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THE LEGACY OF VAUGHAN JONES IN II1 FACTORS

SORIN POPA

Abstract. We describe Vaughan Jones’s ground-breaking discovery that sym-
metries of II1 factors, as encoded by their subfactors, are quantized and have
a natural index that can be non-integral. We then comment on the impact his
revolutionary work had in the study of II1 factors.

It is with some emotion that I open this series of contributions dedicated to the
mathematical legacy of Vaughan Jones, a dear colleague and friend for more than
forty years. His passing in September 2020, just short of his 68th birthday, was
untimely and totally unexpected. A huge loss for the mathematical community, for
his many friends, and for his family.

Vaughan was a mathematician of exceptional originality and breadth. His work
had a huge impact on developments in several areas of mathematics and mathemat-
ical physics, bringing together disparate areas such as analysis of operator algebras
on Hilbert spaces, low dimensional topology, statistical mechanics, and quantum
field theory. The articles in this issue will give an idea of the extraordinary influence
of this work.

Yet Vaughan was so much more than his mathematics. His wonderful personality
comes across quite well from the article “Memories of Vaughan Jones” in the Notices
of the AMS [4], where a large number of colleagues and friends shared personal
memories on him. Although harder to convey, his rather unique style of research
in mathematics, based on openness and generosity in sharing ideas, which by itself
played an important role in the explosion of mathematics related to his work, has
been much related in [4] and will also transpire from articles in this issue.

The crucial work that led to all these striking connections was Vaughan’s ground-
breaking discovery in [24] that symmetries of II1 factors (a special class of von
Neumann algebras), as encoded by their subfactors, are quantized and generate
quantized groups, a completely new type of structure, endowed with a dimension
function and an index, that can be nonintegral.

In what follows I will try to explain in more detail this extremely important
discovery. I will also comment on impact, but since the influence of his work in low
dimensional topology, statistical mechanics, and mathematical physics is so amply
presented in the other articles in this issue of the Bulletin of the AMS, I will focus
on the influence it had in von Neumann algebras and II1 factors, describing some
of the results in what has become Jones subfactor theory.

A von Neumann algebra is an algebraM generated by a system of self-adjoint op-
erators on a Hilbert space H (e.g., observables in quantum mechanics) that contains
1 = idH and is closed in the weak operator (wo) topology given by the seminorms
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|〈x(ξ), η〉|, ξ, η ∈ H. These properties imply that once an operator x lies in M , then
its adjoint x∗ and polar decomposition belong to M . If in addition x = x∗, then
the functional calculus of x with Borel functions belongs to M as well, in particular
all its spectral projections. So M has a large set of projections P(M), which in
addition form a complete lattice, as

∨
i pi,

∧
i pi ∈ M whenever {pi}i ⊂ M .

Such algebras were introduced by von Neumann in 1929 ([39]) as part of his
effort to create a rigorous framework for quantum mechanics. Any von Neumann
algebra can be realized as a “measurable field” of factors, i.e., von Neumann algebras
that have trivial center. An example of a factor is the algebra B(H) of all linear
bounded operators on the Hilbert space H. Any factor M that contains minimal
projections (“atoms”) is of this form. But in 1936 Murray and von Neumann
discovered that diffuse (or continuous) factors, i.e., factors without atoms, do exist
and they can be of three types, which they labeled II1, II∞, and III, according to the
way P(M) behaves under the equivalence ∼ given by existence of x ∈ M having
cokernel and range given by the respective projections; see [37]. They showed
that all these types appear naturally from free ergodic actions of discrete groups by
nonsingular transformations on a measure space, G � (X,μ), via a crossed product
type construction, M = L∞(X,μ)�G, acting on the Hilbert space L2(X,μ)⊗ �2G,
with the II1 case corresponding to μ finite with G � X measure preserving. This
is known as the group measure space construction. Later in [38], they provided a
simpler construction, known as group II1 factors, obtained as the wo-closure of the
algebra generated by the range of the left regular representation of a group G with
infinite conjugacy classes (ICC) acting on �2G, and denoted LG.

