Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Previous version: Original version posted August 9, 2017
Corrected version posted October 13, 2017: Current version corrects the use of an incorrect symbol in the original, in the displayed equations on page 3, first displayed equation, and page 4, displayed equations 3 and 4.
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Christophe Garban and Jeffrey E. Steif
Title: Noise sensitivity of Boolean functions and percolation
Additional book information: Institute of Mathematical Statistics Textbooks, Vol. 5, Cambridge University Press, New York, 2015, xvii+203 pp., ISBN 978-1-107-07643-3

References [Enhancements On Off] (What's this?)

  • [1] Antonio Auffinger, Jack Hanson, and Michael Damron, 50 years of first passage percolation, 2015. arXiv:1511.03262, 50.
  • [2] Michael Ben-Or and Nathan Linial,
    Collective coin flipping.
    Leibniz Center for Research in Computer Science, Department of Computer Science, Hebrew University of Jerusalem, 1987.
  • [3] Itai Benjamini, Gil Kalai, and Oded Schramm, Noise sensitivity of Boolean functions and applications to percolation, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 5-43 (2001). MR 1813223
  • [4] Itai Benjamini, Gil Kalai, and Oded Schramm, First passage percolation has sublinear distance variance [MR2016607], Selected Works of Oded Schramm. Volume 1, 2, Sel. Works Probab. Stat., Springer, New York, 2011, pp. 779-787. MR 2883392, https://doi.org/10.1007/978-1-4419-9675-6_26
  • [5] Marek Biskup, Oren Louidor, Eviatar B. Procaccia, and Ron Rosenthal, Isoperimetry in two-dimensional percolation, Comm. Pure Appl. Math. 68 (2015), no. 9, 1483-1531. MR 3378192, https://doi.org/10.1002/cpa.21558
  • [6] Avrim Blum, Ioannis Caragiannis, Nika Haghtalab, Ariel D Procaccia, Eviatar B Procaccia, and Rohit Vaish, Opting into optimal matchings, in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2351-2363, SIAM, Philadelphia, PA, 2017.
  • [7] Sourav Chatterjee, Superconcentration and related topics, Springer Monographs in Mathematics, Springer, Cham, 2014. MR 3157205
  • [8] Michael Damron, Jack Hanson, and Philippe Sosoe, Sublinear variance in first-passage percolation for general distributions, Probab. Theory Related Fields 163 (2015), no. 1-2, 223-258. MR 3405617, https://doi.org/10.1007/s00440-014-0591-7
  • [9] Julian Gold, Isoperimetry in supercritical bond percolation in dimensions three and higher. arXiv:1602.05598, 2016.
  • [10] Leonard Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061-1083. MR 0420249, https://doi.org/10.2307/2373688
  • [11] Jeff Kahn, Gil Kalai, and Nathan Linial, The influence of variables on boolean functions, in 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 68-80, IEEE, 1988.
  • [12] Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), no. 9, 889.
  • [13] Nathan Keller, Elchanan Mossel, and Arnab Sen, Geometric influences, Ann. Probab. 40 (2012), no. 3, 1135-1166. MR 2962089, https://doi.org/10.1214/11-AOP643
  • [14] Nathan Keller, Elchanan Mossel, and Arnab Sen, Geometric influences II: Correlation inequalities and noise sensitivity, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 4, 1121-1139 (English, with English and French summaries). MR 3269987, https://doi.org/10.1214/13-AIHP557
  • [15] Harry Kesten, The critical probability of bond percolation on the square lattice equals $ {1\over 2}$, Comm. Math. Phys. 74 (1980), no. 1, 41-59. MR 575895
  • [16] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probab. 1 (1973), 883-909. With discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M. Hammersley, and a reply by the author. MR 0356192
  • [17] Thomas M. Liggett, An improved subadditive ergodic theorem, Ann. Probab. 13 (1985), no. 4, 1279-1285. MR 806224
  • [18] Edward Nelson, The free Markoff field, J. Funct. Anal. 12 (1973), 211-227. MR 0343816
  • [19] Eviatar B. Procaccia and Ron Rosenthal, Concentration estimates for the isoperimetric constant of the supercritical percolation cluster, Electron. Commun. Probab. 17 (2012), no. 30, 11. MR 2955495, https://doi.org/10.1214/ECP.v17-2185
  • [20] Michel Talagrand, On Russo's approximate zero-one law, Ann. Probab. 22 (1994), no. 3, 1576-1587. MR 1303654

Review Information:

Reviewer: Eviatar B. Procaccia
Affiliation: Department of Mathematics, Texas A&M University
Email: eviatarp@gmail.com
Journal: Bull. Amer. Math. Soc. 55 (2018), 131-138
MSC (2010): Primary 60-02, 60K35; Secondary 60D05
DOI: https://doi.org/10.1090/bull/1591
Published electronically: August 9, 2017
Review copyright: © Copyright 2017 American Mathematical Society
American Mathematical Society