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CATEGORICAL LIFTING OF THE JONES POLYNOMIAL:

A SURVEY

MIKHAIL KHOVANOV AND ROBERT LIPSHITZ

This paper is dedicated to the memory of Vaughan Jones,
whose insights have illuminated so many beautiful mathematical paths.

Abstract. This is a brief review of the categorification of the Jones poly-
nomial and its significance and ramifications in geometry, algebra, and low-
dimensional topology.

1. Constructions of the Jones polynomial

The spectacular discovery by Vaughan Jones [76, 78] of the Jones polynomial
of links has led to many follow-up developments in mathematics. In this note we
will survey one of these developments, the discovery of a combinatorially defined
homology theory of links, functorial under link cobordisms in 4-space, and its con-
nections to algebraic geometry, symplectic geometry, gauge theory, representation
theory, and stable homotopy theory.

The Jones polynomial J(L) of an oriented link L in R3 is determined uniquely
by the skein relation

(1) q−2J

⎛⎜⎝
⎞⎟⎠− q2J

⎛⎜⎝
⎞⎟⎠ = (q−1 − q)J

⎛⎜⎝
⎞⎟⎠

and the normalization that the polynomial of the unknot satisfies J(U) = 1. The
multiplicativity property J(L � U) = (q + q−1)J(L) (that is, that the disjoint
union with the unknot scales the invariant by q + q−1) suggests another natural
normalization, J(U) = q + q−1 and J(∅) = 1, where ∅ is the empty link.

The polynomial J(L) originally arose from Jones’s work on C∗-algebras, where
the braid relations and Temperley–Lieb relations appeared organically [75, 77]. As
we will see below, it also has connections to many other areas, from representa-
tion theory to gauge theory. Many of these connections first appeared or were
foreshadowed in papers of Jones’s, including the connections to quantum groups
and statistical mechanics [79], Hecke algebras and traces [77, 78], and many other
topics [80]. In addition to inspiring at least half a dozen different fields in mathe-
matics, the Jones polynomial and its descendants have had remarkable applications
to topology. Some we will touch on below; others, like its central role in resolving
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〈 〉
= q−1/2

〈 〉
− q1/2

〈 〉

Figure 1.1. Kauffman bracket skein relation. Given a dia-
gram D and a crossing in it as on the left, there are two ways D0

and D1 to resolve the crossing, as on the right. The Kauffman
bracket of D, D0, and D1 are related as shown.

the famous Tait conjectures or its deep connections to hyperbolic geometry, we
leave to other authors.

While it is fairly easy to see that at most one knot invariant satisfies relation (1)
and any given normalization for J(U), it is not immediately obvious that (1) is
consistent. A simple way to see the existence of a knot invariant satisfying (1)
was discovered by L. Kauffman [81]. Pick a planar diagram D of L, forget about
the orientation of L, and resolve each crossing of D into a linear combination of
two crossingless diagrams, as shown in Figure 1.1. Any time a simple closed curve
without crossings arises, remove it and scale the remaining term by q + q−1. The
end result is a Laurent polynomial 〈D〉 ∈ qn/2Z[q, q−1] (where n is the number of
crossings of D), the Kauffman bracket of D. We can now bring back the orientation
of L and scale 〈D〉 by a monomial in terms of the number n+ of positive crossings
and n− of negative crossings (the first and second pictures in formula (1)):

(2) K(D) := (−1)n−q3(n+−n−)/2〈D〉 ∈ Z[q, q−1].

It is straightforward to check that K(D) is invariant under Reidemeister moves of
oriented link diagrams, hence it gives rise to a link invariant K(L). Further, by
applying the unoriented skein relation from Figure 1.1 at the crossing of the two
diagrams on the left of relation (1), one sees that K(L) satisfies relation (1). So,
we have:

Theorem 1.1 (Kauffman [81]). For any oriented link L, J(L) = K(L).

2. Categorification of the Jones polynomial for links and tangles

2.1. Categorification for links. E. Witten showed [176] at a physical level of
rigor that the Chern–Simons path integral, with gauge group SU (2) and param-
eter q a root of unity, gives rise to an invariant of 3-manifolds intricately related
to the Jones polynomial. The case of gauge group U(1) was considered earlier
by A. Schwarz, who showed that the path integral evaluates to the Reidemeister
torsion [157]. Shortly afterward, N. Reshetikhin and V. Turaev [147] gave a mathe-
matically precise proof that suitable linear combinations of the Jones polynomial of
cables of a framed link L, evaluated at q anNth root of unity, give invariants τN (M)
of an oriented 3-manifold M obtained by surgery on L; the resulting invariants are
called Witten–Reshetikhin–Turaev invariants.

Motivated by these developments and by constructions in geometric represen-
tation theory (notably by the work of G. Lusztig [114] and A. Beilinson, Lusztig,
and R. MacPherson [20]), L. Crane and I. B. Frenkel conjectured [38] that the
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Witten–Reshetikhin–Turaev 3-manifold invariant lifts to a four-dimensional topo-
logical quantum field theory (TQFT). They coined the term categorification to
describe such a lifting of an (n−1)-dimensional TQFT to an n-dimensional TQFT.

Despite many insights into the possible structure of such a theory since then,
its existence still remains a conjecture. Nonetheless, the Crane–Frenkel conjecture
motivated the discovery of a categorification of the Jones polynomial by the first
author [85]. In that categorification, the parameter q becomes a grading shift of
the quantum grading, and the theory assigns to an oriented link L ⊂ R3 bigraded
homology groups

(3) H(L) =
⊕
i,j∈Z

Hi,j(L),

functorial under smooth link cobordisms, and with the Jones polynomial as their
Euler characteristic:

(4) J(L) =
∑
i,j∈Z

(−1)iqjrank(Hi,j(L)).

A way to construct this theory can be guessed by lifting the Kauffman skein
relation to a long exact sequence for homology. That is, up to appropriate grading
shifts, there is an exact sequence

· · · −→ H

⎛⎜⎝
⎞⎟⎠ −→ H

⎛⎜⎝
⎞⎟⎠

−→ H

⎛⎜⎝
⎞⎟⎠ −→ H

⎛⎜⎝
⎞⎟⎠ [1] −→ · · · .

