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THE JONES POLYNOMIAL,

KNOTS, DIAGRAMS, AND CATEGORIES

LOUIS H. KAUFFMAN

Abstract. This essay is a remembrance of Vaughan Jones and a diagram-
matic exposition of the remarkable breakthroughs in knot theory and low-
dimensional topology that were catalyzed by his work.

1. Introduction

This paper describes developments in knot theory that were inspired by the
Jones polynomial and the Conway skein theory. These developments involve a wide
range of fields and ideas and provide an opportunity to see mathematics, physics,
and natural science through a special window.

The paper consists in three sections beyond the introduction. In Section 2 we
recall the skein theory of John Horton Conway and how this led to the author’s
discovery of a state summation model for the Alexander–Conway polynomial. This
state summation was later instrumental in finding a state summation model for the
Jones polynomial. This section discusses the Homflypt and Kauffman two-variable
polynomials and the role of the connection structure version of the Temperley–Lieb
algebra, discovered along with the bracket model for the Jones polynomial. These
early state summation models were, as we now know, the tip of an iceberg. We
end Section 2 with a letter from Vaughan Jones to the author, written in 1986,
and indicating his vision of the relationship of the Jones polynomial with quan-
tum field theory. Section 3 describes Witten’s breakthrough, giving a model of the
Jones polynomial via functional integration and quantum field theory. This section
outlines how the Witten approach is related to Vassiliev invariants (defined in this
section) and how the Vassiliev invariants can be used to trace a direct line from
combinatorial knot theory to Lie algebra (supporting the weight systems of Vas-
siliev invariants). The quantum field theoretic approach to link invariants stands
in the middle between deformed Lie algebras (quantum groups and Hopf algebras)
and purely combinatorial approaches using just Lie algebra alone. Needless to say,
we cannot tell all the detail, but we do show how one arrives at the diagrammatic
Jacobi identity by finding the relations (the four-term relations) implied for Vas-
siliev evaluations by the invariance under the Reidemeister moves. Here the knot
theory gives a hint about categories of diagrams that underlie both algebra and
topology. Section 4 discusses Khovanov homology. The Khovanov category of a
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knot or link will have already been introduced in Section 2 in terms of the states of
the Kauffman bracket. We then address the question: How can one extract topo-
logical information about knots and links from this category of states? We discuss
the cobordism category construction of Dror Bar-Natan and show how it leads to
factoring surface cobordisms by the four-tube relation. This gives a diagrammatic
and categorical structure that is the backbone of Khovanov homology. We describe
how the Bar-Natan cobordism category yields a natural proof of the invariance of
the Khovanov homology under Reidemeister moves. It is a proof that lines up with
the original proof of the invariance of the bracket polynomial. We end with the
remark that the Heegaard–Floer homology of Oszvath and Szabo is (by their work)
combinatorially rooted in the formal knot theory states with which we began this
essay in describing our exploration of the Alexander polynomial.

The paper is written with the intent to show different mathematical themes that
arise in relation to knot theory and how central Vaughan Jones’s discovery of the
Jones polynomial has been to these developments.

2. Bracket polynomial and Jones polynomial

Before beginning to describe the bracket polynomial and the Jones polynomial,
we remark that these invariants of knots and links are based in a diagrammatic
approach that was discovered by J. W. Alexander and Garland Baird Briggs (1926)
[4] and by Kurt Reidemeister (1927) [47]. These researchers articulated a set of
combinatorial moves on diagrams for knots and links such that two links embedded
in three-dimensional space are ambient isotopic (equivalent by a continuous family
of embeddings) if and only if any two projection diagrams of these links are equiv-
alent by the Reidemeister moves. (It has been customary to refer to the moves as
Reidemeister moves because they are the foundation of the book Knotentheorie [48]
by Reidemeister, published in 1934.) See Figure 1 for an illustration of each move
type. The Reidemeister moves provide a complete planar combinatorial translation
of the problems of knot and link equivalence in three-dimensional Euclidean space.

Vaughan Jones’s discovery [24] of a new Laurent polynomial invariant of oriented
knots and links VK(t) came as a bolt out of the blue in 1984. The new invariant
was derived from a representation of the Artin braid group to the Temperley–Lieb
algebra, an algebra that had originally been found as a matrix algebra by Temperley
and Lieb in the early 1970s [13]. Jones rediscovered this algebra in studying a

Figure 1. Reidemeister moves.
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construction for von Neumann algebras that produced a tower of algebras from
an inclusion M ⊂ N of von Neumann algebras. Each element in the tower has
a projection to its predecessor, and there comes forth an algebra generated by
projections e1, e2, e3, . . . so that e2i = ei, eiei±1ei = τei (τ a scalar) and eiej = ejei
when |i − j| > 1. These are the relations for the Temperley–Lieb algebra. Jones
noted the similarity of these relations to the generating relations for the Artin
braid group, and he proceeded to find a representation of the Artin braid group
to this algebra. There was more. His work on von Neumann algebras led him to
construct a trace function on this Temperley–Lieb algebra (let it be understood
that a trace function tr satisfies tr(ab) = tr(ba) for products of elements a and
b in the algebra) and to wonder how this would interact with the braid group
representation. Consultation with Joan Birman [42] led Jones to construct a knot
invariant from that trace by using the Markov theorem (telling when a trace on the
braid group can yield a knot invariant), and the Jones polynomial VK(t) was born.
Jones discovered that VK(t) can often tell the topological difference between a knot
and its mirror image. The Alexander polynomial cannot distinguish mirror images,
and so the new polynomial was not the Alexander polynomial [3]. Furthermore, the
new invariant was related to von Neumann algebras and to statistical mechanics.
Jones was very generous with his speculations and results about the new polynomial
and its context, and he gave many talks on it during its first year in the world.

John Horton Conway [17] had reformulated the structure of the Alexander poly-
nomial ΔK(t) [3] published by James W. Alexander in 1928. The Conway version
∇K(z) is determined by the skein axioms:

(1) ∇K(z) = ∇K′(z) whenever K and K ′ are ambient isotopic oriented links.
(2) ∇K(z) = 1 if K is an unknotted single loop.
(3) ∇K+

−∇K− = z∇K0
whenever K+,K−,K0 are three diagrams that differ

only at one local site where in one there is a positive crossing, in the next
there is a negative crossing, and in the third there are parallel arcs, as
shown in Figure 2.

The Conway polynomial can be computed from just the diagram of the knot or
link K by simple recursion and no other mathematical apparatus. Its relation with
the classical Alexander polynomial is encapsulated by the formula∇K(

√
t−1/

√
t)

.
=

ΔK(t), where
.
= denotes equality up to a factor of ±tN for some integer N .

Jones showed that his new polynomial satisfied a skein relation similar to the
Conway skein relation. He proved that

t−1VK+
(t)− tVK−(t) = (

√
t− 1/

√
t)VK0

(t).

