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LAPLACIAN GROWTH, SANDPILES, AND SCALING LIMITS

LIONEL LEVINE AND YUVAL PERES

Abstract. Laplacian growth is the study of interfaces that move in proportion
to harmonic measure. Physically, it arises in fluid flow and electrical problems
involving a moving boundary. We survey progress over the last decade on
discrete models of (internal) Laplacian growth, including the abelian sandpile,
internal DLA, rotor aggregation, and the scaling limits of these models on the
lattice εZd as the mesh size ε goes to zero. These models provide a window
into the tools of discrete potential theory, including harmonic functions, mar-
tingales, obstacle problems, quadrature domains, Green functions, smoothing.
We also present one new result: rotor aggregation in Z

d has O(log r) fluctu-
ations around a Euclidean ball, improving a previous power-law bound. We
highlight several open questions, including whether these fluctuations are O(1).

1. The abelian sandpile model

Start with n particles at the origin in the square grid Z
2, and let them spread out

according to the following rule: whenever any site in Z
2 has four or more particles,

it gives one particle to each of its four nearest neighbors (north, east, south and
west). The final configuration of particles does not depend on the order in which
these moves are performed (which explains the term “abelian”; see Lemma 1.1
below).

This model was invented in 1987 by the physicists Bak, Tang and Wiesenfeld [7].
While defined by a simple local rule, it produces self-similar global patterns that
call for an explanation. Dhar [16] extended the model to any base graph and dis-
covered the abelian property. The abelian sandpile was independently discovered
by combinatorialists [10], who called it chip-firing. Indeed, in the last two decades
the subject has been enriched by an exhilarating interaction of numerous areas of
mathematics, including statistical physics, combinatorics, free boundary partial dif-
ferential equations, probability, potential theory, number theory, and group theory.
More on this below. There are also connections to algebraic geometry [8, 47, 56],
commutative algebra [49,50], and computational complexity [6,12,52]. For software
for experimenting with sandpiles, see [57].

Let G = (V,E) be a locally finite connected graph. A sandpile on G is a function
s : V → Z. We think of a positive value s(x) > 0 as a number of sand grains
(or particles) at vertex x, and a negative value as a hole that can be filled by
particles. Vertex x is unstable if s(x) ≥ deg(x), the number of edges incident to

Received by the editors September 23, 2016.
2010 Mathematics Subject Classification. 31C20, 35R35, 60G50, 60K35, 82C24.
Key words and phrases. Abelian sandpile, chip-firing, discrete Laplacian, divisible sandpile,

Eulerian walkers, internal diffusion limited aggregation, looping constant, obstacle problem, rotor-
router model, scaling limit, unicycle, Tutte slope.

The first author was supported by NSF grant DMS-1455272 and a Sloan Fellowship.

c©2017 by Lionel Levine and Yuval Peres

355

http://www.ams.org/bull/
http://www.ams.org/bull/
http://dx.doi.org/10.1090/bull/1573
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1455272


356 LIONEL LEVINE AND YUVAL PERES

x. Toppling x is the operation of sending deg(x) particles away from x, one along
each incident edge. We say that a sequence of vertices x = (x1, . . . , xm) is legal for
s if si(xi) ≥ deg(xi) for all i = 1, . . . ,m, where si is the sandpile obtained from
s by toppling x1, . . . , xi−1; we say that x is stabilizing for s if sm ≤ deg−1. (All
inequalities between functions are pointwise.)

Lemma 1.1. Let s : V → Z be a sandpile, and suppose there exists a sequence
y = (y1, . . . , yn) that is stabilizing for s.

(i) Any legal sequence x = (x1, . . . , xm) for s is a permutation of a subsequence
of y.

(ii) There exists a legal stabilizing sequence for s.
(iii) Any two legal stabilizing sequences for s are permutations of each other.

Proof. Since x is legal for s, we have s(x1) ≥ deg(x1). Since y is stabilizing for s,
it follows that yi = x1 for some i. Toppling x1 yields a new sandpile s′. Removing
x1 from x and yi from y yields shorter legal and stabilizing sequences for s′, so (i)
follows by induction.

Let x be a legal sequence of maximal length, which is finite by (i). Such x must
be stabilizing, which proves (ii).

Statement (iii) is immediate from (i). �

We say that s stabilizes if there is a sequence that is stabilizing for s. If s
stabilizes, we define its odometer as the function on vertices

u(x) = number of occurrences of x in any legal stabilizing sequence for s.

The stabilization ŝ of s is the result of toppling a legal stabilizing sequence for s.
The odometer determines the stabilization, since

(1) ŝ = s+Δu

where Δ is the graph Laplacian

(2) Δu(x) =
∑
y∼x

(u(y)− u(x)).

Here the sum is over vertices y that are neighbors of x.
By Lemma 1.1(iii), both the odometer u and the stabilization ŝ depend only on

s, and not on the choice of legal stabilizing sequence, which is one reason the model
is called abelian (another is the role played by an abelian group; see Section 7).

What does a very large sandpile look like? The similarity of the two sandpiles in
Figure 1 suggests that some kind of limit exists as we take the number of particles
n → ∞ while “zooming out” so that each square of the grid has area 1/n. The
first step toward making this rigorous is to reformulate Lemma 1.1 in terms of the
Laplacian as follows.

Least Action Principle. If there exists w : V → N such that

(3) s+Δw ≤ deg−1,

then s stabilizes, and w ≥ u where u is the odometer of s. Thus,

(4) u(x) = inf{w(x) |w : V → N satisfies (3)}.

Proof. If such w exists, then any sequence y such that w(x) = #{i : yi = x} for
all x is stabilizing for s. The odometer is defined as u(x) = #{i : xi = x} for a
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Figure 1. Sandpiles in Z
2 formed by stabilizing 105 and 106 par-

ticles at the origin. Each pixel is colored according to the number
of sand grains that stabilize there (white 0, red 1, purple 2, blue 3).
The two images have been scaled to have the same diameter.

legal stabilizing sequence x, so w ≥ u by part (i) of Lemma 1.1. The last line now
follows from (1). �

The Least Action Principle expresses the odometer as the solution to a variational
problem (4). In the next section we will see that the same problem, without the
integrality constraint on w, arises from a variant of the sandpile which will be easier
to analyze.

2. Relaxing integrality: the divisible sandpile

Let Zd be the set of points with integer coordinates in d-dimensional Euclidean
space R

d, and let e1, . . . , ed be its standard basis vectors. We view Z
d as a graph

in which points x and y are adjacent if and only if x − y = ±ei for some i. For
example, when d = 1 this graph is an infinite path, and when d = 2 it is an infinite
square grid.

In the divisible sandpile model, each point x ∈ Z
d has a continuous amount of

mass σ(x) ∈ R≥0 instead of a discrete number of particles. Start with mass m
at the origin and zero elsewhere. At each time step, choose a site x ∈ Z

d with
mass σ(x) > 1, where σ is the current configuration, and distribute the excess mass
σ(x) − 1 equally among the 2d neighbors of x. We call this a toppling. Suppose
that these choices are sufficiently thorough in the sense that whenever a site attains
mass > 1, it is eventually chosen for toppling at some later time. Then we have the
following version of the abelian property.