Suppose further that, given a diagram D for L, there is a chain complex C(D)
computing H(L), and the long exact sequence is induced by an isomorphism between
the complex C(D) and the cone of a map between C(D0) and C(D1), where D0 and
D1 are as in Figure 1.1. The Jones invariant of the unknot is q + q−1, which is the
graded rank of a free graded abelian group A with generators in degrees −1 and 1.
The philosophy of TQFTs then suggests associating A⊗k to a k-component unlink
diagram. Natural maps C(D0) → C(D1) between these complexes for resolutions
of D can be obtained from a commutative Frobenius algebra structure on A: change
of resolution is a cobordism, and Frobenius algebras correspond to two-dimensional
TQFTs, assigning maps to cobordisms between 1-manifolds. It turns out that A is
unique up to obvious symmetries: with generators in (quantum) degrees −1 and 1
denoted by 1 and X, respectively, the multiplication m and the trace ε on A are
given by

A = Z1⊕ ZX, 1 · a = a · 1 = a (∀a ∈ A),(5)

X ·X = 0, ε(1) = 0, ε(X) = 1.(6)

Dualizing the multiplication via ε leads to a comultiplication, with

(7) Δ(1) = 1⊗X +X ⊗ 1, Δ(X) = X ⊗X.
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Explicitly, m and Δ allow one to write down maps associated to all local topology
changes between 2n full resolutions of an n-crossing diagram D, giving a com-
mutative n-dimensional cube with powers of A at its vertices and maps m and
Δ tensored with identity maps on its edges. After suitable degree shifts, by col-
lapsing the cube (similar to passing to the total complex of a polycomplex) one
obtains a complex C(D) of graded abelian groups with a differential that preserves
the quantum degree. Reidemeister moves can be lifted to specific homotopy equiva-
lences between the complexes. Consequently, the isomorphism class of the bigraded
homology groups H(L) := H(C(D)) is an invariant of L, now widely called sl2 ho-
mology or Khovanov homology. Identification of the Jones polynomial as the Euler
characteristic of H(L) is immediate, since the construction of C(D) lifts Kauffman’s
inductive formula.

One can think of this construction of a link homology as coming from a commu-
tative Frobenius algebra A over Z, as above. The key property of A is having rank
2 over the ground ring Z: using an algebra A of larger rank, the homology fails to
be invariant under Reidemeister I moves. On the other hand, a modification of this
construction, deforming the relation X2 = 0, gives rise to so-called equivariant link
homology [16, 90]. The essentially most general deformation comes from working
over the ground ring R′ = Z[h, t] and setting A′ to be

(8) A′ = R′[X]/(X2 − hX − t), ε : A′ → R′, ε(1) = 0, ε(X) = 1.

The equivariant theory turns out to be important for applications (see Sections 3
and 5).

As mentioned above, this construction of link homology can be phrased via a
rank 2 commutative Frobenius pair (R,A), giving rise to a two-dimensional TQFT
F = FA with F (∅) = R (with is Z or R′ above) and F (S1) ∼= A. That a two-
dimensional TQFT of rank 2 can be bootstrapped into a link homology theory was
surprising.

There is also a reduced version of the invariant, corresponding to the normal-
ization J(U) = 1. Fix a marked point on a strand of D. There is a subcomplex

C̃(D) ⊂ C(D) where the marked circle is labeled X throughout. Shifting the

quantum grading of C̃(D) down by 1 and taking homology gives H̃(L), the reduced

Khovanov homology. It is easy to see that C(D)/C̃(D) ∼= C̃(D), so there is a long
exact sequence

(9) · · · → H̃i,j−1(L) → Hi,j(L) → H̃i,j+1(L) → H̃i+1,j−1(L) → · · · .
A paper of D. Bar-Natan [15] helped to provoke early interest in the subject, as

well as giving computations of H(K) for knots through 12 crossings. (More work
on computing H(L) is described in Section 5.)

2.2. Tangles and representations. The Kauffman bracket invariant admits a
relative version for tangles in the 3-disk [32, 81–83]. Start with a tangle T in D3

with 2n boundary points, and consider a generic projection of it to the 2-disk D2,
with 2n boundary points spread out around the boundary ∂D2. Let Kaun be the
free Z[q, q−1]-module with basis Bn the set of crossingless matchings of 2n boundary
points via n disjoint arcs inside a disk. The relative Kauffman bracket associates to
T an element 〈T 〉 of Kaun by resolving each crossing following Kauffman’s recipe.
The braid group on 2n strands acts on Kaun by attaching a braid to a crossingless
matching and then reducing the result via Kauffman’s relations. (In fact, the larger
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group of annular braids acts.) More generally, a tangle T in a strip R× [0, 1] with
2n bottom and 2m top points (a (2m, 2n)-tangle) induces a Z[q, q−1]-linear map

(10) K(T ) : Kaun → Kaum.

These maps fit together into a functor from the category of even tangles (tangles
with an even number of top and bottom endpoints) to the category of Z[q, q−1]-
modules. Variations of Kauffman’s construction can be made into monoidal func-
tors from the category of tangles that assign nth tensor power of the fundamental
representation V of quantum sl2 (or a suitable subspace of V ⊗n) to n points on the
plane and intertwiners between tensor powers of representations to tangles. The
above setup with crossingless matchings corresponds to assigning the subspace of
invariants InvUq(sl2)(V

⊗n) to n points. This subspace is trivial when n is odd and
has a basis of crossingless matchings for even n [32, 53, 83, 84].

Upon categorification, Kaun becomes a Grothendieck group of a suitable cate-
gory Cn. A crossingless matching a ∈ Bn with 2n specified endpoints p becomes
an object Pa of Cn. We can guess that morphism spaces HomCn

(Pa, Pb) will come
from cobordisms between a and b, that is, surfaces S embedded in D2 × [0, 1] with
boundaries a×{0}, b×{1}, and [0, 1]×p. (An example is on the right of Figure 2.1.)

The total boundary of such a surface S is homeomorphic to the 1-manifold ba given
by gluing a and b along their boundary points. One can then define

HomCn
(Pa, Pb) := F (ba)

by applying the two-dimensional TQFT F as above to that 1-manifold. It is
straightforward to define associative multiplications

HomCn
(Pa, Pb)×HomCn

(Pb, Pc) −→ HomCn
(Pa, Pc), a, b, c ∈ Bn,

by applying F to appropriate cobordisms [86].
More carefully, to define Cn we start with objects {Pa}a∈Bn and morphisms as

above and form a pre-additive category C′′
n. Equivalently, category C′′

n can be viewed
as an idempotented ring

Hn :=
⊕

a,b∈Bn

HomC′′
n
(Pa, Pb) =

⊕
a,b∈Bn

F (ba),

the arc ring, with idempotents 1a ∈ F (aa) given by identity cobordisms from a to
itself. It is also possible to keep track of morphisms in different degrees and refine
the category by restricting morphisms to degree 0 parts of graded abelian groups
F (ba) but allowing grading shifts of generating objects to capture the entire groups.

From the idempotents 1a one can recover the projective modules Pa := Hn 1a
over Hn.

One can then form an additive closure C′
n of the category C′′

n by also allowing
finite direct sums of objects. The category C′

n happens to be Karoubi closed, which
is not hard to check and simplifies working with it. The category C′

n is equivalent
to the category of graded projective finitely generated modules over the graded ring
Hn.

To a flat (crossingless) tangle T in a disk D2 with 2n endpoints there is associated
an object F (T ) of C′

n or, equivalently, a projective graded Hn-module. If T is the
union of k circles and a crossingless matching a ∈ Bn, then the projective module
is isomorphic to A⊗k⊗Pa, that is, to the sum of 2k copies of the projective module
Pa, with appropriate grading shifts.
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T a b s

Figure 2.1. The complex associated to a tangle. The com-
plex of graded projective H2-modules F (T ) is given by 0 →
Pa{1}

F (s)−→ Pb → 0, where Pa and Pb are the modules associated
to the flat tangles a and b shown, and s is the indicated saddle
cobordism. The notation {1} indicates a quantum grading shift.

