Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Hamiltonian and symplectic symmetries: An introduction


Author: Álvaro Pelayo
Journal: Bull. Amer. Math. Soc. 54 (2017), 383-436
MSC (2010): Primary 53D20, 53D35, 57R17, 37J35, 57M60, 58D27, 57S25
DOI: https://doi.org/10.1090/bull/1572
Published electronically: March 6, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Classical mechanical systems are modeled by a symplectic manifold $ (M,\omega )$, and their symmetries are encoded in the action of a Lie group $ G$ on $ M$ by diffeomorphisms which preserve $ \omega $. These actions, which are called symplectic, have been studied in the past forty years, following the works of Atiyah, Delzant, Duistermaat, Guillemin, Heckman, Kostant, Souriau, and Sternberg in the 1970s and 1980s on symplectic actions of compact Abelian Lie groups that are, in addition, of Hamiltonian type, i.e., they also satisfy Hamilton's equations. Since then a number of connections with combinatorics, finite-dimensional integrable Hamiltonian systems, more general symplectic actions, and topology have flourished. In this paper we review classical and recent results on Hamiltonian and non-Hamiltonian symplectic group actions roughly starting from the results of these authors. This paper also serves as a quick introduction to the basics of symplectic geometry.


References [Enhancements On Off] (What's this?)

  • [1] Ralph Abraham, Jerrold E. Marsden, Al Kelley, and A. N. Kolmogorov, Foundations of mechanics. A mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the three-body problem, With the assistance of Jerrold E. Marsden. Four appendices, one by the author, two by Al Kelley, the fourth, a translation of an article by A. N. Kolmogorov, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0220467
  • [2] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Ratiu and Richard Cushman. MR 515141
  • [3] K. Ahara and A. Hattori, $ 4$-dimensional symplectic $ S^1$-manifolds admitting moment map, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), no. 2, 251-298. MR 1127083
  • [4] A. Yu. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (1997), no. 2, 241-256. MR 1449971
  • [5] Vladimir Arnold, Sur une propriété topologique des applications globalement canoniques de la mécanique classique, C. R. Acad. Sci. Paris 261 (1965), 3719-3722 (French). MR 0193645
  • [6] V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319-361 (French). MR 0202082
  • [7] V. I. Arnold, Matematicheskie metody klassicheskoĭ mekhaniki., Izdat. ``Nauka'', Moscow, 1974 (Russian). MR 0474390
  • [8] V. I. Arnold, Fixed points of symplectic diffeomorphisms, Problem XX in Problems of Present Day Mathematics, Mathematical Developments Arising from Hilbert Problems, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc, Providence, R. I., 1976, p. 66.
  • [9] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein; Graduate Texts in Mathematics, 60. MR 0690288
  • [10] M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), no. 1, 1-15. MR 642416, https://doi.org/10.1112/blms/14.1.1
  • [11] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1-28. MR 721448, https://doi.org/10.1016/0040-9383(84)90021-1
  • [12] M. Audin, Hamiltoniens périodiques sur les variétés symplectiques compactes de dimension $ 4$, Géometrie symplectique et mécanique, Proceedings 1988, C. Albert ed., Springer Lecture Notes in Math. 1416 (1990).
  • [13] Michèle Audin, The topology of torus actions on symplectic manifolds, Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, 1991. Translated from the French by the author. MR 1106194
  • [14] Michèle Audin, Vladimir Igorevich Arnold and the invention of symplectic topology, Contact and symplectic topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Math. Soc., Budapest, 2014, pp. 1-25. MR 3220939, https://doi.org/10.1007/978-3-319-02036-5_1
  • [15] Yves Benoist, Actions symplectiques de groupes compacts, Geom. Dedicata 89 (2002), 181-245 (French, with English summary). MR 1890958, https://doi.org/10.1023/A:1014253511289
  • [16] Yves Benoist, Correction to ``Actions symplectiques de groupes compacts'', Geom. Dedicata 125 (2007), 251-252 (French, with English summary).
