the Heisenberg group, ArXiv e-prints (2016).

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 35Q31, 35A01, 35D30, 76F02, 53A99, 53C21

Retrieve articles in all journals with MSC (2010): 35Q31, 35A01, 35D30, 76F02, 53A99, 53C21


Additional Information

Camillo De Lellis
Affiliation: Institut für Mathematik, Universität Zürich, CH-8057 Zürich
Email: camillo.delellis@math.uzh.ch

László Székelyhidi Jr.
Affiliation: Mathematisches Institut, Universität Leipzig, D-04009 Leipzig
Email: laszlo.szekelyhidi@math.uni-leipzig.de

DOI: https://doi.org/10.1090/bull/1549
Received by editor(s): July 11, 2016
Published electronically: October 20, 2016
Additional Notes: The research of the first author has been supported by the grant $200021_159403$ of the Swiss National Foundation.
The second author gratefully acknowledges the support of ERC Grant Agreement No. 277993
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society