The Grothendieck group K0(C′
n) of C′

n is a free Z[q, q−1]-module with basis given
by the symbols [Pa] of projective modules, over all crossingless matchings a ∈ Bn.
This Grothendieck group can also be defined asK0 of the graded algebraHn. There
is a canonical isomorphism of Z[q, q−1]-modules

K0(C′
n)

∼= Kaun.

Now form the category Cn of bounded complexes of objects of C′
n, modulo chain

homotopies. The inclusion C′
n ⊂ Cn induces an isomorphism of their Grothendieck

groups.
To a planar diagram D of a tangle T with 2n endpoints there is an associated

object F (D) of Cn, by a relative version of the cube construction. Namely, define
F (D) to be the iterated mapping cone of the two resolutions at each crossing, that
is, the total complex of the cube of resolutions of D. See Figure 2.1 for a simple
example.

Reidemeister moves of tangle diagrams lift to chain homotopy equivalences, and
the isomorphism class of the object F (D) is an invariant of T . On the Grothendieck
group, F (D) descends to the element 〈T 〉 ∈ Kaun.

Similarly, given a tangle diagram D with 2m bottom and 2n top endpoints, there
is an associated complex of (Hm, Hn)-bimodules, and tensoring with this complex
of bimodules gives an exact functor F (D) : Cn → Cm. This construction lifts to a
2-functor from the category of flat tangles and their cobordisms to the category of
bimodules and their homomorphisms. Furthermore, it lifts to a projective functor
(well-defined on 2-morphisms up to an overall sign) from the 2-category of tangle
cobordisms to the 2-category of complexes of bimodules over Hn, over all n ≥ 0,
and maps of complexes, up to homotopy [16, 89] (see also [72] for another proof).
Taking care of the sign is subtle; see [23, 31, 35, 152].

Categories of representations of the arc rings Hn categorify

Kaun ∼= InvUq(sl2)(V
⊗n).

It turns out that the entire tensor product V ⊗n, as well as the commuting actions
of the Temperley–Lieb algebra and quantum sl2 on it, can also be categorified. This
categorification was realized in [22] via maximal singular and parabolic blocks of
highest weight categories for sln, with the commuting actions lifting to those by
projective functors and Bernstein–Zuckerman functors (see also [52, 185]).

The tensor power V ⊗n decomposes as the sum of its weight spaces V ⊗n(k), k =
0, . . . , n. A more explicit categorification of weight spaces and the Temperley–Lieb
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algebra action on them can be achieved via specific subquotient rings ofH2n [27,34].
J. Brundan and C. Stroppel showed [28, 29] that these subquotient rings

(a) describe maximal parabolic blocks of highest weight categories for sln, re-
lating the two categorifications, and

(b) describe blocks of representations of Lie superalgebras gl(m|k).
The space InvUq(sl2)(V

⊗n) of invariants is naturally a subspace of the middle

weight space V ⊗2n(n). Analogues of this subspace for a general weight space
V ⊗n(k) are given by the kernel of the generator E ∈ sl2 for k ≥ n/2, and the
kernel of F ∈ sl2 for k ≤ n/2. Categorifications of these subspaces are provided
by representation categories of certain Frobenius algebras, like Hn, that can be ob-
tained as subquotients of Hn. The latter Frobenius algebras as well as Morita and
derived Morita equivalent algebras are widespread in modular representation the-
ory. For instance, Hiss and Lux’s book [68] lists hundreds of examples of blocks of
finite groups over finite characteristic fields that are (derived) Morita equivalent to
the self-dual part of the zigzag algebra from [91], the latter giving a categorification
of the reduced Burau representation of the braid group and of the corresponding
subspace of the first nontrivial weight space, V ⊗n(1).

A very general framework for a categorification of tensor products of quantum
group representations and Reshetikhin–Turaev link invariants was developed by
Ben Webster [173]. The sl2 case of his construction [172] uses algebras that are
Morita equivalent to Koszul duals of the above-mentioned subquotients of H2n.

2.3. Connections to algebraic geometry, symplectic geometry, and be-
yond. The connection with representation theory inspired a further connection
with symplectic geometry. Given a symplectic manifold (M,ω), there is an associ-
ated triangulated category, the derived Fukaya category. The objects of the Fukaya
category are Lagrangian submanifolds of M (with certain extra data), and the
morphism spaces are categorified intersection numbers, defined via Floer theory.
Given a braid group action on (M,ω), there is an induced braid group action on
the Fukaya category and, hence, potentially, a knot invariant. The first examples
of such braid group actions were given by P. Seidel and the first author [91]. Soon
after, Seidel and I. Smith gave a braid group action on a more complicated, but
natural, symplectic manifold, and from it a conjectured Floer-theoretic definition of
Khovanov homology, which they called symplectic Khovanov homology [160]. (See
also [116] for a reinterpretation of this construction.) Recently, M. Abouzaid and
Smith proved that this conjecture holds over Q [1,2]. The proof uses the extension
of Khovanov homology to tangles discussed above to identify the two theories. At
present, it is unknown whether the torsion in symplectic Khovanov homology and
in combinatorial Khovanov homology agree. Although it is harder to compute,
symplectic Khovanov homology is in some ways more geometric. In particular, its
relationship to Heegaard Floer homology and its behavior for periodic knots (see
Section 3), as well as the equivariant versions of the theory in the sense of (8), all
have geometric definitions via group actions on the symplectic manifold [67, 161].

The symplectic manifolds in the Seidel–Smith construction are examples of
quiver varieties, so carry hyperkähler structures. Complex Lagrangians determine
objects of both the Fukaya category and the category of coherent sheaves with
respect to the rotated almost-complex structure. The fact that automorphism al-
gebras on the two sides are isomorphic to ordinary cohomology can be seen as
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a shadow of mirror symmetry and can often be lifted to an equivalence of cat-
egories. Consequently, one would expect that the tangle extension of Khovanov
homology can be realized via derived categories of coherent sheaves on the corre-
sponding quiver varieties, with functors associated to tangles acting via suitable
Fourier–Mukai kernels (convolutions with objects of the derived category on the di-
rect product of varieties). A modification of this idea was realized by S. Cautis and
J. Kamnitzer [33]. They use certain smooth completions of these quiver varieties
which can be realized as iterated P1-bundles and interpreted as convolution varieties
of the affine Grassmannian for SL(2), also providing a connection to the geomet-
ric Satake correspondence. The relation to quiver varieties and the (n, n)-Springer
fiber has been established by R. Anno [7] and by Anno and V. Nandakumar [8],
who also explained the relation between coherent sheaves on these varieties and the
rings Hn and their annular versions. An isomorphism between the center of Hn

and the cohomology ring of the (n, n)-Springer fiber, established in [88], was an
earlier indication of the connection between the two structures.

There has been strong interest in giving physical reinterpretations and extensions
of link homology invariants. One program to do so was initiated by Witten, using
the Kapustin–Witten and Haydys–Witten equations [177]. Other proposals have
been put forward by S. Gukov, A. Schwarz, and C. Vafa [63]; Gukov, P. Putrov,
and Vafa [62]; Gukov, D. Pei, Putrov, and Vafa [61]; M. Aganagic [3,4]; and others.