This led a group of people (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter,
Przytycki, and Trawczk) [20,46] to, independently and in pairs, define an invariant

K+ K_ K0

Figure 2. Skein triple.
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Figure 3. Jordan–Euler trails for the trefoil diagram.

two-variable common generalization PK(a, z) of the Jones and Alexander–Conway
polynomials, with the elegant skein relation

aPK+
(a, z)− a−1PK−(a, z) = zPK0

(a, z).

It is known by its acronym as the Homflypt polynomial. Subsequently, I discovered
another two-variable polynomial that uses unoriented diagrams, sometimes called
the Kauffman polynomial [32], but we are getting ahead of the story.

Since 1980 I had been working on what I called a state summation model for
the Alexander–Conway polynomial. This was a combinatorial formula for the
Alexander–Conway polynomial, that was a sum over all the ways to smooth the
crossings in the knot diagram (unoriented) so that one obtains a single Jordan curve
in the plane as a result. I call these Jordan–Euler trails on the knot diagram (Euler
because it was Euler who first considered walks on a graph that use each edge once);
see Figure 3. Each Jordan–Euler trail contributes a term to the polynomial. This
summation over combinatorics produces the invariant polynomial and is analogous
to the sum over the states of a physical system called its partition function [13,31].

The idea that the Alexander–Conway polynomial should come from this combi-
natorics came from understanding the remarkable structure in Alexander’s original
paper. In Figure 4 I illustrate Alexander’s original algorithm for his polynomial.
As the reader can glean from the figure, a module is generated by the regions
of the diagram and there is a relation among the regions incident to a crossing.
These relations assemble into a matrix and the determinant of this matrix with two
columns deleted (that correspond to two adjacent regions in the diagram) gives the

Figure 4. Alexander’s algorithm for the Alexander polynomial.
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Figure 5. States for the Alexander algorithm.

polynomial. The Alexander polynomial is determined up to a sign and a power of
its variable t, and it is invariant under the Reidemeister moves. Figure 5 illustrates
my reformulation of Alexander’s determinant as a state summation. The states
consist in choices, by the regions, of crossings in the diagram. These choices are
indicated by the black triangular markers on the knot diagram. Each state corre-
sponds to a term in the expansion of the determinant. A term in the expansion
of the determinant corresponds to having each column choose a unique row of the
matrix. Figure 5 shows how the markers in each state correspond to positions in
the (Alexander) matrix whose product gives a term in the determinant. To see
this, look at the square black markers in the figure that indicate positions in the
three-by-three matrix. For example, just below the first state on the left there is a
three-by-three matrix with a black mark at the 1D position, which corresponds to
the state marker at node 1 for region D. The reader will need to examine the figure
in the light of these remarks to see more. The terms in the determinant expansion
correspond to these marker states, and the marker states correspond to the Jordan–
Euler trails in Figure 3 that we have already mentioned. The relationship between
marker states and trails is shown in Figure 6, where each marker is used to smooth
a crossing and the trail appears from this smoothing process. The figure shows
what is meant by a marker corresponding to a smoothing. Other features come
into play, not the least of which is that the permutation signs in the determinant
expansion can be obtained directly from a parity in the state diagrams. In this
way, a state summation emerges that has a life of its own and which can be used
to support the structure of the Alexander–Conway polynomial and is a conceptual
tool for investigating its properties.

I succeeded in finding the state summation model and had published a book
about it [27]. When I heard about the Homflypt polynomial, I was sure that there
must be a state summation of that invariant, generalizing the one I had found for
Alexander–Conway. And I searched, to no avail, for such a model in the fall of 1984
and the spring of 1985. Then, late in the summer of 1985, Lickorish, Millett, and Ho
[22] discovered a one-variable skein polynomial based on unoriented diagrams, and
I realized that it could be generalized to a two-variable skein polynomial invariant
by using a framing variable making the polynomial an invariant of regular isotopy
(the equivalence relation generated by the second two Reidemeister moves). This
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Figure 6. States and trails.

new polynomial invariant satisfies the skein relation

L + L = z(L + L )

coupled with the behaviour under curls

L = aL ,

L = a−1L .

A few days after this discovery, I was on a plane to Italy to visit Massimo Ferri in
Bologna. On the plane, it occurred to me that I could look for a state summation
specialization of this polynomial in the form that, given an unoriented link diagram
K, there is associated to it a well-defined Laurent polynomial in the variable A,
〈K〉(A).

〈 〉 = A〈 〉+B〈 〉,
〈K©〉 = d〈K〉,
〈©〉 = 1.

Here we take B = A−1 and d = −A2 − A−2. The last equation guarantees that
the bracket evaluates to unity on an unknotted circle. The choice of specialization
of B and d guarantees that the bracket is invariant under the second and third
Reidemeister moves, as we explain below. The small diagrams indicate parts of
otherwise identical larger knot or link diagrams. The two types of smoothing (local
diagram with no crossing) in this formula are said to be of type A (A as above)
and type B (B as above).

Figure 7. Bracket axioms.
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Figure 8. Bracket expansion for the second Reidemeister move.

Figure 9. Bracket expansion for the third Reidemeister move,
given invariance under the second Reidemeister move.

Figure 7 shows the axioms for the bracket, and Figure 8 shows the expansion of
the bracket for the form of the second Reidemeister move. As the reader can see,
the bracket will be invariant under the move when B = A−1 and d = −A2 − A−2.
We see from Figure 9 that once A,B and d are chosen so that we have invariance
under the second Reidemeister move, it follows that there is also invariance under
the third Reidemeister move. This is accomplished by expanding on one crossing in
the triangular pattern of the move, and then applying invariance under the second
move. Without the specialization of the variables, the bracket polynomial can be
used as a combinatorial polynomial associated with knot and link diagrams, and
it is then directly related to the dichromatic polynomial in graph theory and the
partition function of the Potts model in statistical mechanics [28–31,33].

It is a consequence of this setup that the bracket behaves as below under the
curls that are eliminated by the first Reidemeister move.

〈 〉 = (−A3)〈 〉,

〈 〉 = (−A−3)〈 〉.

Note that 〈 〉 + 〈 〉 = (A + B)(〈 〉 + 〈 〉), and in this way the bracket
becomes a special case of the L-polynomial.

The bracket is often called the Kauffman bracket polynomial and the L-polyno-
mial is called the (two-variable) Kauffman polynomial. On the plane to Italy, I did
not yet realize that the bracket polynomial was an un-normalized version of the
Jones polynomial. The plane landed, and Massimo Ferri sent me off to Venice to
get touristic experience at once so we could settle down to mathematics as soon
as possible. And so it was in Venice that I had the pleasure of realizing that the
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bracket yielded a simple model for the Jones polynomial. In the normalized version
we define

fK(A) = (−A3)−wr(K)〈K〉
where the writhe wr(K) is the sum of the oriented crossing signs for a choice
of orientation of the link K. One then has that fK(A) is invariant under the
Reidemeister moves (see [28, 29, 31]), and the original Jones polynomial VK(t) is
given by the formula

VK(t) = fK(t−1/4).