  • [17] Chal Benson and Carolyn S. Gordon, Kähler and symplectic structures on nilmanifolds, Topology 27 (1988), no. 4, 513-518. MR 976592, https://doi.org/10.1016/0040-9383(88)90029-8
  • [18] Nicole Berline and Michèle Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539-541 (French, with English summary). MR 685019
  • [19] George D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc. 14 (1913), no. 1, 14-22. MR 1500933, https://doi.org/10.2307/1988766
  • [20] Petre Birtea, Juan-Pablo Ortega, and Tudor S. Ratiu, Openness and convexity for momentum maps, Trans. Amer. Math. Soc. 361 (2009), no. 2, 603-630. MR 2452817, https://doi.org/10.1090/S0002-9947-08-04689-8
  • [21] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems: Geometry, topology, classification, Chapman & Hall/CRC, Boca Raton, FL, 2004. Translated from the 1999 Russian original. MR 2036760
  • [22] A. Cannas da Silva, Lectures in Symplectic Geometry, Springer-Verlag, Berlin (2000).
  • [23] É. Cartan, La théorie des groupes finis et continus et l'Analysis Situs, Mémorial Sc. Math. XLII (1930) 1-61.
  • [24] M. Chaperon, Quelques questions de géométrie symplectique, Séminaire Bourbaki, 1982-83, Astérisque 105-106, Soc. Math. Prance, Paris, 1983, pp. 231-249.
  • [25] Marc Chaperon, Une idée du type ``géodésiques brisées'' pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 13, 293-296 (French, with English summary). MR 765426
  • [26] Laurent Charles, Álvaro Pelayo, and San Vũ Ngoc, Isospectrality for quantum toric integrable systems, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 5, 815-849 (English, with English and French summaries). MR 3185353
  • [27] Kai Cieliebak, Helmut Hofer, Janko Latschev, and Felix Schlenk, Quantitative symplectic geometry, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 1-44. MR 2369441, https://doi.org/10.1017/CBO9780511755187.002
  • [28] Y. Colin de Verdière and J. Vey, Le lemme de Morse isochore, Topology 18 (1979), no. 4, 283-293 (French). MR 551010, https://doi.org/10.1016/0040-9383(79)90019-3
  • [29] C. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnold, Invent. Math. 73 (1983), no. 1, 33-49. MR 707347, https://doi.org/10.1007/BF01393824
  • [30] S. Curry, Á. Pelayo, X. Tang, Stability of symplectic forms on noncompact manifolds, preprint, February 2017.
  • [31] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85-134, 247 (Russian). MR 495499
  • [32] G. Darboux, Sur le problème de Pfaff, Bulletin des Sciences mathéma. et astrono., 2 série, t. VI; I88z, (1882) 1-46.
  • [33] Thomas Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988), no. 3, 315-339 (French, with English summary). MR 984900
  • [34] J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), no. 3-4, 183-269. MR 0388464, https://doi.org/10.1007/BF02392165
  • [35] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207-281. MR 0405513, https://doi.org/10.1002/cpa.3160270205
  • [36] J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math. 33 (1980), no. 6, 687-706. MR 596430, https://doi.org/10.1002/cpa.3160330602
  • [37] J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), no. 2, 259-268. MR 674406, https://doi.org/10.1007/BF01399506
  • [38] J. J. Duistermaat and G. J. Heckman, Addendum to: ``On the variation in the cohomology of the symplectic form of the reduced phase space'', Invent. Math. 72 (1983), no. 1, 153-158. MR 696693, https://doi.org/10.1007/BF01389132
  • [39] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431
  • [40] Johannes Jisse Duistermaat and Álvaro Pelayo, Symplectic torus actions with coisotropic principal orbits, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 7, 2239-2327 (English, with English and French summaries). Festival Yves Colin de Verdière. MR 2394542
  • [41] Johannes J. Duistermaat and Álvaro Pelayo, Reduced phase space and toric variety coordinatizations of Delzant spaces, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 3, 695-718. MR 2496353, https://doi.org/10.1017/S0305004108002077
  • [42] J. J. Duistermaat and Á. Pelayo, Complex structures on four-manifolds with symplectic two-torus actions, Internat. J. Math. 22 (2011), no. 3, 449-463. MR 2782696, https://doi.org/10.1142/S0129167X11006854
  • [43] J. J. Duistermaat and Á. Pelayo, Topology of symplectic torus actions with symplectic orbits, Rev. Mat. Complut. 24 (2011), no. 1, 59-81. MR 2763366, https://doi.org/10.1007/s13163-010-0028-5
  • [44] I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), no. 3, 355-378. MR 978597, https://doi.org/10.1007/BF01215653
  • [45] Y. Eliashberg, Rigidity of symplectic and contact structures. Abstracts of reports to Seventh Leningrad International Topology Conference (1982).