Currently, Khovanov homology is only defined for links in a few manifolds: S3,
as described above; links in thickened surfaces, in work of Asaeda, Przytycki, and
Sikora [9]; and links in connected sums of S2 × S1, in work of Rozansky [150] and
Willis [175]. (See also the universal construction in [124].) One appeal of some of
the conjectural physical approaches to Khovanov homology is that they may apply
in general 3-manifolds. In a recent paper [144], J. Sussan and Y. Qi categorify the
Jones polynomial when the quantum parameter q is a prime root of unity; this is
also related to extending Khovanov homology to other 3-manifolds.

There is a large literature on categorification of sl(k) representations and quan-
tum invariants, for an arbitrary k. For lack of space, we will not discuss these
developments in this paper. Nor do we discuss the related topics of annular ho-
mology, categorifications of the colored Jones polynomial, foams, and categorified
quantum groups.

3. Signs and spectral sequences

One reason Khovanov homology has been important is that it seems to be a kind
of free object in the category of knot homologies, a property which is witnessed by
the many spectral sequences from Khovanov homology to other knot homologies.
(An attempt to make precise the sense in which Khovanov homology is free was
given in [11].) These spectral sequences often connect invariants whose construc-
tions appear quite different, in some cases giving relationships between invariants
that are not apparent at the classical, decategorified level. They have led to many
of the topological applications of Khovanov homology, as well as to new properties
of Khovanov homology itself.

The first spectral sequence from Khovanov homology was constructed by
E. S. Lee [101] (see also [146]). Recall the family of deformations A′ of the Frobenius
algebra A from equation (8). Taking the parameters (h, t) = (0, 1) and extending
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scalars from Z to Q, we obtain the algebra Q[X]/(X2 = 1). The quantum grad-
ing weakens to a filtration on the resulting complex, inducing a spectral sequence
from Khovanov homology to this deformed knot invariant, called Lee homology. To
understand Lee homology, note that this Frobenius algebra diagonalizes, as a di-
rect sum of two one-dimensional Frobenius algebras. It follows easily that the Lee
homology of a c-component link has dimension 2c. Using this construction, Lee ver-
ified a conjecture of Bar-Natan [15], S. Garoufalidis [54], and the first author [87]
that the Khovanov homology of an alternating knot lies on two adjacent diagonals.
More famous applications of this spectral sequence are discussed in Section 5.

Most of the other spectral sequences from Khovanov homology relate to gauge
theory. The first of these is due to P. Ozsváth and Z. Szabó [137]. Given a closed,

oriented 3-manifold Y , they had constructed an abelian group ĤF (Y ), the homology

of a chain complex ĈF (Y ) [136]. Inspired by A. Floer’s exact triangle [48], they
showed that given a knot L ⊂ Y and slopes μ, λ, and μ+λ on ∂(nbd(L)) intersecting
each other pairwise once, there is an exact triangle relating the Floer homologies

of the surgeries ĤF (Yμ(L)), ĤF (Yλ(L)), and ĤF (Yμ+λ(L)) [135]. In particular,
given a link K in S3, if K0 and K1 are the 0- and 1-resolutions of a crossing of K,
then the surgery exact triangle gives an exact triangle of Floer homologies of their
branched double covers,

ĤF (Σ(K0)) ĤF (Σ(K1))

ĤF (Σ(K)).

(This is an ungraded exact triangle: the groups ĤF (Σ(K)) do not have canonical
Z-gradings, and the gradings they do have are not respected by the maps in the
exact triangle.) The surgery exact triangle is local, in the sense that given disjoint
links L and L′, the maps in the surgery exact triangles associated to L and L′

commute or, at the chain level, commute up to reasonably canonical homotopy. So,

resolving all N crossings of K gives a cube of resolutions for ĈF (Σ(K);F2). The
E1-page of the associated spectral sequence is⊕

I∈2N

ĤF (Σ(KI);F2) =
⊕
I∈2N

ĤF (#|KI |−1(S2 × S1);F2)

=
⊕
I∈2N

ĤF (S2 × S1;F2)
⊗(|KI |−1) ∼= (F2 ⊕ F2)

⊗|KI |−1,

which has the same dimension as the reduced Khovanov complex. The differential
on the E1-page comes from merge and split cobordisms

(S2 × S1) ↔ (S2 × S1)#(S2 × S1).

These maps correspond to some two-dimensional Frobenius algebra which, in
fact, turns out to be the algebra A. Thus, one obtains a spectral sequence from
the reduced Khovanov homology of (the mirror of) K, with F2-coefficients, to

ĤF (Σ(K);F2).

The Euler characteristic of ĤF (Σ(K)) is the number of elements in H1(Σ(K))
if finite, or 0 otherwise. So, the Ozsváth–Szabó spectral sequence lifts the equality
J−1(K) = det(K).
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To summarize, the key properties of ĤF (Σ(K)) used to construct the Ozsváth–
Szabó spectral sequence were the existence of an unoriented skein triangle satisfying
a far-commutativity property; TQFT properties for disjoint unions, merges, and
splits; and the fact that its value on an unknot (or, more accurately, 2-component
unlink) is a two-dimensional vector space.

In 2010, P. Kronheimer and T. Mrowka built a gauge-theoretic invariant I�

with these properties, using Donaldson theory [96]. Like many gauge-theoretic
invariants, the value of I� constrains how surfaces can be embedded. Using this,
Kronheimer and Mrowka deduced that if the genus of a knot K is > 1, then
I�(S3,K) has dimension > 1. From the argument above, there is a spectral sequence

H̃(K) ⇒ I�(S3,K), hence:

Theorem 3.1 (Kronheimer and Mrowka [96]). If rank H̃(K) = 1, then K is the
unknot.

The stronger, and older, conjecture, that J(K) = q+q−1 only if K is the unknot,
remains open.

There are many other spectral sequences from Khovanov homology, including
more variants of the Lee spectral sequence [14,42], spectral sequences defined using
instanton and monopole Floer homology [25, 39, 155], other spectral sequences de-
fined via variants of Heegaard Floer homology [58,148], spectral sequences coming
from equivariant symplectic Khovanov homology and equivariant Khovanov homol-
ogy [36, 161, 167, 184], and a combinatorial spectral sequence conjectured to agree
with the Ozsváth–Szabó spectral sequence [169] (see also [154]). This last spec-
tral sequence also supports another conjecture: that the Ozsváth–Szabó spectral
sequence preserves the δ-grading δ = j − 2i on Khovanov homology [56]. An-
other notable spectral sequence is due to J. Batson and C. Seed [19]: given a link
L = L1 ∪ L2, they construct a spectral sequence H(L1 ∪ L2) ⇒ H(L1 � L2) to the
disjoint union of the sublinks L1 and L2 (which is just H(L1) ⊗ H(L2) if working
over a field). The page of collapse of this spectral sequence gives a lower bound on
the unlinking number of L. It and many of the other spectral sequences have also
been used to prove further detection results for Khovanov homology, in the spirit
of Theorem 3.1. Often, the proofs of detection results combine several of these
spectral sequences. Some examples of such results include:

Theorem 3.2 (Batson and Seed [19]). Let Um be the m-component unlink. If

dimHi,j(L;F2) = dimHi,j(Um;F2)

for all i and j, then L is isotopic to Um.