Lemma 2.1. For any initial σ0 : Zd → R with finite total mass, and any thorough
sequence of topplings, the mass function converges pointwise to a function σ∞ :
Z
d → R satisfying 0 ≤ σ∞ ≤ 1. Any site z satisfying σ0(z) < σ∞(z) < 1 has a

neighboring site y satisfying σ∞(y) = 1.
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Proof. Let uk(x) be the total amount of mass emitted from x during the first k
topplings, and let σk = σ0 +Δuk be the resulting mass configuration. Since uk is
increasing in k, we have uk ↑ u∞ for some u∞ : V → [0,∞]. To rule out the value
∞, consider the quadratic weight

Q(σk) :=
∑
x∈Zd

(σk(x)− σ0(x))|x|2 =
∑
x∈Zd

uk(x).

To see the second equality, note that Q increases by h every time we topple mass
h. The set {σk ≥ 1} is connected and contains 0, and has cardinality bounded by
the total mass of σ0, so it is bounded. Moreover, every site z with σk(z) > σ0(z)
has a neighbor y with σk(y) ≥ 1. Hence supk Q(σk) < ∞, which shows that u∞ is
bounded.

Finally, σ∞ := limσk = lim(σ0 +Δuk) = σ0 +Δu∞. By thoroughness, for each
x ∈ Z

d we have σk(x) ≤ 1 for infinitely many k, so σ∞ ≤ 1. �

The picture is thus of a set of “filled” sites (σ∞(z) = 1) bordered by a strip of
partially filled sites (σ0(z) < σ∞(z) < 1). Every partially filled site has a filled
neighbor, so the thickness of this border strip is only one lattice spacing. Think of
pouring maple syrup over a waffle—most squares receiving syrup fill up completely
and then begin spilling over into neighboring squares. On the boundary of the
region of filled squares is a strip of squares that fill up only partially (Figure 3).

The limit u∞ is called the odometer of σ0. The preceding proof did not show
that u∞ and σ∞ are independent of the thorough toppling sequence. This is a
consequence of the next result.

Least Action Principle for the divisible sandpile. For any σ0 : Z2 → [0,∞)
with finite total mass and any w : V → [0,∞) such that

(5) σ +
1

2d
Δw ≤ 1,

we have w ≥ u∞ for any thorough toppling sequence. Thus,

(6) u∞(x) = inf{w(x) : w : V → [0,∞) satisfies (5)}.

Proof. With the notation of the preceding proof, suppose for a contradiction that
uk �≤ w for some k. For the minimal such k, the functions uk and uk−1 agree except
at xk, hence

1 =
(
σ +

1

2d
Δuk

)
(xk) <

(
σ +

1

2d
Δw

)
(xk) ≤ 1 ,

which yields the required contradiction. �

2.1. The superharmonic tablecloth. The variational problem (6) has an equiv-
alent formulation:

Lemma 2.2. Let γ : Zd → R satisfy 1
2dΔγ = σ0 − 1. Then the odometer u of (6)

is given by

u = s− γ,

where

(7) s(x) = inf{f(x) | f ≥ γ and Δf ≤ 0}.

Proof. f is in the set on the right side of (7) if and only if w := f − γ is in the set
on the right side of (6). �
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Figure 2. The obstacles γ corresponding to starting mass 1 on
each of two overlapping disks (top) and mass 100 on each of two
nonoverlapping disks.

The function γ is sometimes called the obstacle, and the minimizing function s
in (7) called the solution to the obstacle problem. To explain this terminology, we
refer to Figure 2, which shows the graph of γ for two different choices of initial mass
configuration σ0 on Z

2. Imagine a graph of γ as a fixed surface (for instance, the
top of a table) and the graph of f as a surface that can vary (a tablecloth). The
tablecloth is constrained to stay above the table (f ≥ γ) and is further constrained
to be superharmonic (Δf ≤ 0), which in particular implies that f has no local
minima. Depending on the shape of the table γ, these constraints may force the
tablecloth to lie strictly above the table in some places.

The solution s is the lowest possible position of the tablecloth. The set where
strict inequality holds

D := {x ∈ Z
d : s(x) > γ(x)}

is called the noncoincidence set. In terms of the divisible sandpile, the odometer
function u is the gap s − γ between tablecloth and table, and the set {u > 0} of
sites that topple is the noncoincidence set.

2.2. Building the obstacle. The reader ought now to be wondering, given a
configuration σ0 : Zd → [0,∞) of finite total mass, what the corresponding obstacle
γ : Zd → R looks like. The only requirement on γ is that it has a specified discrete
Laplacian, namely

1

2d
Δγ = σ0 − 1.

Does such γ always exist?
Given a function f : Zd → R, we would like to construct a function F such that

ΔF = f . The most straightforward method is to assign arbitrary values for F on a
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pair of parallel hyperplanes, from which the relation ΔF = f determines the other
values of F uniquely.

This method suffers from the drawback that the growth rate of F is hard to
control. A better method uses what is called the Green function or fundamental
solution for the discrete Laplacian Δ. This is a certain function g : Zd → R whose
discrete Laplacian is zero except at the origin:

(8)
1

2d
Δg(x) = −δ0(x) =

{
−1 x = 0,

0 x �= 0.

If f has finite support, then we can construct F as a convolution

F (x) = −f ∗ g := −
∑
y∈Zd

f(y)g(x− y)

in which only finitely many terms are nonzero. (The condition that f has finite
support can be relaxed to fast decay of f(x) as |x| → ∞, but we will not pursue
this.) Then for all x ∈ Z

d, we have

ΔF (x) =
∑
y∈Zd

f(y)δ0(x− y) = f(x)

as desired. By controlling the growth rate of the Green function g, we can control
the growth rate of F . The minus sign in equation (8) is a convention: as we will
now see, with this sign convention g has a natural definition in terms of random
walk.

Let ξ1, ξ2, . . . be a sequence of independent random variables each with the uni-
form distribution on the set E = {±e1, . . . ,±ed}. For x ∈ Z

d, the sequence

Xn = ξ1 + · · ·+ ξn, n ≥ 0,

is called a simple random walk started from the origin in Z
d: it is the location of a

walker who has wandered from 0 by taking n independent random steps, choosing
each of the 2d coordinate directions ±ei with equal probability 1/2d at each step.

In dimensions d ≥ 3 the simple random walk is transient : its expected number
of returns to the origin is finite. In these dimensions we define

g(x) :=
∑
n≥0

P(Xn = x),

a function known as the Green function of Zd. It is the expected number of visits
to x by a simple random walk started at the origin in Z

d. The identity

(9) − 1

2d
Δg = δ0

is proved by conditioning on the first step X1 of the walk

g(x) = P (X0 = x) +
∑
n≥1

∑
e∈E

P (Xn = x|X1 = e)P (X1 = e)

= δ0(x) +
∑
n≥1

∑
e∈E

P (Xn−1 = x− e)
1

2d
.

Interchanging the order of summation, the second term on the right equals
1
2d

∑
y∼x g(y), and (9) now follows by the definition of the Laplacian Δ.