The Jones polynomial has been of great interest since its discovery in 1984 due
to its relationships with statistical mechanics, due to its ability to often detect the
difference between a knot and its mirror image, and due to the many open problems
and relationships of this invariant with other aspects of low-dimensional topology. It
was a remarkable experience to realize that it could be defined so simply in terms
of the bracket state summation, and that this meant that the Jones polynomial
itself takes the form of a partition function in statistical mechanics, and that it
is a knot theoretic relative of the Tutte polynomial (the Tutte polynomial is a
reformulation of the dichromatic polynomial) with the two smoothings of the knot
diagram corresponding to the deletion and contraction of graphical edges [29].

The state summation. In order to obtain a closed formula for the bracket, we
now describe it as a state summation. Let K be any unoriented link diagram.
Define a state S of K to be the collection of planar loops resulting from a choice of
smoothing for each crossing of K. There are two choices (A and B) for smoothing
a given crossing, and thus there are 2c(K) states of a diagram with c(K) crossings.
In a state we label each smoothing with A or A−1 according to the convention
indicated by the expansion formula for the bracket. These labels are the vertex

A A

A

A A A
A A

A

A A
A

B

B
B

B

B

B

B

B
B

B
B

B

1

2
3

Figure 10. Bracket states and Khovanov complex.
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weights of the state. There are two evaluations related to a state. The first is the
product of the vertex weights, denoted 〈K|S〉. The second is the number of loops
in the state S, denoted ‖S‖.

Define the state summation, 〈K〉, by the formula

〈K〉 =
∑
S

〈K|S〉d‖S‖−1,

where d = −A2 −A−2. This is the state expansion of the bracket. In Figure 10 we
show all the states for the right-handed trefoil knot, labeling the sites with A or B
where B denotes a smoothing that would receive A−1 in the state expansion. Note
that in the state enumeration in Figure 10 we have organized the states in tiers so
that the state that has only A-smoothings is at the top and the state that has only
B-smoothings is at the bottom.

This organization, with arrows taking a state S to a state S′ so that S′ has
one more B-smoothing, gives the states the structure of a category. The arrows
between the states generate, by composition of arrows, the arrows in the category.
The objects are the states and there is an unwritten identity arrow from each object
to itself. Note that an arrow in this figure shows a state changing to another state
by resmoothing one A-smoothing to a B-smoothing. This is the Khovanov category
[38] and is the beginning of a breakthrough into link homology that occurred in
Mikhail Khovanov’s work in 1999. In Figure 11 we illustrate the cube category that
is the framework of this Khovanov category for a knot or link diagram. In the cube
category each node of the cube graph is an object in the category and each directed
edge is a generating morphism. Here you see a 3-cube, but if the diagram has n
crossings, then it will have an n-cube category in its background.

The cube category itself is an example of categorification, a term for opening
up a mathematical structure by turning it into a category. This means that one is
respecting certain distinctions that were formerly ignored. In this case what was
ignored is the possibility to order the states by having arrows from A’s to B’s!

1 2 3

<AAA>

<AAB> <ABA> <BAA>

<ABB> <BAB> <BBA>

<BBB>

Figure 11. The cube category.
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So simple, but a new world arises in the production and analysis of the resulting
category. You can get a feel for this sort of movement by thinking of how the
algebra of

(A+B)3 = A3 + 3A2B + 3AB2 +B3

is related to the structure of a cube with side-length A + B, where there will be
smaller cubes and parallelepipeds of volume A3, A2B, AB2, and B3. The usual
algebra does not include the way that these pieces are glued together to form the
larger cube.

The cube category of Figure 11 comes from making categorical sense of the
algebraic expression (A −→ B)3, and you can see by looking at the figure how the
category does indeed describe the decomposition of the cube into its component
cubes and rectangles. Consider that one could make an algebra of expressions like
(A −→ B)2, and write

(A −→ B)2 = (A −→ B)(A −→ B)

= (A −→ B)A −→ (A −→ B)B

= (AA −→ BA) −→ (AB −→ BB),

letting products and arrows distribute across the arrows. In the last diagram we
see that the expression (A −→ B)2 has expanded into a higher category. That
is it has an arrow that points between two arrows. In the higher category the
arrows (AA −→ BA) and (AB −→ BB) are also objects in the category and
there can be an arrow between them. If we raise (A −→ B) to the third power
and distribute, there will be arrows of higher order still. But we can flatten an
arrow between arrows to form an ordinary category by shifting the higher arrow to
ordinary arrows between the end objects. If we do that for our example

(AA −→ BA) −→ (AB −→ BB),

we obtain the 2-cube category as shown below.

AA −−−−→ BA⏐⏐�
⏐⏐�

AB −−−−→ BB

Figure 12. The cube category and the cube.
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Thus we obtain the n-cube category by the prescription F [(A −→ B)n], where
F denotes the operation of flattening a higher category to a standard category.
The language of higher categories and categorical algebra lets us describe the de-
tailed decomposition of an n-dimensional cube. One can think of this notion of
categorification as a retrograde motion. In the 1500s, before our modern algebra,
mathematicians like Cardano and Tartaglia had to refer directly to the decompo-
sition of a three-dimensional cube to enable their solution to the roots of a cubic
equation. Categorification embraces old and new mathematical structures in wider
patterns. Figure 12 illustrates the cube category juxtaposed with the architecture
of a three-dimensional cube. This picture of the Khovanov category gets ahead of
our story, and it shows how the state formulation of the Jones polynomial became a
seed for future developments. We will return to the Khovanov homology in Section
4.

The states of the bracket comprise all possible smoothings of the diagram and so
include the states that were used [27] to make a model for the Alexander polyno-
mial. In fact one can model the Jones polynomial with this restricted set of states.
The result is more technical but deeply related to the Tutte polynomial in graph
theory [29]. The bracket expansion identity is a knot diagrammatic version of the
contraction-deletion relation so central to much of graph theoretic analysis. In this
sense the bracket polynomial was a breakthrough between graph theory and knot
theory, a breakthrough that is continuing to expand in the present time.

My story of the fall of 1985 continues. I talked about these discoveries in Bologna
and then continued on to Torino where I visited the physicist Mario Rasetti. There,
continuing to lecture on this material, I discovered that the bracket polynomial
was directly related to the Temperley–Lieb algebra and the other ideas that were
involved in the Jones definition of the polynomial. If you apply the bracket formula
to a braid, you are led to consider some very suggestive diagrams, as shown in
Figure 13. We obtain a diagrammatic/combinatorial definition of the Temperley–

... ... ...

...

...

U1 2 n-1U U

Ui
2 δ= Ui

Ui U iUi+1 =
i

U

Ui U = U Uijj
if  |i -j| > 1.