The proof uses Theorem 3.1 and the Batson–Seed spectral sequence. A related
result was obtained earlier by M. Hedden and Y. Ni [65]. (By contrast, the Jones
polynomial does not detect the unlink [43, 171]. Indeed, most of the detection
results mentioned below also do not hold for the Jones polynomial.)

Theorem 3.3 (Xie and Zhang [180]). If K is an m-component link with
dimH(K;F2) = 2m, then K is a forest of Hopf links.

The proof uses Kronheimer and Mrowka’s spectral sequence and its extension to
annular links [179] (building on [9, 58, 149]); Batson and Seed’s spectral sequence;
and N. Dowlin’s spectral sequence mentioned below. In other papers, the authors
classify all links with Khovanov homology of dimension ≤ 8 [182] and show that
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Khovanov homology detects, for instance, L7n1 [105]. Similarly, Khovanov homol-
ogy detects the link T (2, 6) [120].

Theorem 3.4. Let K be a knot.

(1) If H(K) ∼= Z4 ⊕ Z/2Z, then K is the trefoil knot (Baldwin and Sivek [13]).

(2) If rank(H̃(K)) = 5 and the reduced Khovanov homology is supported in
δ-grading 0, then K is the figure-8 knot (Baldwin, Dowlin, Levine, and
Lidman [10]).

(3) If H(K) ∼= H(T (2, 5)), then K is the torus knot T (2, 5) (Baldwin, Hu, and
Sivek [12]).

The proof of the first statement uses Kronheimer and Mrowka’s spectral se-
quence, the second uses Dowlin’s spectral sequence, and the third uses an annular
version of Kronheimer and Mrowka’s spectral sequence [179,181], Dowlin’s spectral
sequence, the spectral sequences for periodic knots [26, 167] mentioned above, fur-
ther hard results on Floer homology [37, 97, 102, 179, 181] and the sl2(C)-action on
annular Khovanov homology [57].

Some of these, like the spectral sequences from equivariant Khovanov homol-
ogy, lift, or at least recall, well-known properties of the Jones polynomial, such as
K. Murasugi’s formula [126]. By contrast, other spectral sequences seem invisible
to the Jones polynomial. Perhaps most striking—building on work by Ozsváth and
Szabó [138], Ozsváth, A. Stipsicz, and Szabó [132], and C. Manolescu [117]—Dowlin
showed [41] that there is a spectral sequence from Khovanov homology to Heegaard
Floer knot homology (which categorifies the Alexander polynomial). This implies
that the dimension of Khovanov homology is always at least as large as that of
knot Floer homology, a statement with no known analogue in terms of the classical
Jones and Alexander polynomials (though see [59]).

The reader might notice the prevalence of F2-coefficients in these spectral se-
quences. In fact, many of the spectral sequences have lifts to Z-coefficients, but do
not start from Khovanov homology. Instead, they start from a variant, odd Kho-
vanov homology, discovered by Ozsváth, J. Rasmussen, and Szabó [131] when trying
to lift the Ozsváth–Szabó spectral sequence to Z-coefficients. In constructing the
cube of resolutions for Khovanov homology, to a collection of n circles Z1, . . . , Zn

in the plane one associates
(
Z[X]/(X2)

)⊗n
, a quotient of the symmetric algebra

on n variables. To construct odd Khovanov homology, one instead associates the
exterior algebra on n variables, Λ〈Z1, . . . , Zn〉. Merging circles Zi and Zj into a
circle Z corresponds to the map sending Zi and Zj to Z, while splitting Z into
Zi and Zj corresponds to multiplying by (Zi − Zj) (or (Zj − Zi)—the definition
involves a choice, which one can fix by picking certain orientations at the crossings).
The resulting cube neither commutes nor anti-commutes, but nonetheless one can
show that it is possible to assign signs to the edges, in an essentially unique way,
to get an anti-commuting cube. The homology of the total complex of this cube is
odd Khovanov homology.

Although the change to the definition might seem slight, odd Khovanov homology
has quite different properties from ordinary Khovanov homology:

• Unreduced odd Khovanov homology is the direct sum of two copies of re-
duced odd Khovanov homology, while for ordinary, even Khovanov homol-
ogy the long exact sequence (9) almost never splits.
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• Odd Khovanov homology is mutation invariant [24], while even Khovanov
homology of links is not [174].

• There is no known analogue of the Lee spectral sequence for odd Kho-
vanov homology, but rather there is a spectral sequence from reduced odd
Khovanov homology to Zdet(L) [39].

For alternating knots, by the first point above, odd Khovanov homology has no
torsion, while even Khovanov homology almost always has 2-torsion, but no other
torsion [165, 166]. On the other hand, more torsion appears in the reduced odd
Khovanov homology than in reduced even Khovanov homology for small knots [164].
(See also [113, 125] for further results and citations.)

The representation-theoretic interpretation of odd Khovanov homology is sub-
stantially more involved than that of Khovanov homology, and is still an active area
of research (see, for instance, [44, 98, 127, 142]).

4. Spectrification

As we saw above, Khovanov homology is closely related to low-dimensional Floer
homologies, a family of invariants defined using a kind of semi-infinite-dimensional
Morse theory. Unlike R. Palais and S. Smale’s infinite-dimensional Morse the-
ory [139], Floer homology is not isomorphic to the singular homology of the am-
bient space. R. Cohen, J. Jones, and G. Segal proposed an alternate construc-
tion of a stable homotopy type, or spectrum, X associated to a Floer homology
setup so that the (reduced) homology of X is isomorphic to the Floer homology
under consideration. (Unlike ordinary cohomology, Floer cohomology rarely has
a graded-commutative cup product, so it is natural to expect it would be asso-
ciated to a spectrum rather than a space.) Cohen. Jones, and Segal’s original
construction has only been made rigorous in a few cases but, using other tech-
niques, Manolescu did construct a stable homotopy refinement of Seiberg–Witten
Floer homology [115]. Given Seidel and Smith’s conjectured Floer homology for-
mulation of Khovanov homology [160], Khovanov homology’s close relationship to
Seiberg–Witten Floer homology [25,137], and Manolescu’s stable homotopy refine-
ment of Seiberg–Witten Floer homology, it was natural to expect that there would
be a stable homotopy refinement of Khovanov homology, and in fact S. Sarkar and
the second author showed that there is [107]. Another construction of such a stable
homotopy type was soon given by P. Hu, D. Kriz, and I. Kriz [69]; somewhat later,
the two constructions were shown to be equivalent [100].

The idea behind Cohen, Jones, and Segal’s construction is as follows. First,
consider building a CW complex from a 0-cell, an n-cell, and an (n+ k)-cell. The
attaching data for the (n + k)-cell is a map Sn+k−1 → Sn. If n > k + 1, then, by
the Pontrjagin–Thom construction, this is equivalent to specifying a manifoldMk−1

and a framing of its stable normal bundle. Next, suppose we want to build a space
from cells of dimension 0, n, n+k, and n+k+�, where n is large compared to k and
�. One can specify the attaching map ∂en+k → Sn by a closed, framed manifold
Mk−1, and the quotient of the attaching map ∂en+k+�−1 → Xn+k/Xn+k−1 =
en+k/∂en+k = Sn+k by a closed, framed manifold N �−1. It is not hard to see
that this map factors through a map Sn+k+�−1 → Xn+k if and only if the product
M ×N is the boundary of a framed manifold P k+�−1, and a choice of such a lift up
to homotopy is the same as a choice of P k+�−1 up to appropriate framed cobordism.
Continuing this line of reasoning to an arbitrary number of cells leads to the notion
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of a framed flow category : a nonunital category where the morphism spaces are
manifolds with corners, and the composition maps sweep out the boundaries. Such
a framed flow category specifies a CW complex, its realization, by a Pontrjagin–
Thom construction as above.