  • [46] Ya. M. Eliashberg, A theorem on the structure of wave fronts and its application in symplectic topology, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 65-72, 96 (Russian). MR 911776
  • [47] L. H. Eliasson, Hamiltonian systems with Poisson commuting integrals, PhD thesis, Univ. of Stockholm, 1984.
  • [48] L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals--elliptic case, Comment. Math. Helv. 65 (1990), no. 1, 4-35. MR 1036125, https://doi.org/10.1007/BF02566590
  • [49] Hermann Flaschka and Tudor Ratiu, A convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 6, 787-809. MR 1422991
  • [50] Michael Farber, Topology of closed one-forms, Mathematical Surveys and Monographs, vol. 108, American Mathematical Society, Providence, RI, 2004. MR 2034601
  • [51] A. Figalli, J. Palmer, Á. Pelayo, Symplectic $ G$-capacities and integrable systems, arXiv:1511.04499, to appear in Annali della Scuola Normale Superiore di Pisa.
  • [52] A. Figalli, Á. Pelayo, On the continuity of ball packing density on moduli spaces of toric manifolds, Advances in Geometry 16 (2016) 291-300.
  • [53] Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513-547. MR 965228
  • [54] Andreas Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207-221. MR 1001276
  • [55] Andreas Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), no. 4, 575-611. MR 987770
  • [56] Andreas Floer, Elliptic methods in variational problems, ICM-90, Mathematical Society of Japan, Tokyo; distributed outside Asia by the American Mathematical Society, Providence, RI, 1990. A plenary address presented at the International Congress of Mathematicians held in Kyoto, August 1990. MR 1126912
  • [57] Theodore Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1-8. MR 0131883, https://doi.org/10.2307/1969889
  • [58] John Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math. (2) 128 (1988), no. 1, 139-151. MR 951509, https://doi.org/10.2307/1971464
  • [59] Stefan Friedl and Stefano Vidussi, Twisted Alexander polynomials detect fibered 3-manifolds, Ann. of Math. (2) 173 (2011), no. 3, 1587-1643. MR 2800721, https://doi.org/10.4007/annals.2011.173.3.8
  • [60] Andrea Giacobbe, Convexity of multi-valued momentum maps, Geom. Dedicata 111 (2005), 1-22. MR 2155173, https://doi.org/10.1007/s10711-004-1620-y
  • [61] Viktor L. Ginzburg, Some remarks on symplectic actions of compact groups, Math. Z. 210 (1992), no. 4, 625-640. MR 1175727, https://doi.org/10.1007/BF02571819
  • [62] L. Godinho, Semifree symplectic circle actions on 4-orbifolds, Trans. Amer. Math. Soc. 358 (2006), no. 11, 4919-4933. MR 2231878, https://doi.org/10.1090/S0002-9947-06-03993-6
  • [63] Leonor Godinho, On certain symplectic circle actions, J. Symplectic Geom. 3 (2005), no. 3, 357-383. MR 2198781
  • [64] Leonor Godinho, Álvaro Pelayo, and Silvia Sabatini, Fermat and the number of fixed points of periodic flows, Commun. Number Theory Phys. 9 (2015), no. 4, 643-687. MR 3506787, https://doi.org/10.4310/CNTP.2015.v9.n4.a1
  • [65] Leonor Godinho and Silvia Sabatini, New tools for classifying Hamiltonian circle actions with isolated fixed points, Found. Comput. Math. 14 (2014), no. 4, 791-860. MR 3230015, https://doi.org/10.1007/s10208-014-9204-1
  • [66] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347. MR 809718, https://doi.org/10.1007/BF01388806