, ,
...

Figure 13. Diagrams for the Temperley–Lieb algebra.
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Figure 14. Connection algebra and Temperley–Lieb algebra.

Lieb algebra with the relations in the form U2
i = dUi, UiUi±1Ui = Ui, UiUj = UjUi

when |i − j| > 1. In this form the Temperley–Lieb algebra is a planar connection
algebra with multiplicative generators corresponding to connections between two
rows of points (points on a given row can be connected to one another) under the
constraint that the set of connecting arcs embeds in a planar rectangle between
the rows; see Figure 14. In this figure we show an example of such a connection
structure and how it can be canonically associated with a product of the algebra
generators Ui. The method for producing the canonical product is to draw the
connections in minimal rectangular form and then decorate this form with pairings
that will become maximal and minimal in the columns in between the points at the
top and the bottom of the diagram. This description will become clear if the reader
will view the figure. In that figure we illustrate a connection structure P and show
directly that P 2 = P by topological deformation, and we show how to translate
P into a product of the generators of the Temperley–Lieb algebra and then show
that P 2 = P by using the algebraic relations. A more intensive examination of
this relationship shows that the connection algebra is described faithfully by these
generators and relations; see [34,35]. It should be mentioned that precursors to the
diagrammatic Temperley–Lieb algebra occur in the work of Penrose [45] and that
these points of view were very useful to us in formulating a recoupling theory for
the Temperley–Lieb algebra that generalized the Penrose spin-network theory [34].

In Figure 15 we illustrate how the Temperley–Lieb connection category can illu-
minate the structure of this last example. In this figure we factor P = BA where P
is as in the previous figure and B and A are morphisms in the connection category.
Such morphisms are planar connections between two rows of points, but there are
different numbers of points in the two rows. In the case of the morphisms A and B
in this figure, the top row of A has five points and the bottom row has one point,
while the bottom row of B has five points and the top row of B has one point.
Thus we can form the connections AB and BA. As is apparent from the figure,
BA is a morphism from one point to one point, and it is the same (topologically)
as the identity morphism. But AB = P our previous morphism from five points
to five points. We see that the factorization AB is a meander in the sense that it
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Figure 15. Meanders, projectors and the Temperley–Lieb category.

is the result of drawing a connected curve in the plane and then cutting it with a
horizontal line. Classifying meanders is a venerable and fascinating combinatorial
subject [16, 56]. And now we see how to make elements of the Temperley–Lieb
algebra that are idempotent by using meanders. We start with a meander M and
slice it to obtain a factorization of the identity 1 = CD. We let Q = DC, and
we find that Q2 = QQ = DCDC = D1C = DC = Q. This algebra occurs in the
connection category, and it applies to the Temperley–Lieb algebra by rewriting Q
as a product of the Temperley–Lieb generators. To find and classify all idempo-
tents of this type in the Temperley–Lieb algebra, we have expanded our view to
the connection category and availed ourselves of the concept of meanders in that
realm. This example shows how taking a wider and categorical view can shed light
on a question that might be intractable in its original formulation.

The bracket expansion for a braid can be regarded as a representation ρ : Bn −→
TLn from the Artin braid group to the Temperley–Lieb algebra, expressed in this
mode of planar diagrammatic algebra; see Figure 16. Our reformulation of the
Jones trace on the abstract Temperley–Lieb algebra corresponds to raising d to he
number of loops in the closure of the diagrammatic terms of ρ(b), where b is in Bn.
Thus the discovery of the bracket model expanded the context of the original Jones
polynomial. Furthermore, the relationship with statistical mechanics and the Potts
model is direct with the bracket model [28, 29, 31, 33]. The Potts model for planar
graphs can be expressed in terms of the bracket formalism, and the original relation
with the Temperley–Lieb algebra reappears exactly through this combinatorics.

What happened next was an explosion of new mathematics. Jones, Turaev
and Reshetikhin, and Akutsu and Wadati discovered many more state summa-
tion models and new knot invariants by using solutions to the Yang–Baxter equa-
tion and formulating all of this in terms of quantum groups and Hopf algebras
[1, 2, 25, 26, 39, 49, 50, 52, 53]. Then Witten [6, 55] discovered a quantum field theo-
retic interpretation of the Jones polynomial and its relatives. Witten’s work par-
tially solves the question of a three-dimensional topological interpretation of the
Jones polynomial. The qualification is that the functional integrals in the Witten
approach exist in a physical level of rigor. Much more comes after this. But I
want to end this part of the essay with a quote from a letter that I received from
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Figure 16. Bracket polynomial via trace on connection algebra.

Vaughan in October 1986, two years prior to Witten’s revolution. It is poignant to
see the depth of his intuition for this connection of physics, combinatorics, algebra,
and topology.

2.1. Letter of Vaughan Jones, October 1986.
Institut des Hautes Études Scientifiques
3 Oct, 1986
Dear Lou,
Since I’m about to talk about it today, I thought I should let you know of a
states model for the 2-variable polynomial. . . . The model is very suggestive of
the “real” meaning of the polynomials. L [the diagram] should be replaced by a
link in 3-space, the ‘states’ by functions from L to an (n+ 1) dimensional Hilbert
space . . . and the sum over contributing states by an integral with respect to some
Wiener measure of an interaction term depending on the link in R3. Thus is
is an object of gauge quantum field theory on L, the gauge group in this case
being SU(n + 1). I am morally sure that if one expresses the gauge group by
SO(n + 1) one will obtain the Kauffman polynomial. And there should be other
polynomials for all the Coxeter Dynkin diagrams. . . One last word—the relation
with the fundamental group seems rather suggestive but puzzling at this stage.
Converting the ‘vertex model’ described above to an ‘IRF’ model on the planar dual,
we see that the states assign numbers to the generators in the Dehn presentation of
the fundamental group. This suggests a relationship I have long suspected between
V and representations of π1(S

3 − L) into SU(2) tying up hopefully with Casson’s
invariant.
Best wishes,
Vaughan
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3. Witten’s work, quantum field theory, and Vassiliev invariants

In 1988 Edward Witten discovered a quantum field theoretic approach to the
Jones polynomial and its related invariants. In [55] Witten proposed a formulation
of a class of 3-manifold invariants and associated invariants of links in 3-manifolds
via quantum field theory. He used generalized Feynman integrals in the the form
Z(M,K), where

Z(M,K) =

∫
dAe(ik/4π)S(M,A)WK(A).

Here M denotes a 3-manifold without boundary, and A is a gauge field (also called
a gauge potential or gauge connection) defined on M . The gauge field is a one-form
with values in a representation of the Lie algebra of G for a specified Lie group G.
The group G corresponding to this Lie algebra is said to be the gauge group. In
this integral the action S(M,A) is taken to be the integral over M of the trace of
the Chern–Simons three-form

CS = A ∧ dA+ (2/3)A ∧A ∧A.