A Morse function f on a closed manifold M , together with a generic Riemannian
metric, specifies a framed flow category with objects corresponding to the critical
points of f . The morphism space from x to y is the space of gradient flow lines of f
from x to y. For example, for the usual Morse function on the circle the flow cate-
gory has two objects S and N , and Hom(N,S) consists of two points (with opposite
framings). The flow category for the product Morse function on the torus S1 × S1

has four critical points, SS, SN , NS, and NN . The morphism sets Hom(SN, SS),
Hom(NS, SS), Hom(NN,SN), and Hom(NN,NS) consist of two points each. The
space Hom(NN,SS) is a disjoint union of four intervals. For S1 × S1 × S1, the
product flow category has Hom(NNN,SSS) a disjoint union of hexagons. For
S1 × S1 × S1 × S1, the product flow category has Hom(NNNN,SSSS) a disjoint
union of three-dimensional permutohedra, and now we have the general pattern:
the flow category of Tn is built from permutohedra of dimension 0, . . . , n− 1. (The
appearance of permutohedra is not special to tori: they appear in any product
X1 × · · · ×Xn.)

With this in mind, specifying a stable homotopy refinement of Khovanov homol-
ogy is equivalent to building a framed flow category whose objects correspond to
the generators of the Khovanov complex. The morphism sets between generators
in adjacent gradings are framed 0-manifolds, and counting the number of points in
these 0-manifolds should give the coefficients in the differential on the Khovanov
complex. It turns out not to be hard to define such a framed flow category, where
all the morphism sets are modeled on disjoint unions of permutohedra (correspond-
ing, perhaps, to all the tensor products appearing in the Khovanov complex). So,
like the Khovanov complex itself, in some sense this appears to be the simplest,
or freest, possible construction. In fact, at present, it is equivalent to all known
constructions of functorial stable homotopy refinements of Khovanov homology.

Like Khovanov homology and the Jones polynomial itself, this homotopy re-
finement of Khovanov homology is not built intrinsically from a knot, but rather
inductively via the cube of resolutions. So, one must check that, up to stable ho-
motopy equivalence, the result is independent of the knot diagram. This turns out
to be easy, via Whitehead’s theorem: all one needs to do is construct maps of spec-
tra inducing the usual isomorphisms on Khovanov homology. Since the invariance
proof for Khovanov homology boils down to repeatedly taking subcomplexes and
quotient complexes, lifts to the stable homotopy type come for free.

A stable homotopy refinement induces Steenrod operations on Khovanov ho-
mology. If the Khovanov homology has a sufficiently simple form, then these, in
turn, determine the stable homotopy type. The operation Sq1 is just the Bockstein
homomorphism, and one can give an explicit formula for the Steenrod squaring
operation Sq2 [109] and more complicated formulas for all Steenrod squares [30].
The operation Sq2 is enough to determine the stable homotopy type for all knots
up to 14 crossings and, in fact, some pairs of knots with isomorphic Khovanov
homologies are distinguished by their Steenrod squares [158]. By introducing sim-
plification operations for flow categories, one can give computer computations for
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some more complicated knots, and even by-hand computations for simple knots
with nontrivial Sq2 operations, like the (3, 4) torus knot [73, 112].

Many structures for Khovanov homology can be lifted to or enhanced by the
stable homotopy type, including the Rasmussen invariant [100,108] (see Section 5),
Plamenevskaya’s transverse invariant [106] (again, see Section 5), and the arc alge-
bras [99] (see Section 2). There is an analogue for odd Khovanov homology [153]
(see also [143]). The homotopical refinement can even be used to prove new re-
sults about Khovanov homology itself, such as formulas relating the Khovanov
homology of periodic links and their quotients [26, 167], partially lifting results of
Murasugi [126].

While there has been some work on connections between these spectral refine-
ments and representation theory [6,70], even though the original inspiration for the
refinements comes from Floer theory, direct connections with symplectic geometry
or algebraic geometry remain unknown. There has also been work on giving sta-
ble homotopy refinements of sln Khovanov–Rozansky homology, and connections
between that and equivariant algebraic topology [74, 92].

Remark 4.1. These refinements are spectra X whose singular homology is equal
to Khovanov homology. The problem of finding a homotopy type X whose ho-
motopy groups agree with Khovanov homology was also considered [47]. Unlike
the case of homology, for homotopy groups there is a universal, functorial con-
struction of spaces with given homotopy groups, via the Dold–Kan correspondence
(compare [46]).

5. Applications

In addition to the detection results described in Section 3, several of the other
most celebrated applications of Khovanov homology also come from the spectral
sequences discussed in Section 3, though there are other important applications not
directly tied to these spectral sequences. Like the rest of the paper, our intention
in this section is to give a sense of the breadth of applications of these techniques,
and some of the ideas behind them, not a comprehensive list.

Given a knot K, Rasmussen observed that the two copies of Q in the E∞-page
of the Lee spectral sequence lie in adjacent quantum gradings s(K) ± 1. (Recall
that the quantum gradings for a knot are always odd.) He further showed that:

Theorem 5.1 (Rasmussen [146]). The integer s(K) is a homomorphism from the
smooth concordance group onto 2Z. Further, if there is a genus g knot cobordism
from K to K ′, then |s(K)− s(K ′)| ≤ 2g.

The proof is combinatorial and relatively simple: the Künneth theorem for Lee
homology implies that the Rasmussen invariant s(K) is additive for connected sums,
and the fact that the two copies of Q are in adjacent gradings quickly gives that
s(m(K)) = −s(K) (where m denotes the mirror). Rasmussen then shows that the
maps on Khovanov homology associated to elementary cobordisms Σ lift to maps
of the Lee complex changing the filtration by −χ(Σ), and that the map associated
to a connected cobordism is an isomorphism on Lee homology. The result follows.

Rasmussen’s construction was inspired by Ozsváth and Szabó’s τ invariant [134].
In fact, Rasmussen initially conjectured that s(K) was equal to 2τ (K), but this
conjecture was quickly disproved, showing that, in fact, s(K) and τ (K) together
gave the first surjection from the smooth concordance group of topologically slice
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knots to Z2 [66, 111]. Similar constructions have been given using other spectral
sequences, including several infinite families of concordance invariants [104, 154],
though these are not known to be independent. (Again, these families were inspired
by constructions in Heegaard Floer theory which, in that case, were shown to give
a surjection from the smooth concordance group of topologically slice knots onto
Z∞ [40, 133].)

For certain classes of knots, the s-invariant is easy to compute. In particular,
this holds for positive knots, i.e., knots where all the crossings are positive. As a
corollary, Rasmussen obtains the following remarkable generalization of the Milnor
conjecture on the slice genus of torus knots.