  • [67] Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505
  • [68] R. E. Greene and K. Shiohama, Diffeomorphisms and volume-preserving embeddings of noncompact manifolds, Trans. Amer. Math. Soc. 255 (1979), 403-414. MR 542888, https://doi.org/10.2307/1998183
  • [69] M. Gualtieri, S. Li, Á. Pelayo, T. Ratiu, The tropical momentum map: a classification of toric log symplectic manifolds, Math. Ann. (2016). doi:10.1007/s00208-016-1427-9.
  • [70] Victor Guillemin, Moment maps and combinatorial invariants of Hamiltonian $ T^n$-spaces, Progress in Mathematics, vol. 122, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301331
  • [71] Victor Guillemin, Eva Miranda, Ana Rita Pires, and Geoffrey Scott, Toric actions on $ b$-symplectic manifolds, Int. Math. Res. Not. IMRN 14 (2015), 5818-5848. MR 3384459, https://doi.org/10.1093/imrn/rnu108
  • [72] V. Guillemin, E. Miranda, A.R. Pires, G. Scott, Convexity for Hamiltonian torus actions on log symplectic manifolds, arXiv:1412.2488 (to appear in Math. Res. Letters).
  • [73] Victor Guillemin, Álvaro Pelayo, San Vũ Ngoc and Alan Weinstein, coordinating editors, Remembering Johannes J. Duistermaat (1942-2010), Notices Amer. Math. Soc. 58 (2011), no. 6, 794-802. MR 2839924
  • [74] Victor Guillemin and Reyer Sjamaar, Convexity properties of Hamiltonian group actions, CRM Monograph Series, vol. 26, American Mathematical Society, Providence, RI, 2005. MR 2175783
  • [75] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), no. 3, 491-513. MR 664117, https://doi.org/10.1007/BF01398933
  • [76] Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984. MR 770935
  • [77] Victor Guillemin and Shlomo Sternberg, Multiplicity-free spaces, J. Differential Geom. 19 (1984), no. 1, 31-56. MR 739781
  • [78] Larry Guth, Symplectic embeddings of polydisks, Invent. Math. 172 (2008), no. 3, 477-489. MR 2393077, https://doi.org/10.1007/s00222-007-0103-9
  • [79] Helmut Hofer, Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 407-462. MR 831040
  • [80] H. Hofer, Symplectic capacities, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 15-34. MR 1171906
  • [81] Helmut Hofer, Symplectic invariants, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 521-528. MR 1159239
  • [82] H. Hofer, Arnold and symplectic geometry, Notices Amer. Math. Soc. 59 (2012) 499-502.
  • [83] Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732
  • [84] Sonja Hohloch, Silvia Sabatini, and Daniele Sepe, From compact semi-toric systems to Hamiltonian $ S^1$-spaces, Discrete Contin. Dyn. Syst. 35 (2015), no. 1, 247-281. MR 3286957
  • [85] Donghoon Jang, Symplectic periodic flows with exactly three equilibrium points, Ergodic Theory Dynam. Systems 34 (2014), no. 6, 1930-1963. MR 3272779, https://doi.org/10.1017/etds.2014.56
  • [86] Donghoon Jang, Symplectic circle actions with isolated fixed points, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)-University of Illinois at Urbana-Champaign. MR 3450412
  • [87] Takeshi Kajiwara, Tropical toric geometry, Toric topology, Contemp. Math., vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 197-207. MR 2428356, https://doi.org/10.1090/conm/460/09018
  • [88] D. M. Kane, J. Palmer, Á. Pelayo, Classifying toric and semitoric fans by lifting equations from $ \textrm {SL}_2 (\mathbb{Z})$, arXiv:1502.07698.