(The product is the wedge product of differential forms.) The term measuring the
knot or link is WK(A), the trace of the holonomy of the gauge connection along the
knot (product of such traces for links). The k in the integral is an integral coupling
constant. Z(M,K) integrates over all gauge fields modulo gauge equivalence; see
[6] for a discussion of the definition and meaning of gauge equivalence.

Witten’s functional integral model of link invariants places them in the context
of quantum field theory and quantum statistical mechanics. In the form of this
integral, this is the first time that we see the invariants expressed directly in terms
of the embedding of the knot or link into three-dimensional space. All models
described up to the point of Witten’s work used diagrammatic representations for
the topology. Witten’s approach was a breakthrough into three dimensions and
into new relationships between topology and quantum field theory. The formalism
and internal logic of Witten’s integral supports the existence of a large class of
topological invariants of 3-manifolds and associated invariants of knots and links in
these manifolds.

The 3-manifold invariants associated with this integral have been given rigorous
descriptions through the work of Reshetikhin and Turaev [50], Kirby and Melvin
[39], Dror Bar-Natan [9], and others [34, 41]. The upshot of these descriptions is
that the three-dimensional character of the invariants can be seen via differential
geometric expressions that arise in the perturbation expansion of the functional
integral [9], but the original three-dimensional vision of the integral remains prob-
lematic. Questions and conjectures arising from the functional integral formulation
are still outstanding. Specific conjectures about this integral take the form of just
how it involves invariants of links and 3-manifolds, and how these invariants behave
in certain limits of the coupling constant k in the integral. Many conjectures of
this sort can be verified through the combinatorial and algebraic models. Some of
the most perspicuous of these models use the work of Drinfeld [18, 49] on Hopf al-
gebras to capture just the right context for the Yang–Baxter equation to reappear
in the models in relation to the structure of the gauge groups. Drinfeld showed
how solutions to the Yang–Baxter equation appear naturally in new algebras (the
Drinfeld double construction) that are directly related to the classical Lie algebras
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and to Hopf algebras more generally. In this way these algebraic results are deeply
connected with the quantum field theory.

The Witten integral can be explored via its perturbative expansion, just as is
done in quantum field theory. This leads to relationships of the invariants defined
by Victor Vassiliev [54] with the coefficients in the perturbative expansion [5,9] and
rapid development of Vassiliev invariants of finite type from this point of view [36].
Some of this development includes well-defined integral expressions for the Vassiliev
invariants that go all the way back to the ideas of Gauss that defined integrals for
linking numbers of curves in three-dimensional space. In this way, the Witten in-
tegral did lead to a realization of the dream of a definition of the Jones polynomial
in terms of an embedding of the knot or link in three-dimensional space (instead
of the combinatorial topology of the diagrams). The Vassiliev invariants also made
clear, via the work of Bar-Natan, of Birman, and of Lin, how Lie algebras and their
generalizations are fundamentally related to knot invariants. Up to the point of the
introduction of the Vassiliev invariants there were two ways that Lie algebras en-
tered the picture. Deformed classical Lie algebras (also known as quantum groups)
figured in the work of Reshetikhin and Turaev to form knot invariants via cate-
gorical generalizations of state sums using solutions to the Yang–Baxter equation.
The deformations of the Lie algebras contained appropriate solutions to the Yang–
Baxter equation. These techniques had turned out to be sufficient to reproduce on
rigorous grounds the invariants that Witten defined by functional integration. But
Lie algebras also figure in Witten’s work via the choice of gauge group. Here it
is a classical Lie algebra and a matrix representation of it that is chosen to pro-
duce a given invariant. The Vassiliev invariants give a unified point of view where
the so-called weight systems for the Vassiliev invariant are computed from the Lie
algebra and constitute initial data for integrating the invariant. The same initial
data can be seen in the solutions to the Yang–Baxter equation that emerge from
the quantum groups. With perfect hindsight one can see how the footprint of a Lie
algebra—the Jacobi identity—is related to topological invariance, and so one can
draw the relationship of knot invariants and Lie algebras in a direct way that does
not, in its logic, require either the quantum groups or the functional integrals. This
is another aspect of this mathematics that deserves further understanding [33].

3.1. Vassiliev invariants and the Jacobi identity. Link invariants are closely
related with Lie algebras via the structure of solutions to the Yang–Baxter equa-
tion that come from quantum groups (deformed Lie algebras) and from the gauge
groups of the Chern–Simons–Witten theory. With this background it was eventu-
ally understood [14, 51] how to relate Lie algbras directly to the knot theory via
the Reidemeister moves. Here is a brief telling of that relationship. We shall say
that V is a Vassiliev invariant of finite type n if V satisfies the Vassiliev skein
relation (shown in Figure 17) and V vanishes on all diagrams with more than n
nodes. The Vassiliev invariant is defined on knot and link diagrams that have the
usual crossings but also have graphical nodes as illustrated in this figure. The skein
relation says that the value of a diagram with a node is equal to the difference
of the values of the two diagrams obtained by replacing the node by positive and
by negative crossings. One can think of the diagram with the node as a kind of
discrete derivative of the two diagrams with the crossings. In Vassiliev’s viewpoint,
the values of the graphical diagrams represent the differences between values as-
signed to different components of the space of all embeddings of knots. It turns
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Figure 17. Vassiliev skein relation.

out [8,10] that when one makes the perturbative expansion of the Witten integral,
then finite type Vassiliev invariants appear as the coefficients of the inverse powers
of the coupling constant. A similar result happens with the combinatorial version
of the Jones polynomial if one makes a substitution of ex for the variable in the
polynomial. Then the coefficients of xn are Vassiliev invariants of type n.

Experience mandates that one should look at these finite type invariants on
their own grounds. Here is what happens: It follows from the difference equation
of Figure 17 that if G represents a graph embedding with n nodes and V has
type n, then VG is independent of the embedding of G in three-dimensional space.
For diagrams this means that when V has type n and G has n nodes, then VG

is independent of switching the crossings in the diagram G. For an example of
this result, see Figure 18 where we illustrate a diagram with two nodes. If we
were computing a Vassiliev invariant of type 2, then the difference between the
evaluation of the diagram shown in the figure and the one obtained by switching
the crossing would be the value of the three-noded diagram also shown in the
figure. An invariant of type 2 will vanish on the three-noded diagram. Hence the
evaluation of the two-noded embedding is independent of switching its crossings.
The evaluation of VG depends only on the graphical structure of G defined by its
nodes. It depends only on the structure of the chord diagram associated with G
that we define below.

1

2 1
2

1

2

1

2 1

2

1

2
3

3

3

Figure 18. Chord diagram.
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Figure 19. Lie algebra and Jacobi identity.

Figure 19 illustrates the definition of Lie algebra [23] and a diagrammatic rep-
resentation of this definition. A Lie algebra A has a nonassociative product, here
denoted ab for elements a and b of A with the properties

(1) Anticommutativity : ab = −ba for any a and b in A.
(2) Jacobi identity : a(bc) = (ab)c+ b(ac) for any a, b, c in A.