LAPLACIAN GROWTH, SANDPILES, AND SCALING LIMITS 361

The case d = 2 is more delicate because the simple random walk is recurrent :
with probability 1 it visits x infinitely often, so the sum defining g(x) diverges. In
this case, g is defined instead as

g(x) =
∑
n≥0

(P(Xn = x)− P(Xn = 0)) .

One can show that this sum converges and that the resulting function g : Z2 → R

satisfies (9); see [66]. The function −g is called the recurrent potential kernel of Z2.
Convolving with the Green function enables us to construct functions on Z

d,
whose discrete Laplacian is any given function with finite support. But we want
more: In Lemma 2.2 we seek a function γ satisfying Δγ = σ− 1, where σ has finite
support. Fortunately, there is a very nice function whose discrete Laplacian is a
constant function, namely the squared Euclidean norm

q(x) = |x|2 :=
d∑

i=1

x2
i .

(In fact, we implicitly used the identity 1
2dΔq ≡ 1 in the quadratic weight argument

for Lemma 2.1.) We can therefore take as our obstacle the function

(10) γ = −q − (g ∗ σ).

In order to determine what happens when we drape a superharmonic tablecloth
over this particular table γ, we should figure out what γ looks like! In particular,
we would like to know the asymptotic order of the Green function g(x) when x is
far from the origin. It turns out [22, 36, 67] that

(11) g(x) = G(x) +O(|x|−d),

where G is the spherically symmetric function

(12) G(x) :=

{
− 2

π log |x| − a2, d = 2;

ad|x|2−d, d ≥ 3.

(For d ≥ 3 the constant ad = 2
(d−2)ωd

, where ωd is the volume of the unit ball in

R
d. The constant a2 = 2γ+log 8

π , where γ is Euler’s constant.) As we will now see,

this estimate in combination with − 1
2dΔg = δ0 is a powerful package. We start by

analyzing the initial condition σ = mδ0 for large m.

2.3. Point sources. Pour m grams of maple syrup into the center square of a
very large waffle. Each square can hold just 1 gram of syrup before it overflows,
distributing the excess equally among the four neighboring squares. What is the
shape of the resulting set of squares that fill up with syrup?

Figure 3 suggests the answer is very close to a disk. Being mathematicians, we
wish to quantify “very close”, and why stop at two-dimensional waffles? Let B(0, r)
be the Euclidean ball of radius r centered at the origin in R

d.

Theorem 2.3 ([44]). Let Dm = {σ∞ = 1} be the set of fully occupied sites for
the divisible sandpile started from mass m at the origin in Z

d. There is a constant
c = c(d), such that

B(0, r − c) ∩ Z
d ⊂ Dm ⊂ B(0, r + c),
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Figure 3. Divisible sandpile in Z
2 started from mass m = 1600

at the origin. Each square is colored blue if it fills completely, red
if it fills only partially. All red squares are contained in a thin
annulus centered at the origin of radii r ± c where πr2 = m. This
is illustrated above with c = 2.

where r is such that B(0, r) has volume m. Moreover, the odometer u∞ satisfies

(13) u∞(x) = mg(x) + |x|2 −mg(re1)− r2 +O(1)

for all x ∈ B(0, r + c) ∩ Z
d, where the constant in the O depends only on d.

The idea of the proof is to use Lemma 2.2 to write the odometer function as

u∞ = s− γ

for an obstacle γ with discrete Laplacian 1
2dΔγ = mδ0 − 1. What does such an

obstacle look like?
Recalling that the Euclidean norm |x|2 and the discrete Green function g have

discrete Laplacians 1 and −δ0, respectively, a natural choice of obstacle is

(14) γ(x) = −|x|2 −mg(x).

The claim of (13) is that u(x) is within an additive constant of γ(re1)− γ(x). To
prove this, one uses two properties of γ: it is nearly spherically symmetric (because
g is!) and it is maximized near |x| = r. From these properties one deduces that s
is nearly a constant function, and that {s > γ} is nearly the ball B(0, r) ∩ Z

d.
The Euclidean ball as a limit shape is an example of universality : Although our

topplings took place on the cubic lattice Zd, if we take the total mass m → ∞ while
zooming out so that the cubes of the lattice become infinitely small, the divisible
sandpile assumes a perfectly spherical limit shape. Figure 1 strongly suggests that
the abelian sandpile, with its indivisible grains of sand, does not enjoy such uni-
versality. However, discrete particles are not incompatible with universality, as the
next two examples show.
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Figure 4. An internal DLA cluster in Z
2. The colors indicate

whether a point was added to the cluster earlier or later than ex-
pected: the random site x(j) where the jth particle stops is colored
red if π|x(j)|2 > j, blue otherwise.

3. Internal DLA

Let m ≥ 1 be an integer. Starting with m particles at the origin in the d-
dimensional integer lattice Z

d, let each particle in turn perform a simple random
walk until reaching an unoccupied site; that is, the particle repeatedly jumps to a
nearest neighbor chosen independently and uniformly at random, until it lands on
a site containing no other particles.

This procedure, known as internal DLA, was proposed by Meakin and Deutch
[51] and independently by Diaconis and Fulton [19]. It produces a random set
Im of m occupied sites in Z

d (Figure 4). This random set is close to a ball, in
the following sense. Let r be such that the Euclidean ball B(0, r) of radius r has
volume m. Lawler, Bramson, and Griffeath [40] proved that for any ε > 0, with
probability 1 it holds that

B(0, (1− ε)r) ∩ Z
d ⊂ Im ⊂ B(0, (1 + ε)r) for all sufficiently large m.

A sequence of improvements followed, showing that in dimensions d ≥ 2 the fluc-
tuations of Im around B(0, r) are logarithmic in r [2–4, 29–31,38].

4. Rotor-routing: derandomized random walk

In a rotor walk on a graph, each vertex v serves its neighbors in a prescribed
periodic sequence. This periodic sequence is called the rotor mechanism at v. We
say that the rotor mechanism at v is simple if each neighbor of v occurs exactly once
per period. To visualize a rotor walk, label each vertex by an arrow (rotor) pointing
toward one of its neighbors. At each time step, the walker first advances the rotor
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Figure 5. Rotor aggregate of one million particles started at the
origin in Z

2. All rotors initially pointed north and followed the
clockwise mechanism: each rotor repeatedly cycles through the
directions north, east, south, west. Each pixel represents a site of
Z
2, and its color indicates the final direction of its rotor.

at its current location to point to the next neighbor in the periodic sequence, and
then the walker moves to that neighbor.

Rotor walk has been studied in [68] as a model of mobile agents exploring a
territory, and in [61] as a model of self-organized criticality. Propp [63] proposed
rotor walk as a derandomization of random walk, a perspective explored in [15,26].

In rotor aggregation, we start with n walkers at the origin; each in turn performs
rotor-router walk until it reaches a site not occupied by any other walkers. Impor-
tantly, we do not reset the rotors between walks! Let Rn denote the resulting region
of n occupied sites. For example, in Z

2 with the clockwise rotor mechanism whose
fundamental period is north, east, south, west, the sequence will begin R1 = {0},
R2 = {0, e1}, R3 = {0, e1,−e2}. The region R106 is pictured in Figure 5.