  • [89] Yael Karshon, Periodic Hamiltonian flows on four-dimensional manifolds, Mem. Amer. Math. Soc. 141 (1999), no. 672, viii+71. MR 1612833, https://doi.org/10.1090/memo/0672
  • [90] Yael Karshon and Eugene Lerman, Non-compact symplectic toric manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 055, 37. MR 3371718, https://doi.org/10.3842/SIGMA.2015.055
  • [91] Yael Karshon and Susan Tolman, Classification of Hamiltonian torus actions with two-dimensional quotients, Geom. Topol. 18 (2014), no. 2, 669-716. MR 3180483, https://doi.org/10.2140/gt.2014.18.669
  • [92] Boris Khesin and Paul Lee, A nonholonomic Moser theorem and optimal transport, J. Symplectic Geom. 7 (2009), no. 4, 381-414. MR 2551999
  • [93] Min Kyu Kim, Frankel's theorem in the symplectic category, Trans. Amer. Math. Soc. 358 (2006), no. 10, 4367-4377. MR 2231381, https://doi.org/10.1090/S0002-9947-06-03844-X
  • [94] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57-110 (Russian). MR 0142001
  • [95] Frances Kirwan, Convexity properties of the moment mapping. III, Invent. Math. 77 (1984), no. 3, 547-552. MR 759257, https://doi.org/10.1007/BF01388838
  • [96] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751-798. MR 0187255, https://doi.org/10.2307/2373157
  • [97] Bertram Kostant, Orbits, symplectic structures and representation theory, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. p. 71. MR 0213476
  • [98] Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 87-208. Lecture Notes in Math., Vol. 170. MR 0294568
  • [99] Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-455 (1974). MR 0364552
  • [100] J. L. Koszul, Sur certains groupes de transformations de Lie, Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, 1953, Centre National de la Recherche Scientifique, Paris, 1953, pp. 137-141 (French). MR 0059919
  • [101] Çağatay Kutluhan and Clifford Henry Taubes, Seiberg-Witten Floer homology and symplectic forms on $ S^1\times M^3$, Geom. Topol. 13 (2009), no. 1, 493-525. MR 2469523, https://doi.org/10.2140/gt.2009.13.493
  • [102] J. L. Lagrange, Mémoire sur la théorie des variations des éléments des planètes, Mémoires de la classe des sciences mathématiques et physiques de l'institut de France, 1808, pp. 1-72.
  • [103] J. L. Lagrange, Second mémoire sur la théorie de la variation des constantes arbitraires dans les problèmes de mécanique, Mémoires de la classe des sciences mathématiques et physiques de l'institut de France 1809, 343-352.
  • [104] Y. Le Floch, Á. Pelayo, Symplectic geometry and spectral properties of classical and quantum coupled angular momenta, arXiv:1607.05419.
  • [105] Yohann Le Floch, Álvaro Pelayo, and San Vũ Ngoc, Inverse spectral theory for semiclassical Jaynes-Cummings systems, Math. Ann. 364 (2016), no. 3-4, 1393-1413. MR 3466872, https://doi.org/10.1007/s00208-015-1259-z
  • [106] Eugene Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995), no. 3, 247-258. MR 1338784, https://doi.org/10.4310/MRL.1995.v2.n3.a2
  • [107] Eugene Lerman and Susan Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4201-4230. MR 1401525, https://doi.org/10.1090/S0002-9947-97-01821-7
  • [108] George W. Mackey, The mathematical foundations of quantum mechanics: A lecture-note volume, W., A. Benjamin, Inc., New York-Amsterdam, 1963. MR 0155567
  • [109] C.-M. Marle, Classification des actions hamiltoniennes au voisinage d'une orbite, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 249-252. Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985) 227-251.