Corollary 1 (Rasmussen [146]). Let K be a positive knot with n crossings and
where the oriented resolution of K has k circles. Let g4(K) be the slice genus of K
and g(K) the ordinary knot genus of K. Then

s(K) = 2g4(K) = 2g(K) = n− k + 1.

For the case of torus knots, the equality g4(Tp,q) = g(Tp,q) =
(p−1)(q−1)

2 was con-
jectured by Milnor [121] and first proved by Kronheimer and Mrowka by applying
gauge theory to bound the genera of embedded surfaces in the K3-surface [93,95]. It
also follows from Thom’s conjecture about the genera of embedded surfaces in CP 2,
first proved using Seiberg–Witten gauge theory [94,123]. Rasmussen’s argument is
the first combinatorial proof of the Milnor conjecture. As he observes, the s invari-
ant is not a lower bound on the topological slice genus, and in fact can be used to
show that some topologically slice knots are not smoothly slice. (See [141, 163] for
conceptual proofs of this fact.) When combined with work by M. Freedman [49,51],
this also implies the existence of exotic smooth structures on R4.

Another striking application of the s-invariant was given recently by L. Piccirillo,
who used it to show that the Conway mutant of the Kinoshita–Terasaka knot is not
smoothly slice, resolving a longstanding question [140]. (By work of Freedman, any
knot with Alexander polynomial 1 is topologically slice [51], and the Kinoshita–
Terasaka knot is smoothly slice. Indeed, the Conway knot was the only knot with
13 or fewer crossings whose slice status was not known.) Piccirillo recalls that a
knot K is smoothly slice if and only if the 0-trace of K, the result of attaching a
0-framed 2-handle to the 4-ball along K, embeds smoothly in S4. The s-invariant of
the Conway knot vanishes, but Piccirillo produces another knot K ′ whose 0 trace is
diffeomorphic to the 0-trace of the Conway knot, as can be shown by explicit handle
calculus such that s(K ′) �= 0. As she notes, the s-invariant plays a special role here:
other known smooth concordance invariants, like the Heegaard Floer analogue τ ,
would not work for this strategy. This proof, and the s-invariant, gives a possible
attack on the smooth four-dimensional Poincaré conjecture [118] (see also [50,119]).

Functoriality of Khovanov homology means that it also gives an invariant of
surfaces in R4. For closed surfaces, this invariant turns out not to be interesting:
it vanishes if some component of the surface is not a torus, and otherwise is 2n

if the surface consists of n tori [60, 145, 170]. On the other hand, for surfaces
with boundary a nontrivial link in S3, Khovanov homology does give an interesting
invariant [168], even distinguishing some surfaces that are topologically isotopic [64,
110].

In a different direction, Khovanov homology and its cousins have had interest-
ing applications to Legendrian and transverse knot theory. Recall that a knot
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K(t) = (x(t), y(t), z(t)) in R3 is Legendrian if y(t) = z′(t)/x′(t) = dz/dx for all t
and is transverse if this condition holds for no t. A Legendrian knot K has three
classical invariants : its underlying smooth knot type; its Thurston–Bennequin
number TB(K), which is the difference between the Seifert framing and the framing
induced by the 2-plane field ker(dz− ydx); and the rotation number rot(K), which
is the relative Euler class of the 2-plane field over a Seifert surface. (See [45] for
a nice survey on Legendrian and transverse knots.) Given a Legendrian knot K,
there are stabilization operations that do not change the underlying smooth knot
but change the pair (TB(K), rot(K)) by (−1,±1). The celebrated slice-Bennequin
inequality states that for a given smooth knot type, TB(K)+|rot(K)| ≤ 2g4(K)−1,
where g4(K) is the slice genus [21, 151]. So, the pairs (TB(K), rot(K)) realized by
Legendrian representatives of a smooth knot type form a mountain range.

L. Ng improved the slice-Bennequin inequality to show that

(11) min
{
k |

⊕
i−j=k

Hi,j(K) �= 0
}

is an upper bound on the Thurston–Bennequin number of any Legendrian repre-
sentative of K [128] (see also [163]). In particular, this gives the bound TB(K) ≤
s(K)− 1, a refinement of the slice-Bennequin inequality. The bound (11) is sharp
for alternating knots, and by combining it with tools from Heegaard Floer homol-
ogy, Ng computed the maximal Thurston–Bennequin number for all knots up to 11
crossings [130]. In fact, many different bounds on the Thurston–Bennequin num-
ber, including this one and another coming from the Kauffman polynomial, have a
common skein-theoretic proof [129]. (Both the Kauffman polynomial and Khovanov
homology bounds are often sharp, at least for small knots.) As another potential
application to contact topology, O. Plamenevskaya defined a natural invariant of
transverse knots (and, consequently, Legendrian knots) lying in Khovanov homol-
ogy [141]. Several variants of her construction have been given [71, 106, 122, 178],
but it remains open whether any of these invariants is effective, i.e., distinguishes
some pair of transverse knots with the same classical invariants.

A third class of application has been to ribbon cobordisms. Generalizing the
notion of a ribbon knot, C. Gordon introduced the notion of a ribbon concordance
from a knot K1 to a knot K2: a concordance is ribbon if it is built entirely from
births and saddles [55]. So, a knot K is ribbon if there is a ribbon concordance
from the unknot to K. Ribbon concordance is not symmetric, and a conjecture of
Gordon’s, recently proved by Agol [5], is that ribbon concordance forms a partial
order: if K1 is ribbon concordant to K2 and K2 is ribbon concordant to K1, then
K1 = K2. Inspired by an analogous result for Heegaard Floer homology [183],
A. Levine and I. Zemke show that a ribbon concordance induces a split injection
on Khovanov homology [103]. In particular, this implies that if there is a ribbon
concordance from an alternating knot K1 to K2, then the crossing number of K2

is at least as large as the crossing number of K1—an elementary obstruction for
which no other proof is currently known.

For many of these applications to be effective, one needs an efficient way to
compute Khovanov homology and, ideally, the Lee spectral sequence. There are
several programs that compute versions of Khovanov homology directly [156, 159,
162]. Since the Khovanov cube itself grows exponentially, direct computations
become impossible around 17 crossings. Fortunately, the tangle invariants provide
more efficient algorithms, through an approach that Bar-Natan calls scanning [17,
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18], an idea that, on the decategorified level, goes back to Jones and his work on the
Temperley–Lieb algebra [80]. First, you factor a knot as T1T2 · · ·Tk, and compute
the invariant of each Ti. You tensor the invariants for T1 and T2, simplify the result,
then tensor on the invariant for T3, simplify the result, and so on. This allows one to
compute the invariant for much larger knots, including the s-invariant for a 78-ish
crossing knot of interest [50] and the 49-crossing knot needed for Piccirillo’s proof
described above.
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Paris, 1983, pp. 87–161. MR753131

[22] Joseph Bernstein, Igor Frenkel, and Mikhail Khovanov, A categorification of the Temperley-
Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors, Selecta
Math. (N.S.) 5 (1999), no. 2, 199–241, DOI 10.1007/s000290050047. MR1714141

