Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Dmitry S. Kaliuzhnyi-Verbovetskyi and Victor Vinnikov
Title: Foundation of free noncommutative function theory
Additional book information: Mathematical Surveys and Monographs, Vol. 199, American Mathematical Society, Providence, Rhode Island, 2014, vi+183 pp., ISBN 978-1-4704-1697-3, US $77.00

References [Enhancements On Off] (What's this?)

  • [1] E. Artin, Geometric algebra, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Reprint of the 1957 original; A Wiley-Interscience Publication. MR 1009557
  • [2] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228-287. MR 1304753, https://doi.org/10.1006/aima.1994.1087
  • [3] Helmer Aslaksen, Quaternionic determinants, Math. Intelligencer 18 (1996), no. 3, 57-65. MR 1412993, https://doi.org/10.1007/BF03024312
  • [4] Jean Berstel and Christophe Reutenauer, Rational series and their languages, EATCS Monographs on Theoretical Computer Science, vol. 12, Springer-Verlag, Berlin, 1988. MR 971022
  • [5] Tom Bridgeland, Derived categories of coherent sheaves, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 563-582. MR 2275610
  • [6] P. M. Cohn, Free ideal rings and localization in general rings, New Mathematical Monographs, vol. 3, Cambridge University Press, Cambridge, 2006. MR 2246388
  • [7] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
  • [8] M. Fliess and M. Hazewinkel (eds.), Algebraic and geometric methods in nonlinear control theory, Mathematics and its Applications, vol. 29, D. Reidel Publishing Co., Dordrecht, 1986. MR 862315
  • [9] I. M. Gelfand and V. S. Retakh, Determinants of matrices over noncommutative rings, Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 13-25, 96 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 2, 91-102. MR 1142205, https://doi.org/10.1007/BF01079588
  • [10] A. Heyting, Die Theorie der linearen Gleichungen in einer Zahlenspezies mit nichtkommutativer Multiplikation, Math. Ann. 98 (1928), no. 1, 465-490 (German). MR 1512415, https://doi.org/10.1007/BF01451604
  • [11] M. Kapranov, Operads and algebraic geometry, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 277-286. MR 1648078
  • [12] Maxim Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35-72. Moshé Flato (1937-1998). MR 1718044, https://doi.org/10.1023/A:1007555725247
  • [13] Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990-1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173-187. MR 1247289
  • [14] Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
  • [15] M. P. Schützenberger, On the definition of a family of automata, Information and Control 4 (1961), 245-270. MR 0135680
  • [16] A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199-224. MR 516081, https://doi.org/10.1017/S0305004100055638
  • [17] Joseph L. Taylor, Functions of several noncommuting variables, Bull. Amer. Math. Soc. 79 (1973), 1-34. MR 0315446, https://doi.org/10.1090/S0002-9904-1973-13077-0
  • [18] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables: A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. MR 1217253
  • [19] J. H. M. Wedderburn, On continued fractions in non-commutative quantities, Ann. of Math. (2) 15 (1913/14), no. 1-4, 101-105. MR 1502464, https://doi.org/10.2307/1967803

Review Information:

Reviewer: Vladimir Retakh
Affiliation: Department of Mathematics Rutgers University
Email: vretakh@math.rutgers.edu
Journal: Bull. Amer. Math. Soc. 54 (2017), 533-536
MSC (2010): Primary 17A50, 40A05, 46-02, 46L52, 46L54, 47A60, 47L25
DOI: https://doi.org/10.1090/bull/1571
Published electronically: February 6, 2017
Review copyright: © Copyright 2017 American Mathematical Society
American Mathematical Society