Abstractly, a II1 factor M is a diffuse factor with the property that p ∼ 1 for a
projection p in P(M) implies p = 1. This is shown in [37] to be equivalent to M
being a diffuse factor which admits a trace state τ , i.e., a functional τ : M → C

that is positive (τ (x∗x) ≥ 0, ∀x ∈ M), with τ (1) = 1 (it is a state) and satisfies
τ (xy) = τ (yx), ∀x, y ∈ M (it is a trace). The factoriality of M entails uniqueness
and complete additivity of the trace τ ; see [13]. So a II1 factor can be viewed as a
quantized version of a probability space (X,μ) (which hosts observables in classical
mechanics), hence the modern term noncommutative probability space for the pair
(M, τ ).1 But for a II1 factor M , the “measure” τ is intrinsic to M ! The trace τ also
allows the definition of an intrinsic Hilbert space L2M , defined as the completion
of M in the norm ‖x‖2 = τ (x∗x)1/2, and which is canonically a bimodule over M
using the left and right actions.

The existence of the trace combined with the factoriality ofM and the topological
property M = M

wo
implies that if p, q ∈ P(M), then p ∼ q iff τ (p) = τ (q). So

τ implements a dimension function on P(M). Together with the fact that M is
diffuse, it shows that the range of τ on P(M) covers the whole interval [0, 1]. This
allows one to define the t-amplification M t of M (the “t × t matrix algebra over
M”), for any t > 0. It also shows that any representation of the II1 factor as a
wo-closed algebra M ⊂ B(H), viewed as a left Hilbert M -module MH, is of the
form H �

⊕
k L

2Mpk, for some projections {pk}k∈K ⊂ P(M), with the action of

M by left multiplication. Moreover, dim(MH)
def
=

∑
k τ (pk) ∈ [0,∞] characterizes

the isomorphism class of MH. This summarizes the famous continuous dimension
phenomenon brought to light by the discovery of II1 factors in [37] and [38].

1von Neumann refers in [40] to the complete lattice (P(M),∨,∧) endowed with the dimension
function, which encodes (M, τ), as quantum logic.
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It was realized over the years that II1 factors arise naturally from a large variety
of data, such as measurable groupoids and orbit equivalence relations, and that they
provide a category of objects that is closed under inductive limits, tensor products,
amalgamated free products, crossed products by groups of automorphisms, ampli-
fications, quantum deformations, etc. They provide a unique environment to do
noncommutative analysis, where randomness and rigidity phenomena may simulta-
neously occur, a co-existence that produces a large number of striking phenomena
(see e.g., [56]).

Vaughan became acquainted with von Neumann algebras as a student at Auck-
land University in 1972–1974, where he was interested in both mathematics and
physics. He went to the University of Geneva in 1974 with the initial intention
to get a PhD in quantum physics, but then switched to mathematics with Andre
Haefliger as his adviser. Then in 1975–1976 he met Alain Connes at a conference in
Strasbourg and was very impressed. Connes had just completed his seminal work
on the structure and classification of factors, notably amenable ones (see below),
where he discovered the crucial importance of studying automorphisms of factors.

During 1963–1973, some two decades after Murray and von Neumann had shown
that any approximately finite dimensional (AFD) II1 factor is isomorphic to the

so-called hyperfinite factor R =
⊗∞

n=1(M2(C), tr)n in [38], the suitable notion of
amenability for factors was developed in several equivalent ways. This work showed
in particular that R and its II1 subfactors are amenable and that a group factor
LG (resp., group measure space factor L∞(X)�G) is amenable iff G is amenable.
Then in 1975 Connes proved his famous theorem that all amenable II1 factors (so
in particular all II1 subfactors of R) are isomorphic to R, a fundamental result that
became a landmark in the subject (see [9]). In a parallel work, he also classified
single automorphisms of R, in particular periodic automorphisms; see[8].

By his own account, Vaughan was captivated right away by “the world of II1 fac-
tors” and these recent developments. He avidly studied all the papers in this area,
from Murray and von Neumann’s pioneering work to Connes’s recent preprints,
then gathered a list of ten possible thesis topics and traveled to Paris to show them
to Connes, who went rapidly down the list, “No, no, no, maybe, no, . . . , good, . . . ,”
and the “good” one became Vaughan’s PhD thesis. That topic was to generalize
Connes classification of periodic automorphisms of R to arbitrary finite groups, a
project Vaughan completed in 1979 (see [23]), with Haefliger as his formal thesis
adviser and Connes as his informal one.