[23] Christian Blanchet, An oriented model for Khovanov homology, J. Knot Theory Ramifica-
tions 19 (2010), no. 2, 291–312, DOI 10.1142/S0218216510007863. MR2647055

[24] Jonathan M. Bloom, Odd Khovanov homology is mutation invariant, Math. Res. Lett. 17
(2010), no. 1, 1–10, DOI 10.4310/MRL.2010.v17.n1.a1. MR2592723

[25] Jonathan M. Bloom, A link surgery spectral sequence in monopole Floer homology, Adv.
Math. 226 (2011), no. 4, 3216–3281, DOI 10.1016/j.aim.2010.10.014. MR2764887

[26] Maciej Borodzik, Wojciech Politarczyk, and Marithania Silvero, Khovanov homotopy
type, periodic links and localizations, Math. Ann. 380 (2021), no. 3-4, 1233–1309, DOI
10.1007/s00208-021-02157-y. MR4297186

[27] Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Kho-
vanov’s diagram algebra I: cellularity (English, with English and Russian summaries), Mosc.
Math. J. 11 (2011), no. 4, 685–722, 821–822, DOI 10.17323/1609-4514-2011-11-4-685-722.
MR2918294

[28] Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Kho-
vanov’s diagram algebra III: category O, Represent. Theory 15 (2011), 170–243, DOI
10.1090/S1088-4165-2011-00389-7. MR2781018

[29] Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Kho-

vanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS) 14
(2012), no. 2, 373–419, DOI 10.4171/JEMS/306. MR2881300

[30] Federico Cantero Morán, Higher Steenrod squares for Khovanov homology, Adv. Math. 369
(2020), 107153, 79, DOI 10.1016/j.aim.2020.107153. MR4094757

[31] Carmen Livia Caprau, sl(2) tangle homology with a parameter and singular cobordisms,
Algebr. Geom. Topol. 8 (2008), no. 2, 729–756, DOI 10.2140/agt.2008.8.729. MR2443094

[32] J. Scott Carter, Daniel E. Flath, and Masahico Saito, The classical and quantum 6j-symbols,
Mathematical Notes, vol. 43, Princeton University Press, Princeton, NJ, 1995. MR1366832

[33] Sabin Cautis and Joel Kamnitzer, Knot homology via derived categories of coherent sheaves.
I. The sl(2)-case, Duke Math. J. 142 (2008), no. 3, 511–588, DOI 10.1215/00127094-2008-
012. MR2411561

[34] Yanfeng Chen and Mikhail Khovanov, An invariant of tangle cobordisms via subquotients
of arc rings, Fund. Math. 225 (2014), no. 1, 23–44, DOI 10.4064/fm225-1-2. MR3205563

[35] David Clark, Scott Morrison, and KevinWalker, Fixing the functoriality of Khovanov homol-
ogy, Geom. Topol. 13 (2009), no. 3, 1499–1582, DOI 10.2140/gt.2009.13.1499. MR2496052

[36] James Cornish, Sutured annular Khovanov homology and two periodic braids,
arXiv:1606.03034, 2016.

[37] Andrew Cotton-Clay, Symplectic Floer homology of area-preserving surface diffeomor-
phisms, Geom. Topol. 13 (2009), no. 5, 2619–2674, DOI 10.2140/gt.2009.13.2619.
MR2529943

[38] Louis Crane and Igor B. Frenkel, Four-dimensional topological quantum field theory, Hopf
categories, and the canonical bases, J. Math. Phys. 35 (1994), no. 10, 5136–5154, DOI

10.1063/1.530746. Topology and physics. MR1295461
[39] Aliakbar Daemi, Abelian gauge theory, knots and odd Khovanov homology,

arXiv:1508.07650, 2015.
[40] Irving Dai, Jennifer Hom, Matthew Stoffregen, and Linh Truong, More concordance ho-

momorphisms from knot Floer homology, Geom. Topol. 25 (2021), no. 1, 275–338, DOI
10.2140/gt.2021.25.275. MR4226231

katlas.org
https://www.ams.org/mathscinet-getitem?mr=3332892
https://www.ams.org/mathscinet-getitem?mr=1074310
https://www.ams.org/mathscinet-getitem?mr=753131
https://www.ams.org/mathscinet-getitem?mr=1714141
https://www.ams.org/mathscinet-getitem?mr=2647055
https://www.ams.org/mathscinet-getitem?mr=2592723
https://www.ams.org/mathscinet-getitem?mr=2764887
https://www.ams.org/mathscinet-getitem?mr=4297186
https://www.ams.org/mathscinet-getitem?mr=2918294
https://www.ams.org/mathscinet-getitem?mr=2781018
https://www.ams.org/mathscinet-getitem?mr=2881300
https://www.ams.org/mathscinet-getitem?mr=4094757
https://www.ams.org/mathscinet-getitem?mr=2443094
https://www.ams.org/mathscinet-getitem?mr=1366832
https://www.ams.org/mathscinet-getitem?mr=2411561
https://www.ams.org/mathscinet-getitem?mr=3205563
https://www.ams.org/mathscinet-getitem?mr=2496052
https://arxiv.org/abs/1606.03034
https://www.ams.org/mathscinet-getitem?mr=2529943
https://www.ams.org/mathscinet-getitem?mr=1295461
https://arxiv.org/abs/1508.07650
https://www.ams.org/mathscinet-getitem?mr=4226231


CATEGORICAL LIFTING OF THE JONES POLYNOMIAL: A SURVEY 501

[41] Nathan Dowlin, A spectral sequence from Khovanov homology to knot Floer homology,
arXiv:1811.07848, 2018.

[42] Nathan M. Dunfield, Sergei Gukov, and Jacob Rasmussen, The superpolynomial for knot
homologies, Experiment. Math. 15 (2006), no. 2, 129–159. MR2253002

[43] Shalom Eliahou, Louis H. Kauffman, and Morwen B. Thistlethwaite, Infinite families of
links with trivial Jones polynomial, Topology 42 (2003), no. 1, 155–169, DOI 10.1016/S0040-
9383(02)00012-5. MR1928648

[44] Alexander P. Ellis and You Qi, The differential graded odd nilHecke algebra, Comm. Math.
Phys. 344 (2016), no. 1, 275–331, DOI 10.1007/s00220-015-2569-4. MR3493144

[45] John B. Etnyre, Legendrian and transversal knots, Handbook of knot theory, Elsevier B.
V., Amsterdam, 2005, pp. 105–185, DOI 10.1016/B978-044451452-3/50004-6. MR2179261

[46] Brent Everitt, Robert Lipshitz, Sucharit Sarkar, and Paul Turner, Khovanov homotopy
types and the Dold-Thom functor, Homology Homotopy Appl. 18 (2016), no. 2, 177–181,
DOI 10.4310/HHA.2016.v18.n2.a9. MR3547241

[47] Brent Everitt and Paul Turner, The homotopy theory of Khovanov homology, Algebr. Geom.
Topol. 14 (2014), no. 5, 2747–2781, DOI 10.2140/agt.2014.14.2747. MR3276847

[48] A. Floer, Instanton homology and Dehn surgery, The Floer memorial volume, Progr. Math.,
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Topol. 2 (2009), no. 2, 380–404, DOI 10.1112/jtopol/jtp015. MR2529302
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