  • [110] Jerrold E. Marsden and Tudor S. Ratiu, Introduction to mechanics and symmetry, 2nd ed., Texts in Applied Mathematics, vol. 17, Springer-Verlag, New York, 1999. A basic exposition of classical mechanical systems. MR 1723696
  • [111] Jerrold Marsden and Alan Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974), no. 1, 121-130. MR 0402819
  • [112] V. P. Maslov, Théorie des perturbations et méthodes asymptotiques, Dunod, Gauthier-Villars, Paris, 1972. (Translation of 1965 Russian edition.)
  • [113] Kenneth R. Meyer, Symmetries and integrals in mechanics, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 259-272. MR 0331427
  • [114] John D. McCarthy and Jon G. Wolfson, Symplectic gluing along hypersurfaces and resolution of isolated orbifold singularities, Invent. Math. 119 (1995), no. 1, 129-154. MR 1309973, https://doi.org/10.1007/BF01245176
  • [115] Dusa McDuff, The moment map for circle actions on symplectic manifolds, J. Geom. Phys. 5 (1988), no. 2, 149-160. MR 1029424, https://doi.org/10.1016/0393-0440(88)90001-0
  • [116] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
  • [117] Dusa McDuff and Susan Tolman, Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res. Pap. (2006), 72826, 1-77. MR 2210662
  • [118] Jürgen Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. MR 0182927, https://doi.org/10.2307/1994022
  • [119] Kaoru Ono, Some remarks on group actions in symplectic geometry, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 3, 431-437. MR 965009
  • [120] Juan-Pablo Ortega and Tudor S. Ratiu, A symplectic slice theorem, Lett. Math. Phys. 59 (2002), no. 1, 81-93. MR 1894237, https://doi.org/10.1023/A:1014407427842
  • [121] Juan-Pablo Ortega and Tudor S. Ratiu, Momentum maps and Hamiltonian reduction, Progress in Mathematics, vol. 222, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2021152
  • [122] Andrei V. Pajitnov, Circle-valued Morse theory, De Gruyter Studies in Mathematics, vol. 32, Walter de Gruyter & Co., Berlin, 2006. MR 2319639
  • [123] J. Palmer, Moduli spaces of semitoric systems, arXiv:1502.07698, to appear in J. of Geom. and Phys.
  • [124] R. S. Palais and T. E. Stewart, Torus bundles over a torus, Proc. Amer. Math. Soc. 12 (1961), 26-29. MR 0123638, https://doi.org/10.2307/2034118
  • [125] Sam Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), no. 3, 543-556. MR 2511632, https://doi.org/10.4310/MRL.2009.v16.n3.a13
  • [126] Álvaro Pelayo, Toric symplectic ball packing, Topology Appl. 153 (2006), no. 18, 3633-3644. MR 2270611, https://doi.org/10.1016/j.topol.2006.03.012
  • [127] Álvaro Pelayo, Topology of spaces of equivariant symplectic embeddings, Proc. Amer. Math. Soc. 135 (2007), no. 1, 277-288. MR 2280203, https://doi.org/10.1090/S0002-9939-06-08310-9
  • [128] Álvaro Pelayo, Symplectic actions of 2-tori on 4-manifolds, Mem. Amer. Math. Soc. 204 (2010), no. 959, viii+81. MR 2640344, https://doi.org/10.1090/S0065-9266-09-00584-5
  • [129] Á. Pelayo, A. R. Pires, T. S. Ratiu, and S. Sabatini, Moduli spaces of toric manifolds, Geom. Dedicata 169 (2014), 323-341. MR 3175252, https://doi.org/10.1007/s10711-013-9858-x
  • [130] Álvaro Pelayo and Tudor S. Ratiu, Circle-valued momentum maps for symplectic periodic flows, Enseign. Math. (2) 58 (2012), no. 1-2, 205-219. MR 2985017, https://doi.org/10.4171/LEM/58-1-10
  • [131] Á. Pelayo, T. S. Ratiu, S. Vũ Ngoc, The affine invariant of generalized semitoric systems, arXiv:1307.7516. (Renamed ``The affine invariant of nonproper semitoric systems''.)