Theorem 4.1. There is a constant C depending only on the dimension d, such
that for any initial rotor configuration and any simple rotor mechanism on Z

d, the
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rotor aggregate Rn formed from n =
⌊
ωdr

d
⌋
particles started at 0 satisfies

(15) B(0, r − C log r) ∩ Z
d ⊂ Rn ⊂ B(0, r + C log r).

The inner bound was proved in [44], which also included a weaker outer bound
Rωdrd ⊂ B(0, r + Cr(d−1)/d log r). The rest of this section is devoted to the proof
of the stronger outer bound (15), which builds on ideas of Holroyd and Propp [26]
and Jerison, Levine, and Sheffield [29, 30].

4.1. No thin tentacles. The first step in the proof of Theorem 4.1 is to rule out
“thin tentacles” on the boundary of the rotor aggregate Rn. Namely, according to
the following proposition, for any point z0 ∈ Rn at least a constant fraction of the
lattice sites in a ball around z0 must also belong to Rn. An analogous result for
internal DLA appears in [29, Lemma A].

Proposition 4.2 (No thin tentacles). There is a positive constant c depending only
on the dimension d, such that for any initial rotor configuration and any simple
rotor mechanism in Z

d, and for any z0 ∈ Rn and ρ < |z0|, we have

#(B(z0, ρ) ∩Rn) ≥ cρd.

The proof of Proposition 4.2 uses the odometer function u = un : Zd → N defined
by

u(x) := total number of exits from x by all n particles during rotor aggregation.

If the same particle exits x several times, then we include all of its exits in the
count.

We first compare the gradient of u with the net number of crossings of an edge.
For each directed edge (x, y) of Zd, let

θ(x, y) := N(x, y)−N(y, x),

where N(x, y) is the total number of exits from x to y by all n particles in rotor-
router aggregation.

Lemma 4.3. For all directed edges (x, y) of Zd,

(16) u(x)− u(y) = 2d θ(x, y) + β(x, y)

for a function β on directed edges of Zd which satisfies

|β(x, y)| ≤ 4d− 2.

Proof. Note that u(x) =
∑

y∼x N(x, y). There are 2d terms in this sum, and the
definition of a simple rotor mechanism implies that any two of them differ by at
most 1, so for x ∼ y,

|u(x)− 2dN(x, y)| ≤ 2d− 1 .

By the triangle inequality,

|u(x)− u(y)− 2d θ(x, y)| ≤ |u(x)− 2dN(x, y)|+ |u(y)− 2dN(y, x)|
≤ 4d− 2. �

Next consider the discrete Laplacian of the odometer function u. Since the net
effect of all rotor moves is to transport n particles at the origin to one particle at
each site of Rn, we would like to say that “ 1

2dΔu = 1Rn
− nδ0 on average”. (This

equality holds exactly in a special case: namely, if every rotor makes an integer
number of full turns, so that N(x, y) depends only on x, then 1

2dΔu(x) equals the



366 LIONEL LEVINE AND YUVAL PERES

total number of entries to x minus the total number of exits from x.) One way to
make a precise statement of this form is to smooth u by averaging its values over a
small ball

B(x, k) := B(x, k) ∩ Z
d.

The proof of the next lemma is a discrete version of Δ = div∇.

Lemma 4.4. Fix an integer k > 1. For f : Zd → R, write

Skf(x) :=
1

#B(x, k)

∑
y∈B(x,k)

f(y).

For all x such that B(x, k) ⊂ Rn − {0}, the odometer u = un satisfies

1

2d
ΔSku(x) = 1 +O(

1

k
),

where the implied constant depends only on the dimension d.

Proof. Note that ΔSk = SkΔ. Hence

1

2d
ΔSku(x) =

1

#B(x, k)

∑
y∈B(x,k)

1

2d
Δu(y).

Writing the Laplacian Δu(y) as
∑

z∼y(u(z)− u(y)), we see that the interior terms

with y, z ∈ Q cancel, leaving (by Lemma 4.3)

1

#B(x, k)

∑
y∈B(x,k), z /∈B(x,k), z∼y

(θ(z, y) +
1

2d
β(z, y)).

The sum of the θ terms is the net number of particles entering B(x, k), which is
exactly #B(x, k): the ball starts empty and ends with exactly one particle per
site, since B(x, k) ⊂ Rn − {0}. Each β term is O(1) by Lemma 4.3, and there are
O(kd−1) terms in all (one for each boundary edge of B(x, k)). Dividing by #B(x, k)
leaves 1 +O(1/k). �

The above proof without any smoothing gives something much cruder. Namely,
if x ∈ Z

d −{0}, then the net number of particles entering x is
∑

y θ(y, x) = 1x∈Rn
,

so ∣∣∣∣ 1

2d
Δu(x)− 1x∈Rn

∣∣∣∣ =
∣∣∣∣∣ 1

2d

∑
y∼x

(u(y)− u(x)− 2d θ(y, x))

∣∣∣∣∣ ≤ 4d− 2

by Lemma 4.3. In particular,

(17) |Δu| ≤ 8d2 on Z
d − {0}.

We will use Lemma 4.4 for a fixed k = k(d), chosen large enough so that

(18)

∣∣∣∣ 1

2d
ΔSku(x)− 1

∣∣∣∣ < 1

4

for all x such that B(x, k) ⊂ Rn − {0}.
Next we record the following lemma, which is proved by applying the Harnack

inequality to the harmonic extensions of the functions f(x)±|x|2 in B(0, r); see the
proof of Lemma 2.17 in section 7 of [45].
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Lemma 4.5. Fix r > 1, and let f be a nonnegative function on Z
d satisfying

f(0) = 0 and |Δf | ≤ 1 on B(0, 2r). There is a constant A0 depending only on d,
such that

f(x) ≤ A0|x|2

for all x ∈ B(0, r) ∩ Z
d.

The next lemma shows that if the odometer is large at x, then the cluster Rn

contains a ball centered at x.

Lemma 4.6. Let A = 8d2A0. If u(x) > Ak2 and |x| > 3k, then B(x, k) ⊂ Rn.

Proof. We prove the contrapositive: If B(x, k) �⊂ Rn, then there is a y ∈ B(x, k)
such that u(y) = 0. Since u ≥ 0, and Δu is bounded by 8d2 on B(y, 2k) (here we
use that 0 /∈ B(x, 3k)), it follows from Lemma 4.5 that u(x) ≤ Ak2. �

Lemma 4.7. If Sku(x) > 4Ak2 and |x| > 7k, then B(x, k) ⊂ Rn.

Proof. Since Sku(x) is the average of u over B(x, k), there exists x′ ∈ B(x, k) with
u(x′) ≥ Sku(x). Now Lemma 4.6 implies that B(x, k) ⊂ B(x′, 3k) ⊂ Rn. �

The next two lemmas follow [45, Lemmas 4.9 and 4.10]. For x ∈ Z
d and ρ > 0,

let

N(x, ρ) := #(B(x, ρ) ∩Rn)

be the number of occupied sites within distance ρ of x.

Lemma 4.8. Fix x ∈ Rn and ρ < |x|. Let m := max∂B(x,ρ) u. Then N(x, ρ+1) ≥
(1 + 1

m )N(x, ρ).