-

-

-

-

=

=

=

=

-

-

A

B

C

D

A - B - C + D = 0

- = -

Figure 20. Four-term relation.
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-

=

Figure 21. Jacobi identity.

This evaluation is closely related to the Jacobi identity and to Lie algebras. One
way to see this relationship is illustrated in Figures 18, 19, 20, and 21. In Figure 18
we show how to encode the nodal information in a diagram G in a so-called chord
diagram. By taking a walk along G, one meets each node twice. This pattern
of encounters is marked on a circle, and chords are drawn between the pairs of
appearances of the markers on the circle. In Figure 20 we show how a relation on
the chord diagram evaluations is obtained from the demand for invariance under
the Reidemeister moves, coupled with the use of the Vassiliev skein relation. The
reader will see four equations in this figure. Each equation is an instance of the
Vassiliev skein identity. We start with a node and an arc that circles the node from
underneath its edges. This is shown at the top left of the figure. This encircling
arc passes under four points near the node. The first equation is a switching
equation for the first point. The second equation is a switching equation for the
second point after the first node crossing has been switched. Proceeding in this way
clockwise around the node, we obtain four equations. The diagram at the end has
the encircling arc moving around the node from above. But by the (generalized)
Reidemeister moves for these graph embeddings, there is an equivalence between
this last diagram and the very first diagram. This means that the sum of all of
the left-hand sides of these equations vanishes, and we are left with the statement
that the sum of their right-hand terms is equal to zero, when evaluating them
as Vassiliev invariants. As the reader can see from Figure 20, this is a sum of
evaluations of embeddings. But when the diagrams shown have n nodes for an
invariant of type n, then the resulting equation becomes the chord diagram relation
shown at the bottom of the figure. This relation is called the four-term relation
and is fundamental for the construction of Vassiliev invariants.

The second identity is the Jacobi identity and can be regarded as the footprint
of Lie algebra structure. Lie algebras are ubiquitous in mathematics. One class
of examples is the ring M(R) of n × n matrices over a commutative ring R with
the Lie product taken to be the commutator of matrices [A,B] = AB − BA. The
reader will enjoy checking that the Jacobi identity is here satisfied as

[A, [B,C]] = [[A,B], C] + [B, [A,C]].

We have also that [A,B] = −[B,A]. With this, the usual Jacobi identity is seen as
the equivalent form,

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0.
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Note that the Jacobi identity says that left operation by an element of the Lie
algebra satisfies the Leibniz rule for products. Thus left multiplication is a deriva-
tion on the algebra. In Figure 19 we give a diagrammatic representation of these
properties. Multiplication is represented by a trivalent node with the two upper
legs labeled with elements a and b, and the lower leg labeled by the Lie product
ab. Anticommutativity is represented by the trivalent node with crossed upper legs
receiving a negative sign. The Jacobi identity appears as shown in Figure 21 and
the reader can follow the multiplications. Note that in the figure we find the for-
mula (ab)c − (ac)b = a(bc). Since −(ac)b = b(ac), this is the same as the Jacobi
identity as we have written it above. The diagrammatic advantage for writing it
as we did is that the first diagram is two parallel lines incident to a horizontal line.
The second diagram is obtained by crossing the two vertical lines, and the third
diagram is obtained by running to the two vertical lines into a node that connects to
the horizontal line. This means that the identity can be used in graphical networks
by making local replacements. The outer edges of each term in the formula are
the same and the vertical parts can receive the same algebra labels. In Figure 21
we illustrate the Jacobi identity with unlabeled diagrams. This identity can be
transferred to a category of graphs or networks along with the anticommutativity
so that we have Lie algebra diagrams as an abstract version of Lie algebras.

In Figure 22 we show how Lie algebraic and chord diagrammatic structures come
together. The figure is a proof showing that the four-term relation we derived for
Vassiliev invariants is a consequence of the graphs being seen in a diagrammatic
Lie algebra. The difference in the left-hand equation consists in two diagrams that
differ only by a permutation. One has parallel lines. The other has a crossing. This
difference is replaced by a single network with a trivalent node. The trivalent node
is moved by a planar isotopy to a new location, and is then opened up again by the
reverse reading of the Jacobi identity. The result is the two terms of the four-term
relation on the right-hand side of the equation. All of this can be clothed with
specific algebra so that one obtains actual weight systems for Vassliev invariants
from a multitude of choices of Lie algebras. This, in turn, gives rise to a host of
invariants of knots and links (one must solve the problem of going from weight
systems to actual invariants; see [10, 14, 15, 21, 35, 36, 51, 54]). These invariants
include the original Jones polynomial, the Homflypt and Kauffman polynomials,
the quantum link invariants, and more.

Figure 22. Diagrammatic proof of four-term relation.
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This relationship of the topology of knots and links via Reidemeister moves
with the structure of Lie algebras is an extraordinary result. The full story of the
relationship includes everything that we have indicated so far in this essay, from
the origins of the Alexander polynomial and of the Jones polynomial, the quantum
groups and statistical mechanics, and the Witten functional integral. Yet, the story
can be told in the very few lines by which we have described this relationship using
the concept of Vassiliev invariants of finite type. The key role of the diagrammatic
translations of language from knot and link diagrams, to chord diagrams, to network
Lie algebra diagrams cannot be overemphasized. With hindsight we can go from
one diagrammatic language to the next and make a short line from knots and links
to Lie algebras. The power of such translations of mathematical languages has not
yet been fully tapped.

4. Khovanov homology

We now discuss Khovanov’s discovery [38] of a categorification of the Jones
polynomial. We have already introduced the Khovanov category Cat(K) of a knot
or link diagram K in Figure 10 and the cube category in Figure 11. Now we
can face this question: How can one extract topological information about the knot
diagram K from its category Cat(K)? Khovanov succeeded in doing this, and I
want to introduce his construction and its relationship with the bracket polynomial
and the Jones polynomial by exploring this question from our view of the category
Cat(K). In this section we discuss a point of view about Khovanov homology that
was developed by Dror Bar-Natan. This section is a sketch of that point of view.
The reader can find more detail in the papers [11, 12, 37].