  • [132] Á. Pelayo, F. Rezakhanlou, Poincaré-Birkhoff theorems in random dynamics, to appear in Trans. Amer. Math. Soc.
  • [133] Á. Pelayo and Benjamin Schmidt, Maximal ball packings of symplectic-toric manifolds, Int. Math. Res. Not. IMRN 3 (2008), Art. ID rnm139, 24. MR 2416999, https://doi.org/10.1093/imrn/rnm139
  • [134] Á. Pelayo, X. Tang, Moser stability for volume forms on noncompact fiber bundles, arXiv:1607.03800.
  • [135] Álvaro Pelayo and Susan Tolman, Fixed points of symplectic periodic flows, Ergodic Theory Dynam. Systems 31 (2011), no. 4, 1237-1247. MR 2818694, https://doi.org/10.1017/S0143385710000295
  • [136] Álvaro Pelayo and San Vũ Ngoc, Semitoric integrable systems on symplectic 4-manifolds, Invent. Math. 177 (2009), no. 3, 571-597. MR 2534101, https://doi.org/10.1007/s00222-009-0190-x
  • [137] Álvaro Pelayo and San Vũ Ngoc, Constructing integrable systems of semitoric type, Acta Math. 206 (2011), no. 1, 93-125. MR 2784664, https://doi.org/10.1007/s11511-011-0060-4
  • [138] Álvaro Pelayo and San Vũ Ngoc, Symplectic theory of completely integrable Hamiltonian systems, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 3, 409-455. MR 2801777, https://doi.org/10.1090/S0273-0979-2011-01338-6
  • [139] Álvaro Pelayo and San Vũ Ngoc, Hofer's question on intermediate symplectic capacities, Proc. Lond. Math. Soc. (3) 110 (2015), no. 4, 787-804. MR 3335287, https://doi.org/10.1112/plms/pdu066
  • [140] Á. Pelayo, V. Voevodsky, M. A. Warren, A univalent formalization of the $ p$-adic numbers, Mathematical Structures in Computer Science, 25 (2014), 1147-1171.
  • [141] H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Tome I, Paris, Gauthier-Viltars, 1892. Republished by Blanchard, Paris, 1987.
  • [142] H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912) 375-407.
  • [143] Leonid Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. MR 1826128
  • [144] R. Clark Robinson, Generic properties of conservative systems, Amer. J. Math. 92 (1970), 562-603. MR 0273640, https://doi.org/10.2307/2373361
  • [145] R. Clark Robinson, Generic one parameter families of symplectic matrices, Amer. J. Math. 93 (1971), 116-122. MR 0377995, https://doi.org/10.2307/2373451
  • [146] Helmut Rüssmann, Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. 154 (1964), 285-300 (German). MR 0179409, https://doi.org/10.1007/BF01362565
  • [147] I. E. Segal, Quantization of nonlinear systems, J. Mathematical Phys. 1 (1960), 468-488. MR 0135093, https://doi.org/10.1063/1.1703683
  • [148] Reyer Sjamaar and Eugene Lerman, Stratified symplectic spaces and reduction, Ann. of Math. (2) 134 (1991), no. 2, 375-422. MR 1127479, https://doi.org/10.2307/2944350
  • [149] J.-M. Souriau, Quantification géométrique, Comm. Math. Phys. 1 (1966), 374-398 (French, with English summary). MR 0207332
  • [150] J. P. Souriau, Structure des Systèmes Dynamiques. Dunoud, Paris 1970. English translation by R.H. Cushman and G.M. Tuynman. Progress in Mathematics, 149. Birkhäuser Boston, 1997.