Proof. Note that m ≥ 1 since x ∈ Rn. Since ρ < |x|, no particles start in B(x, ρ).
Each particle entering B(x, ρ) must pass through the external vertex boundary
∂B(x, ρ), so

N(x, ρ) ≤
∑

y∈∂B(x,ρ)

u(y).

The sum on the right has at most N(x, ρ + 1) − N(x, ρ) nonzero terms, since
∂B(x, ρ) ⊂ B(x, ρ+ 1)− B(x, ρ). Each term is at most m, so

N(x, ρ) ≤ mN(x, ρ+ 1)−mN(x, ρ). �

Fix k large enough that (18) holds, and let

Rn,k = {x ∈ Z
d : B(x, k) ⊂ Rn}.

Lemma 4.9. There are constants n0 and ρ0 depending only on d, such that for
all n > n0 the following holds. For each z0 ∈ Rn there exists z1 ∈ Rn,k with
|z0 − z1| < ρ0 and Sku(z1) > 4Ak2. (Recall that u = un.)

Proof. Since n particles start at 0, we have u(0) ≥ n− 1. Choose n0 large enough
that Sku(0) > 4Ak2. Take ρ0 := Dkd+3 where the constant D is chosen below. If
|z0| ≤ ρ0 then take z1 = 0. Otherwise, setting m := maxB(z0,ρ0) u, we iteratively
apply Lemma 4.8 to obtain (

1 +
1

m

)ρ0

≤ N(z0, ρ0)
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(here we have used that z0 ∈ Rn so that N(z0, 0) = 1 and m ≥ 1). By definition,
the right side is at most #B(z0, ρ0). Taking the logarithm of both sides yields

ρ0
m

≤ C log ρ0

for a constant C depending only on d. Taking D large enough in the choice of
ρ0 above, it follows that m > 4Ak2#B(z0, k), so there exists z1 ∈ B(z0, ρ) with
Sku(z1) > 4Ak2. By Lemma 4.6 it follows that z1 ∈ Rn,k. �

Lemma 4.9 shows that near each point in Rn is a point in Rn,k. Next we show
that for each point in Rn,k there is a nearby point with large odometer. The proof
is by the maximum principle, using an idea of Caffarelli [11].

Lemma 4.10. If Sku(z1) > 4Ak2, then for every ρ satisfying k < ρ < |z1| − 4k,
there exists z2 ∈ B(z1, ρ) such that

Sku(z2) >
1

2
ρ2.

Proof. Note that for every x ∈ A := B(z1, ρ) ∩ Rn,k, we have B(x, k) ⊂ Rn − {0},
so by (18) the function

f(x) := Sku(x)−
1

2
|x− z1|2

is subharmonic in A. By the maximum principle,

(19) max
x∈A∪∂A

f(x) = max
x∈∂A

f(x),

where ∂A := {x ∈ Ac : x ∼ y for some y ∈ A}. Note that z1 ∈ A, and for all
x ∈ Rc

n,k ∩ ∂A, Lemma 4.7 implies that

f(x) ≤ Sku(x) ≤ 4Ak2 < f(z1) ,

so the maximum (19) must be attained at some x ∈ Rn,k ∩ ∂A. It follows that
x /∈ B(z1, ρ), so

Sku(x) >
1

2
|x− z1|2 >

1

2
ρ2. �

Proof of Proposition 4.2. Fix k = k(d) so that (18) holds. By taking c sufficiently
small, we may assume that ρ > ρ0, where ρ0 was defined in Lemma 4.9. By that
lemma, there is a point z1 ∈ Rn,k with |z1 − z0| < ρ/4. Now by Lemma 4.10 there
is a point z2 with Sku(z2) >

1
2ρ

2 and |z2 − z1| < ρ/2. It follows by Lemma 4.7 that

Rn contains a ball B(z2, ρ/C). Since this ball has volume cρd, and |z2− z0| < 3ρ/4,
the proof is complete. �

4.2. The Holroyd–Propp bound; probe functions. If h is a function on Z
d

and A ⊂ Z
d is a finite set, write h[A] :=

∑
x∈A h(x).

Lemma 4.11 (Holroyd–Propp bound, [26]). For any initial rotor configuration and
any simple rotor mechanism on Z

d, if h : Zd → R is discrete harmonic on Rn, then

(20) |h[Rn]− nh(0)| ≤
∑
x∈Rn

∑
y∼x

|h(x)− h(y)|.
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Proof. For each vertex v ∈ Rn, let v1, . . . , v2d be the neighbors of v in Z
d in the

order they appear in v’s rotor mechanism. We assign a weight wi(v) ∈ R to a rotor
pointing from v to vi, so that w1(v) = 0 and

wi(v)− wi−1(v) = h(v)− h(vi)

for each i = 1, . . . , 2d (taking indices modulo 2d). These assignments are consistent
since h is discrete harmonic:

∑
i(h(v)− h(vi)) = 0. We also assign weight h(v) to

a walker located at v. The sum of rotor and walker weights is unchanged by each
step of the rotor walk. Initially, the sum of all walker weights is nh(0). After all
walkers have stopped, the sum of all walker weights is h[Rn]. Their difference is
thus at most the change in rotor weights, which is bounded above by the right side
of (20). �

Next we describe our choice of discrete harmonic function h, which is a variant
of those used in [29, 30]. The idea is that for each point y slightly outside B(0, r),
we can build a discrete harmonic probe function h = hy whose sum h[Rn] measures
how close the cluster Rn comes to y. A good choice of h turns out to be a discrete
derivative of Green’s function in the radial direction: the essential properties of
this h are that it is nonnegative in a neighborhood of the ball B(0, r) and it decays
rapidly away from y.

In the next lemma, J,K,L,M are constants depending only on the dimension d.

Lemma 4.12 (Probe function). Fix r > ρ > J . For each y ∈ Z
d with r + 2ρ <

|y| < r + 3ρ, there exists a function h : Zd → R with the following properties.

(i) h is discrete harmonic and nonnegative on B(0, r + ρ).
(ii) h(x) < K|x− y|1−d.
(iii) h(x) > 1

4ρ
1−d for all x ∈ B(0, r + ρ) ∩ B(y, 2ρ).

(iv)
∑

x∈B(0,r+ρ)

∑
z∼x |h(x)− h(z)| < L log r.

(v) h[B(0, r)] > (#B(0, r))h(0)−M log r.

Proof. Let

h(x) := b

d∑
i=1

yi
|y| [g(x− y + ei)− g(x− y)],

where g is the Green function of Zd defined in Section 2.2 and b is a small constant
we will choose later.

Since g is discrete harmonic on Z
d −{0}, the function h is discrete harmonic on

Z
d − B(y, 1). To show that h is nonnegative and to prove (ii)–(v), we approximate

g by its continuum analogue G of (11), which yields

(21) h(x) = b
d∑

i=1

yi
|y| [G(x− y + ei)−G(x− y)] +O(|x− y|−d).

Next observe that
∂G

∂xi
(x) = − 2

ωd

xi

|x|d

in all dimensions d ≥ 2, and the second derivatives of G are O(|x|−d). (We remark
that G also has a simple physical interpretation as the Newtonian potential of a
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mass at the origin in R
d. The gradient of G is the gravitational force exerted by a

mass at 0 on a mass at x.) A first-order Taylor expansion of G around x− y gives

h(x) = b
d∑

i=1

yi
|y|

[
2

ωd

yi − xi

|y − x|d

]
+O(|y − x|−d),

where the implied constant in the error term depends only on d. Take b = ωd/2 so
that

(22) h(x) =
〈y, y − x〉
|y||y − x| |y − x|1−d +O(|y − x|−d).