Consider how Cat(K) will change if we apply a Reidemeister move to K. In
particular, consider the change that results from a type 2 Reidemeister move. We
indicate this change in the category with the diagrams in Figure 24. These diagrams
indicate only those parts of the categories that undergo a change. The diagrams
should be regarded as local snapshots of each category. In this figure the arrows
from a state with an A-smoothing to a state with a B-smoothing are labled ∂1
and ∂2. The smoothings go in order from left to right in the diagram, and ∂1
denotes operating on the left smoothing, while ∂2 denotes operating on the right

A
A-1

A
A-1

A-1
A

Δ

m

Figure 23. Saddlepoint resmoothing morphism.
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Figure 24. Khovanov category for the second Reidemeister move.

smoothing. For the upper boxed diagram with two crossings, there are four local
smoothings that are linked by these arrows. The lower boxed diagram is the result
of a type 2 Reidemeister move applied to the upper boxed diagram. Here there
are no crossings, so the category of the lower boxed diagram can be represented
locally by one already-smoothed diagram, as is shown. In order to have a map
between the lower category and the upper category, we seem to need to map single
objects (states) in the lower category to multiple objects in the upper category.
Furthermore, we would like to have a description of a map F1 from the lower
category diagram with parallel arcs to a diagram that is identical with it but has
a circle in between the parallel arcs. A better way to think about the category is
needed!

Please now view Figures 23, 24, and 25. Here we indicate a way to think about
the morphisms in the category. A resmoothing can take one loop to two loops,
or two loops to one loop. We can think of these loops as the boundary ends of a
surface that connects them by a saddlepoint as illustrated in the figures. From this
point of view each morphism in the Khovanov category can be regarded as a surface
that begins with one state as its left boundary and has the target state as its right

g=0 g=1g=0

saddle birth deathsaddle

g=0 g=0

Figure 25. Saddles, births, and deaths.
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boundary. In this way of thinking it is also possible for an individual circle to be
created or destroyed by taking it through a minimum or a maximum in the course
of the sections of the surface. With this way of looking at the category, we can
construct the map F1 in the previous paragraph, by allowing the birth of a circle
via a minimum so that the circle that is seen in the upper part of the diagram at
the bottom is the boundary of a bowel and one sees the bowel as a creation process
for the circle.

But there is still a problem in comparing the two categories. It is the problem
that the lower category wants to map objects to multiple objects in the upper
category. We can solve this problem by allowing multiple objects to become single
objects. We are familiar with this idea in algebra where we take the direct sum
of algebras. By the same token we would like to take the direct sum of the two
objects that lie directly above the parallel arcs in Figure 24. This can be done by
forming a new category that we shall call the Bar-Natan cobordism category [11,12]
where all the states with the same number of B-smoothings are amalgamated into
one direct sum object. Our original category now is rearranged and has the form

C0 −→ C1 −→ C2 −→ · · · ,
where Ck is the direct sum object corresponding to all the states that have k B’s.
Look again at Figure 10 and imagine amalgamating the horizontal rows into a direct
sum of the states that are in the row. A sequence of objects and arrows as we have
drawn above reminds us of a chain complex in algebraic topology. The Bar-Natan
cobordism category is an abstract chain complex. The objects and morphisms are
not maps of modules, but functors can take them to maps of modules and make
honest chain complexes from them. We will continue to look at the Bar-Natan
cobordism category in its simple abstract form. One can add maps abstractly and
also subtract them. The sums of arrows from Ck to Ck+1 can be seen to be good
boundary maps in the sense that the compositions Ck −→ Ck+1 −→ Ck+2 are zero
with appropriate assignments of signs. One way to assign the signs is to order the
crossings in the original knot or link diagram K so that a state corresponds to an
object in the cube category via a sequence of letters A or B corresponding to the
local smoothings. For example, in Figure 11 we could have [A,A,B] stand for one
of the states of the trefoil knot in Figure 10. Then we would have a resmoothing
map from [A,A,B] to [A,B,B], and we want to see in the Bar-Natan cobordism
category whether to add it or subtract it. One answer that works is if you are
resmoothing an A, assign (−1)t, where t is the number of A’s that precede the A
you are smoothing in the given state. Thus for [A,A,B] −→ [A,B,B], we would use
a minus sign. We let ∂ : Ck −→ Ck+1 be the sum of all the maps in Cat(K) from
states with (k)B’s to (k + 1)B’s with these signs. Then ∂∂ = 0 in the Bar-Natan
cobordism category, and we have an abstract chain complex.

Two chain complexes can be compared by chain homotopies. Two chain maps
f, g : C∗ −→ D∗ are said to be chain homotopic if there is a mapping H : C∗ −→
C∗−1 such that ∂H + H∂ = f + g. We will not worry about signs here. Note
that ∂ : C∗ −→ C∗+1 is the boundary map for the chain complex so that ∂∂ = 0.
Here we use upper indexing as in the previous paragraph. Two chain complexes
C∗ and D∗ are chain homotopy equivalent if there are chain maps f : C∗ −→ D∗

and g : D∗ −→ C∗ so that each composition fg and gf is chain homotopic to the
identity. Complexes that are chain homotopy equivalent have the same homology
groups where the reader will recall that the kth homology group Hk(C∗) is the
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Figure 26. Homotopy for the second Reidemeister move.

kernel of the boundary map from C∗ modulo the image of the boundary map from
C∗−1.

All these concepts about chain homotopy go over to the Bar-Natan cobordism
category (except for the calculation of kernels and images). Thus we can consider
the chain homotopy class of the Bar-Natan cobordism category of a knot or link
K. Let KhoCob(K) denote the Bar-Natan cobordism category associated with
the Khovanov category Cat(K). We can investigate under what circumstances the
Khovanov cobordism categories before and after the Reidemeister move are chain
homotopy equivalent. In Figure 24 the maps labeled Hi are homotopies. They are
what you see. If a circle needs to be born or needs to be destroyed, that is what
the surface cobordism does. In Figure 26 you see how the chain homotopy between
F1G1 and the identity map is assembled from surface cobordisms. And you see
that for the chain homotopy to satisfy ∂H +H∂ = F1G1 +1, the sum of mappings
shown is needed.

Now examine Figure 27, and you will see that the pattern of that requirement
can be met if in the category of maps via surface cobordisms, the so-called four-tube
relation, is satisfied. In this figure at the lower left, we see four local bits of surface
labeled 1, 2, 3, 4. This part of the figure is not part of the four-tube relation, but
rather an illustration of the four local surfaces that can be connected by tubes in
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Figure 27. Four-tube relation.

the four ways. This four-tube relation says that if four bits of surface are nearby,
call them S1, S2, S3, S4, then you can form Sij by gluing a tube from Si to Sj , and
then the relation is

S12 + S34 = S14 + S23.

In Figure 27 we have shown tubes for Sij by constructing them between the corre-
sponding surfaces. When this tubing relation is satisfied, then the chain homotopy
class of the Bar-Natan cobordism category will be invariant under the second Rei-
demeister move. One can prove that it will also be invariant under the third Reide-
meister move and analyze the degree shift that results from the first Reidemiester
move. This then turns out to be enough to assemble the new invariant.