  • [151] S. Sternberg: Celestial Mechanics. II, W. A. Benjamin, New York, 1969.
  • [152] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467-468. MR 0402764, https://doi.org/10.2307/2041749
  • [153] W. Thurston, The Geometry and Topology of $ 3$-manifolds, Electronic version 1.1, March 2002, http://www.msri.org/publications/books/gt3m/.
  • [154] S. Tolman, Non-Hamiltonian actions with isolated fixed points, arXiv:1510.02829.
  • [155] Susan Tolman and Jonathan Weitsman, On semifree symplectic circle actions with isolated fixed points, Topology 39 (2000), no. 2, 299-309. MR 1722020, https://doi.org/10.1016/S0040-9383(99)00011-7
  • [156] J. Vey, Sur certains systèmes dynamiques séparables, Amer. J. Math. 100 (1978), no. 3, 591-614 (French). MR 0501141, https://doi.org/10.2307/2373841
  • [157] Christophe Wacheux, Asymptotics of action variables near semi-toric singularities, J. Geom. Phys. 98 (2015), 28-39. MR 3414940, https://doi.org/10.1016/j.geomphys.2015.07.023
  • [158] Alan Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), 329-346 (1971). MR 0286137, https://doi.org/10.1016/0001-8708(71)90020-X
  • [159] Alan Weinstein, Lectures on symplectic manifolds, American Mathematical Society, Providence, R.I., 1977. Expository lectures from the CBMS Regional Conference held at the University of North Carolina, March 8-12, 1976; Regional Conference Series in Mathematics, No. 29. MR 0464312
  • [160] Alan Weinstein, Symplectic geometry, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 1, 1-13. MR 614310, https://doi.org/10.1090/S0273-0979-1981-14911-9
  • [161] Alan Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), no. 3, 523-557. MR 723816
  • [162] Alan Weinstein, On extending the Conley-Zehnder fixed point theorem to other manifolds, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 541-544. MR 843640
  • [163] Alan Weinstein, Poisson geometry of discrete series orbits, and momentum convexity for noncompact group actions, Lett. Math. Phys. 56 (2001), no. 1, 17-30. EuroConférence Moshé Flato 2000, Part I (Dijon). MR 1848163, https://doi.org/10.1023/A:1010913023218
  • [164] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
  • [165] Chris Woodward, The classification of transversal multiplicity-free group actions, Ann. Global Anal. Geom. 14 (1996), no. 1, 3-42. MR 1375064, https://doi.org/10.1007/BF00128193
  • [166] Shing Tung Yau, Remarks on the group of isometries of a Riemannian manifold, Topology 16 (1977), no. 3, 239-247. MR 0448379, https://doi.org/10.1016/0040-9383(77)90004-0
  • [167] E. Zehnder, The Arnold conjecture for fixed points of symplectic mappings and periodic solutions of Hamiltonian systems, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1237-1246. MR 934328

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 53D20, 53D35, 57R17, 37J35, 57M60, 58D27, 57S25

Retrieve articles in all journals with MSC (2010): 53D20, 53D35, 57R17, 37J35, 57M60, 58D27, 57S25


Additional Information

Álvaro Pelayo
Affiliation: Department of Mathematics, University of California, San Diego, 9500 Gilman Drive $#$0112, La Jolla, California 92093-0112
Email: alpelayo@math.ucsd.edu

DOI: https://doi.org/10.1090/bull/1572
Received by editor(s): October 14, 2016
Published electronically: March 6, 2017
Additional Notes: The author is supported by NSF CAREER Grant DMS-1518420.
Dedicated: In memory of Professor J.J. Duistermaat (1942–2010)
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society