(i) Setting z = (r + ρ) y
|y| , we have for all x ∈ B(0, r + ρ)

(23) 〈y, y − x〉 ≥ 〈y, y − z〉 > ρ|y|
so that

h(x) > (ρ−O(1))|y − x|−d > 0

on B(0, r + ρ) (take J large enough to beat the O(1)).
(ii) By Cauchy–Schwarz inequality, the prefactor in equation (22) is at most 1.
(iii) For x ∈ B(y, 2ρ) ∩ B(0, r + ρ), we have by (22) and (23)

h(x) >
ρ|y|
2ρ|y|ρ

1−d −O(ρ−d).

Take J > 4 to ensure that (iii) holds.
(iv) This follows from (11).
(v) Writing H(x) for the main term of (21), we have∫

B(0,r)

h(x) dx =

∫
B(0,r)

H(x) dx+O(log r) = ωdr
dH(0) +O(log r).

Write B� for the union of closed unit cubes centered at the points of B(0, r). Then∑
x∈B(0,r)

h(s) =

∫
B�

H(x) dx+O(log r).

Moreover, since h(x) < K|x− y|1−d, we have
∫
B� H −

∫
B(0,r)

H = O(log r). �

Now we prove the main result of this section. As in [29,30] the idea is to amplify
the ability of h[Rn] to detect fluctuations in Rn: The absence of thin tentacles
(Proposition 4.2) implies that if Rn has a point within distance ρ of y, then Rn

has a substantial number of points (at least cρd) within distance 2ρ of y. Each of
these points contributes substantially to the sum h[Rn], but if ρ is on the order of
log r, then cρd is very small compared to n. To show that their contribution is not
swamped by the rest of Rn, we use the inner bound of (15) and the discrete mean
value property Lemma 4.12(v).

Proof of Theorem 4.1. The inner bound was proved in [44]. To prove the outer
bound, let

ρ := max(J, max
x∈Rn

|x| − r).

By [44] we have ρ < r (in fact ρ < r(d−1)/d log r).
We may assume that ρ > J . Fix y ∈ ∂B(0, r+2ρ) such that B(y, 3ρ/2) intersects

Rn, and let h be as in Lemma 4.12. By Proposition 4.2, #(Rn ∩ B(y, 2ρ)) ≥ cρd.
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Since Rn ⊂ B(0, r + ρ) and |y| > r + 2ρ, it follows that Rn ∩ B(y, 2ρ) ⊂ A :=
B(y, 2ρ)−B(y, ρ). By Lemma 4.12(iii) we have

h[Rn ∩ A] > (
1

4
ρ1−d)(cρd) =

c

4
ρ.

By the discrete mean value property, Lemma 4.12(v), writing n1=#B(0, r−C log r)
we have

h[B(0, r − C log r)] > n1h(0)−M log r.

By Lemma 4.12(i) we have h ≥ 0 on Rn. Now we throw away the terms h(x) for
x /∈ A∪B(0, r−C log r) and use the inner bound B(0, r−C log r) ⊂ Rn, obtaining

h[Rn]− nh(0) > h[Rn ∩A]−M log r − (n− n1)h(0).

The left side is at most L log r, by the Holroyd–Propp Lemma 4.11 and Lemma
4.12(iv). Using n1 > (r − 2C log r)d, we get

(L+M) log r >
c

4
ρ− (2Cdrd−1 log r)h(0).

Finally, since h(0) < Kr1−d by Lemma 4.12(ii), we conclude that

ρ < C ′ log r

as desired, with C ′ = 4
c (2CKd+ L+M). �

5. Multiple sources; quadrature domains

The Euclidean ball as a limiting shape is not too hard to guess. But what if the
particles start at two different points of Zd? For example, fix an integer r ≥ 1 and
a positive real number a, and start with m =

⌊
ωd(ar)

d
⌋
particles at each of re1 and

−re1. Alternately release a particle from re1 and let it perform a simple random
walk until it finds an unoccupied site, and then release a particle from −re1 and

Figure 6. Rotor-router aggregation started from two-point
sources in Z

2. Its scaling limit is a two-point quadrature domain
in R

2, satisfying (26).



372 LIONEL LEVINE AND YUVAL PERES

let it perform a simple random walk until it finds an unoccupied site. The result is
a random set Im,m consisting of 2m occupied sites in Z

d.
If a < 1, then the distance between the source points ±re1 is so large compared

to the number of particles that, with high probability, the particles starting at re1
do not interact with those starting at −re1. In this case Im,m is a disjoint union
of two ball-shaped clusters each of size m. On the other hand, if a � 1, so that
the two source points are very close together relative to the number of particles
released, then the cluster Im,m will look like a single ball of size 2m. What happens
in between these extreme cases?

Theorem 5.1 ([45]). For each a > 0 there exists a deterministic domain D ⊂ R
d

such that with probability 1

(24)
1

r
Im,m → D

as r → ∞.

The precise meaning of the convergence of domains in (24) is the following. Given
Dr ⊂ 1

rZ
d and Ω ⊂ R

d, we write Dr → Ω if for all ε > 0 we have

(25) Ωε ∩
1

r
Z
d ⊂ Dr ⊂ Ωε

for all sufficiently large r, where

Ωε := {x ∈ Ω | B(x, ε) ⊂ Ω}
and

Ωε := {x ∈ R
d | B(x, ε) �⊂ Ωc}

are the inner and outer ε-neighborhoods of D.
The limiting domain D is called a quadrature domain because it satisfies

(26)
1

ωdad

∫
D

h dx = h(−e1) + h(e1)

for all integrable harmonic functions h on D, where dx is the Lebesgue measure
on R

d. This identity is analogous to the mean value property
∫
B
h dx = h(0) for

integrable harmonic functions on the ball B of unit volume centered at the origin.
In dimension d = 2, the domain D has a more explicit description: For a ≥ 1 its

boundary in R
2 is the quartic curve

(27)
(
x2 + y2

)2 − 2a2
(
x2 + y2

)
− 2(x2 − y2) = 0.

When a = 1 this factors as

(x2 + y2 − 2x)(x2 + y2 + 2x) = 0,

which describes the union of two unit circles centered at ±e1 and tangent at the
origin. This case corresponds to two clusters that just barely interact, whose inter-
action is small enough that we do not see it in the limit. When a � 1, the term
2(x2 − y2) is much smaller than the others, so the curve (27) is approximately the
circle

x2 + y2 − 2a2 = 0.

This case corresponds to releasing so many particles that the effect of releasing
them alternately at ±re1 is nearly the same as releasing them all at the origin. An
intermediate example, with a slightly larger than 1, is shown in Figure 6.