Now an injunction for the reader: Examine Figure 26 and Figure 27. Notice that
Figure 27 has the pattern of the relation shown in Figure 26. The pattern is not
too complex. Four bits of surface are near each other and tubes are constructed
between pairs of the surfaces in four ways. One can do this construction with any
collection of surfaces labeled 1, 2, 3, 4. But in Figure 26 we found this pattern
by looking for a chain homotopy that would make our theory invariant under the
second Reidemeister move. Our tubed surfaces came from assembling morphisms
in the Khovanov category of a knot or link. This part needs a lot of study and
we have only introduced it with a sketch. We have done this to give you, the
reader, a glimpse of how the general pattern of the four-tube relation is in back of
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the topological invariance of Khovanov homology. If you just see that this tubing
relation is sufficient to give a formula at the Figure 26 level, that will be enough for
a first pass. Then later you can read the references at the beginning of this section.
There is a mystery here that the general pattern of the tubing relation is just what
is needed to make the constructions work. Perhaps you will solve this mystery!

It is worth remarking briefly how the invariance under the third Reidemeister
move comes about, as it is closely related to the way it happens for the original
bracket polynomial. Let C(K) denote the Bar-Natan cobordism category of a link
diagram K. Then we have a functor from the Bar-Natan cobordism category of an
A-smoothing in K to the Bar-Natan cobordism category of a B-smoothing in K.

C( ) : C( ) −→ C( ).

The functor takes arrows to arrows and objects to objects via the saddlepoint
cobordism that resmooths this one crossing.

A functor from one category to another gives rise to a higher category, since
arrows in one category are taken to arrows in the other category by the arrow of
the functor. Since the functor takes objects to objects, we can flatten this higher
category to a new category where an object in one category has an arrow from it
to its functorial image in the other category. Thinking this way, we see that the

flattened higher category associated with the functor C( ) : C( ) −→ C( ) is
exactly the Bar-Natan cobordism category C(K), whereK is the link whose crossing
produced the functor. For example, consider the four-cube category in Figure 28.
In this figure we have drawn arrows on the edges from the outer three-cube to the
inner three-cube, indicating a functor from the outer three-cube to an inner one.
One can think of these arrows as the result of making a category from a functor,
as described above.

In fact, we can assemble the Bar-Natan cobordism category for C(K) from C( )

and C( ) by forming the direct sum C( )
⊕

C( ). More precisely, since the
Bar-Natan cobordism category is graded by the number of B-smoothings in the
states, we can write

Cn(K) = Cn( )
⊕

Cn−1( ).

Figure 28. Four-cube category.
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Figure 29. Categorical mapping cones.

If τ : Cn( ) −→ Cn−1( ) denotes the resmoothing map, then we can write the
boundary mapping on the direct sum by the formula

∂(x, y) = (∂x, τx+ ∂y),

where for simplicity we have written this formula as though there were elements
and we have written it modulo 2. This formula expresses the fact that the boundary
for a given state is obtained either by locally smoothing the state at the indicated
site (this is τ ) or by using smoothings elsewhere in the state that are not directly
indicated (this is the ∂ part of the formula).

One recognizes that this is the familiar mapping cone construction from homolog-
ical algebra. Now view Figure 29. Here we indicate that there is a functor from the
Bar-Natan cobordism category of K, A-smoothed at the third Reidemeister move
configuration, to the corresponding resmoothing. The second Reidemeister moves
map the source Bar-Natan cobordism category to a chain-homotopy equivalent one.
One can verify that the corresponding direct sum Khovanov cobordism categories
are chain homotopy equivalent. From this it follows that the chain homotopy class
of the Bar-Natan cobordism category of a link diagram K is not changed by the
third Reidemeister move. This proof is a categorified version of the original proof
that the bracket polynomial is invariant under regular isotopy.

The Bar-Natan cobordism category is the categorical structure behind the Kho-
vanov homology. Functors from the Bar-Natan cobordism category to categories
of modules can be constructed and actual homology calculated. The Bar-Natan
cobordism category gives a diagrammatic/categorical understanding of how this
homology theory gives topological information about knots and links.

It is not lost on us that the four-tube relation has an analogy with the the four-
term relation in the theory of Vassiliev invariants (as we described in Section 3).
The four-term relation is closely tied with the Jacobi identity in Lie algebras, and
specific Lie algebras can be used to construct invariants of knots and links. If one
follows this analogy with the four-tube relation, as Dror Bar-Natan did, one finds
that there are certain Frobenius algebras (see [12,19,37]) that are instrumental for
constructing link homology theories. The original functor devised by Khovanov can
be described very simply in terms of such a Frobenius algebra. Let V = Z[x]/(x2)
be the polynomial ring over the integers with transcendental variable x modulo
the ideal generated by x2. If a state of the bracket polynomial has k loops, send
it to the k-fold tensor product of V with itself. The morphisms of the Khovanov
category of a knot K are, as we know, described by resmoothings at crossings.
Such a resmoothing corresponds to a surface cobordism taking two loops to one



534 LOUIS H. KAUFFMAN

loop or to a surface cobordism taking one loop to two loops. These morphisms are
illustrated in Figure 23. Let m denote the morphism from two loops to one loop,
and let Δ denote the morphism from one loop to two loops. Then the functor that
takes loops to tensor products of the algebra V will take m to the multiplication
in the algebra and Δ to the operation defined below that is a comultiplication on
the algebra. We use the symbol Δ again for its image under the functor:

(1) Δ(1) = 1⊗ x+ x⊗ 1.
(2) Δ(x) = x⊗ x.

It is not hard to verify that this indeed defines a functor from the Khovanov cate-
gory of a knot K to a category of modules over the integers and that the functor is
compatible with the Bar-Natan cobordism category construction, so that the image
of the Bar-Natan cobordism category ofK is a chain complex. The homology of this
chain complex is Khovanov homology. We will not go into further algebraic details
here. The Jones polynomial itself is a graded Euler characteristic of the Khovanov
homology. This part of the development is quite analogous to the original develp-
ment of homology theory where the homology groups replaced the Betti numbers.
The Khovanov homology is, after all is said and done, a natural categorification of
the Jones polynomial.

For the cobordism point of view that we have discussed here, we recommend the
paper by Bar-Natan [12].

Through its categorification, the Jones polynomial reaches a very great result.
Kronheimer and Mrowka [40] proved that the Khovanov homology detects knot-
tedness of classical knots. It remains an open problem at this writing whether the
orginal Jones polynomial detects knottedness. Is there a nontrivial classical knot
K with unit Jones polynomial?

The Khovanov homology is one example of a number of link homology theories
that have been discovered. At this point we can mention the Heegaard–Floer link
homology [43] whose chain complex can be formulated in terms of the spanning
tree states with which we began this essay. The Heegaard–Floer link homology is
originally defined by Ozsvath and Szabo in terms of high-dimensional symplectic
geometry and a chain complex whose generators are in 1-1 correspondence with
formal knot theory [27] states for the Alexander–Conway polynomial. The differ-
entials in the complex originally did not have a definition in terms of formal knot
theory states. This has been rectified in recent work such as [7, 44].

In all of this development the Jones polynomial has been the keystone in guiding
researchers to the right constructions and the most creative questions.
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