Theorem 5.1 extends to the case of any k-point sources in R
d as follows.
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Theorem 5.2 ([45]). Fix x1, . . . , xk ∈ R
d and a1, . . . , ak > 0. Let x::

i be a closest
site to xi in the lattice 1

nZ
d, and let

Dn = {occupied sites for the divisible sandpile},
Rn = {occupied sites for rotor aggregation},
In = {occupied sites for internal DLA},

started in each case from
⌊
ain

d
⌋
particles at each site x::

i in 1
nZ

d.

Then there is a deterministic set D ⊂ R
d such that

Dn, Rn, In → D,

where the convergence is in the sense of (25), the convergence for Rn holds for any
initial setting of the rotors, and the convergence for In is with probability 1.

The limiting set D is called a k-point quadrature domain. It is characterized up
to measure zero by the inequalities∫

D

h dx ≤
k∑

i=1

aih(xi)

for all integrable superharmonic functions h on D, where dx is the Lebesgue mea-
sure on R

d. The subject of quadrature domains in the plane begins with Aharonov
and Shapiro [1] and was developed by Gustafsson [24], Sakai [64, 65], and others.
The boundary of a k-point quadrature domain in the plane lies on an algebraic
curve of degree 2k. In dimensions d ≥ 3, it is not known whether the boundary of
D is an algebraic surface!

6. Scaling limit of the abelian sandpile on Z
2

Now that we have seen an example of a universal scaling limit, let us return to
our very first example, the abelian sandpile with discrete particles.

Take as our underlying graph the square grid Z
2, start with n particles at the

origin, and stabilize. The resulting configuration of sand appears to be noncircular
(Figure 1)—so we do not expect the scaling limit to be universal like the one in
Theorem 5.2. In a breakthrough work [54], Pegden and Smart proved existence of
its scaling limit as n → ∞. To state their result, let

sn = nδ0 +Δun

be the sandpile formed from n particles at the origin in Z
d, and consider the rescaled

sandpile
s̄n(x) = sn(n

1/dx).

Theorem 6.1 ([54]). There is a function s : Rd → R such that s̄n → s is weakly-∗
in L∞(Rd).

The weak-∗ convergence of s̄n in L∞ means that for every ball B(x, r), the
average of sn over Z

d ∩ n1/dB(x, r) tends as n → ∞ to the average of s over
B(x, r).

The limiting sandpile s is lattice dependent. Examining the proof in [54] reveals
that the lattice dependence enters in the following way. Each real symmetric d× d
matrix A defines a quadratic function qA(x) =

1
2x

TAx and an associated sandpile

sA : Zd → Z

sA = Δ �qA� .
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(i) (ii) (iii)

Figure 7. (i) According to the main theorem of [43], the set of
allowed Hessians Γ(Z2) is the union of slope 1 cones based at
the circles of an Apollonian circle packing in the plane of 2 × 2
real symmetric matrices of trace 2. (ii) The same set viewed
from above: Color of point (a, b) indicates the largest c such that(
c−a b
b c+a

)
∈ Γ(Z2). The rectangle shown, (a, b) ∈ [0, 2]× [0, 4], ex-

tends periodically to the entire plane. (iii) Close-up of the lower
left corner (a, b) ∈ [0, 1]× [0, 2].

For each matrix A, the sandpile sA either stabilizes locally (that is, every site of
Z
d topples finitely often), or it fails to stabilize (in which case every site topples

infinitely often). The set of allowed Hessians Γ(Zd) is defined as the closure (with
respect to the Euclidean norm ‖A‖22 = Tr(ATA)) of the set of matrices A such that
sA stabilizes locally.

One can convert the Least Action Principle into an obstacle problem analogous
to Lemma 2.2 with an additional integrality constraint. The limit of these discrete
obstacle problems on 1

nZ
d as n → ∞ is the following variational problem on R

d.

Limit of the Least Action Principle.

(28) u = inf
{
w ∈ C(Rd) | w ≥ −G and D2(w +G) ∈ Γ(Zd)

}
.

Here G is the fundamental solution of the Laplacian in R
d. The infimum is

pointwise, and the minimizer u is related to the the sandpile odometers un by

lim
n→∞

1

n
un(n

1/2x) = u(x) +G(x).

The Hessian constraint in (28) is interpreted in the sense of viscosity :

D2ϕ(x) ∈ Γ(Zd)

whenever ϕ is a C∞ function touching w + G from below at x (that is, ϕ(x) =
w(x) +G(x) and ϕ− (w +G) has a local maximum at x).

The obstacle G in (28) is a spherically symmetric function on R
d, so the lattice

dependence arises solely from Γ(Zd). Put another way, the set Γ(Zd) is a way
of quantifying which features of the lattice Z

d are still detectable in the limit of
sandpiles as the lattice spacing shrinks to zero.
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An explicit description of Γ(Z2) appears in [43] (see Figure 7), and explicit fractal
solutions of the sandpile PDE

D2u ∈ ∂Γ(Z2)

are constructed in [42]. See [55] for images of Γ(L) for some other two-dimensional
lattices L.

7. The sandpile group of a finite graph

Let G = (V,E) be a finite connected graph, and fix a sink vertex z ∈ V . A stable
sandpile is now a map s : V \ {z} → N satisfying s(x) < deg(x) for all x ∈ V \ {z}.
As before, sites x with s(x) ≥ deg(x) topple by sending one particle along each
edge incident to x, but now particles falling into the sink disappear.

Define a Markov chain on the set of stable sandpiles as follows. At each time
step, add one sand grain at a vertex of V \ {z} selected uniformly at random, and
then perform all possible topplings until the sandpile is stable. Recall that a state s
in a finite Markov chain is called recurrent if whenever s′ is reachable from s, then
s is also reachable from s′. Dhar [16] observed that the operation ax of adding one
particle at vertex x and then stabilizing is a permutation of the set Rec(G, z) of
recurrent sandpiles. These permutations obey the relations

axay = ayax and adeg(x)x =
∏
u∼x

au

for all x, y ∈ V \ {z}. The subgroup K(G, z) of the permutation group
Sym(Rec(G, z)) generated by {ax}x	=z is called the sandpile group of G. Although
the set Rec(G, z) depends on the choice of sink vertex, the sandpile groups for
different choices of sink are isomorphic (see, e.g., [25, 27]).

The sandpile group K(G, z) has a free transitive action on Rec(G, z), so
#K(G, z) = #Rec(G, z). One can use rotor-routing to define a free transitive

Figure 8. Identity elements of the sandpile group Rec([0, n]2, z)
of the n × n grid graph with sink at the wired boundary (i.e., all
boundary vertices are identified to a single vertex z), for n = 198
(left) and n = 521.
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action of K(G, z) on the set of spanning trees of G [25]. In particular, the number
of spanning trees also equals #K(G, z). The most important bijection between
recurrent sandpiles and spanning trees uses Dhar’s burning algorithm [16,48].

A group operation ⊕ can also be defined directly on Rec(G, z), namely s ⊕ s′

is the stabilization of s + s′. Then s �→
∏

x a
s(x)
x defines an isomorphism from

(Rec(G, z),⊕) to the sandpile group.

8. Loop erasures, Tutte polynomial, unicycles

Fix an integer d ≥ 2. The looping constant ξ = ξ(Zd) is defined as the expected
number of neighbors of the origin on the infinite loop-erased random walk in Z

d.
In dimensions d ≥ 3, this walk can be defined by erasing cycles from the simple
random walk in chronological order. In dimension 2, one first defines the loop
erasure of the simple random walk stopped on exiting the box [−n, n]2 and shows
that the resulting measures converge weakly [37, 39].

A unicycle is a connected graph with the same number of edges as vertices. Such
a graph has exactly one cycle (Figure 9). If G is a finite (multi)graph, a spanning
subgraph of G is a graph containing all of the vertices of G and a subset of the
edges. A uniform spanning unicycle (USU) of G is a spanning subgraph of G which
is a unicycle, selected uniformly at random.

An exhaustion of Zd is a sequence V1 ⊂ V2 ⊂ · · · of finite subsets such that⋃
n≥1 Vn = Z

d. Let Gn be the multigraph obtained from Z
d by collapsing V c

n to
a single vertex zn and removing self-loops at zn. We do not collapse edges, so
Gn may have edges of multiplicity greater than one incident to zn. Theorem 8.1,
below, gives a numerical relationship between the looping constant ξ and the mean
unicycle length

λn = E [length of the unique cycle in a USU of Gn]

as well as the mean sandpile height

ζn = E [number of particles at 0 in a uniformly random recurrent sandpile on Vn] .

To define the last quantity of interest, recall that the Tutte polynomial of a finite
(multi)graph G = (V,E) is the two-variable polynomial

T (x, y) =
∑
A⊂E

(x− 1)c(A)−1(y − 1)c(A)+#A−n,

where c(A) is the number of connected components of the spanning subgraph (V,A).
Let Tn(x, y) be the Tutte polynomial of Gn. The Tutte slope is the ratio

τn =

∂Tn

∂y (1, 1)

(#Vn)Tn(1, 1)
.

A combinatorial interpretation of τn is the number of spanning unicycles of Gn

divided by the number of rooted spanning trees of Gn.
For a finite set V ⊂ Z

d, write ∂V for the set of sites in V c adjacent to V .

Theorem 8.1 ([46]). Let {Vn}n≥1 be an exhaustion of Z
d such that V1 = {0},

#Vn = n, and #(∂Vn)/n → 0. Let τn, ζn, λn be the Tutte slope, sandpile mean
height, and mean unicycle length in Vn. Then the following limits exist:

τ = lim
n→∞

τn, ζ = lim
n→∞

ζn, λ = lim
n→∞

λn.
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Figure 9. A spanning unicycle of the 8 × 8 square grid. The
unique cycle is shown in red.

Their values are given in terms of the looping constant ξ = ξ(Zd) by

(29) τ =
ξ − 1

2
, ζ = d+

ξ − 1

2
, λ =

2d− 2

ξ − 1
.

Dimension 2 is especially intriguing, because the quantities ξ, τ, ζ, λ turn out to
be rational numbers.

Corollary 8.2. In the case d = 2, we have [14, 35, 62]

ξ =
5

4
and ζ =

17

8
.

Hence by Theorem 8.1,

τ =
1

8
and λ = 8.

The value ζ(Z2) = 17
8 was conjectured by Grassberger (see [17]). Poghosyan

and Priezzhev [58] observed the equivalence of this conjecture with ξ(Z2) = 5
4 , and

shortly thereafter three proofs [14, 35, 62] appeared.
The proof that ζ(Z2) = 17

8 by Kenyon and Wilson [35] uses the theory of vector
bundle Laplacians [34], while the proof by Poghosyan, Priezzhev, and Ruelle [62]
uses monomer-dimer calculations. Earlier, Jeng, Piroux, and Ruelle [28] had re-
duced the computation of ζ(Z2) to evaluation of a certain multiple integral which
they evaluated numerically as 0.5± 10−12. This integral was proved to equal 1

2 by
Caracciolo and Sportiello [14], thus providing another proof.
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All three proofs involve powers of 1/π which ultimately cancel out. For i =
0, 1, 2, 3, let pi be the probability that a uniform recurrent sandpile in Z

2 has ex-
actly i grains of sand at the origin. The proof of the distribution

p0 =
2

π2
− 4

π3
,

p1 =
1

4
− 1

2π
− 3

π2
+

12

π3
,

p2 =
3

8
+

1

π
− 12

π3
,

p3 =
3

8
− 1

2π
+

1

π2
+

4

π3

is completed in [14, 35, 62] following the work of [28, 48, 60]. In particular, ζ(Z2) =
p1 + 2p2 + 3p3 = 17

8 .

Kassel and Wilson [33] give a new and simpler method for computing ζ(Z2)
relying on planar duality, which also extends to other lattices. For a survey of their
approach, see [32].

These objects on finite subgraphs of Zd also have infinite-volume limits defined on
Z
d itself: Lawler [37] defined the infinite loop-erased random walk, Pemantle [53]

defined the uniform spanning tree in Z
d, and Athreya and Járai [5] defined the

infinite-volume stationary measure for sandpiles in Z
d. The latter limit uses the

burning bijection of Majumdar and Dhar [48] and the one-ended property of the
trees in the uniform spanning forest [9, 53]. As for the Tutte polynomials Tn of
finite subgraphs of Zd, the limit

t(x, y) := lim
n→∞

1

n
log Tn(x, y)

can be expressed in terms of the pressure of the Fortuin–Kasteleyn random cluster
model. By a theorem of Grimmett (see [23, Theorem 4.58]) this limit exists for all
real x, y > 1. Theorem 8.1 concerns the behavior of this limit as (x, y) → (1, 1);
indeed, another expression for the Tutte slope is

τn =
∂

∂y

[
1

n
log Tn(x, y)

]∣∣∣∣
x=y=1

.

9. Open problems

We conclude by highlighting a few of the key open problems in this area.

(1) Suppose s(x)x∈Z2 are independent and identically distributed random vari-
ables taking values in {0, 1, 2, 3, 4}. Viewing s as a sandpile, the event that
every site of Z2 topples infinitely often is invariant under translation, so it
has probability 0 or 1. We do not know of an algorithm to decide whether
this probability is 0 or 1! See [20, 41].

(2) Does the rotor-router walk in Z
2 with random initial rotors (independently

north, east, south, or west, each with probability 1
4 ) return to the origin

with probability 1? The number of sites visited by such a walk in n steps
is predicted to be of order n2/3 [59]. For a lower bound of that order, see
[21]. As noted there, even an upper bound of o(n) would imply recurrence,
which is not known!
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(3) Recall that the weak-∗ convergence in Theorem 6.1, proved by Pegden
and Smart [54], means that the average height of the sandpile sn in any
ball converges as the lattice spacing shrinks to zero. A natural refinement
would be to show that for any ball B and any integer j, the fraction of sites
in B with j particles converges. Understanding the scaling limit of the
sandpile identity elements (Figure 8) is another appealing problem, solved
in a special case by Caracciolo, Paoletti, and Sportiello [13].

(4) As proved in [43] (and illustrated in Figure 7), the maximal elements of
Γ(Z2) correspond to the circles in the Apollonian band packing of R2. Be-
cause the radius and the coordinates of the center of each such circle are
rational numbers, each maximal element of Γ(Z2) is a matrix with ratio-
nal entries. Describe the maximal elements of Γ(Zd) for d ≥ 3. Are they
isolated? Do they have rational entries?
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