In this work Vaughan developed a novel algebraic approach to the classification
of actions of a finite group Γ on a II1 factor N , in which he encoded the action
Γ � N by the isomorphism class of the inclusion of II1 factors N ⊂ M = N � Γ.
Shortly after his thesis, he realized that one can assign a natural notion of index
to an abstract inclusion of II1 factors N ⊂ M (what he called a subfactor), defined
as [M : N ] := dim(NL2M), noticing that if M = N � Γ, then [M : N ] = |Γ|, and
that for an inclusion of group factors LH ⊂ LG arising from an inclusion of ICC
groups H ⊂ G, one has [LG : LH] = [G : H].

He became intrigued by the question of what values this index may take and de-
veloped tools to investigate this problem, notably his basic construction (explained
below) and local index formula, showing that if p1, . . . , pn ∈ M is a partition of

1 with projections that commute with N , then [M : N ] =
∑

i
[piMpi:Npi]

τ(pi)
. This

formula readily implies that the relative commutant (or centralizer) of N in M ,
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N ′ ∩ M := {x ∈ M | xy = yx, ∀y ∈ N}, satisfies dim(N ′ ∩ M) ≤ [M : N ], and
that if [M : N ] < 4, then N ′ ∩ M = C. On the other hand, by using the basic

construction, Vaughan proved that below 1+
√
2 the index [M : N ] could only take

the values 1 and 2. Moreover, he realized that one can get subfactors of any index
≥ 4 in the hyperfinite II1 factor R, by exploiting the Murray–von Neumann result
that pRp is isomorphic to R for any nonzero projection p ∈ R. Thus, if one takes
an isomorphism θ : pRp � (1− p)R(1− p) for p ∈ P(R) of trace t �= 0, 1, then the
subfactor R(t) = {x+ θ(x) | x ∈ pRp} ⊂ R has index [R : R(t)] = t−1 + (1 − t)−1

by the local index formula, thus taking all values [4,∞) as t runs over the interval
(0, 1). Note however that these subfactors are not irreducible, i.e., R(t)′ ∩R �= C.

Vaughan obtained these initial results by early 1980, but then he was stuck,
leaving open the problem of what may happen in the interval [1 +

√
2, 4]. He

discussed his work with many people (including myself) and even gave talks at
conferences on it in the summer of 1981. The general opinion was that under the
trivial relative commutant condition N ′ ∩M = C (so in particular for values less
than 4) the index should be an integer. But towards the end of 1981 I received a
letter from Vaughan, dated December 2nd, where he wrote,

My big news is that I think I solved the index problem. The
answer is rather curious: there is a sequence of values beginning
1, 2, 1 + Φ, 3, . . . (with Φ the golden ratio) and converging to 4,
which are the only possible values of the index between 1 and 4,
and for which there are subfactors (automatically with trivial rela-
tive commutant) of R with these values!

A typical example of Vaughan’s understatement and modesty. . .
In other words, together with the result showing that all values in [4,∞) can be

obtained, which he already had, this states that the index can only take values in
{4 cos2(π/n) | n ≥ 3} ∪ [4,∞) and that all these values can be realized as indices
of hyperfinite II1 subfactors, a result I will refer to as the Jones theorem. After a
few months I received from him a first draft of the preprint with complete proofs
of this amazing result (published in [24]). Let me say a few words about this proof.

Vaughan’s basic construction, which I mentioned before, is a crucial tool in the
proof (it continued to play a fundamental role throughout subfactor theory). Given
an inclusion of II1 factors N ⊂ M with finite index, this construction associates to
it in a canonical way a II1 factor M1 that contains M and a projection eN ∈ M1

such that:

(a) eNxeN = EN (x)eN , ∀x ∈ M , where EN : M → N denotes the unique
τ -preserving conditional expectation of M onto N ;

(b) eNy = yeN , ∀y ∈ N ;
(c) M1 = span{xeNy | x, y ∈ M};
(d) the (unique) trace state τM1

on M1 satisfies τM1
(xeNy) = λτM (xy),

∀x, y ∈ M , where λ = [M : N ]−1.

Moreover, these conditions automatically imply that [M1 : M ] = [M : N ].
This means that one can apply again the basic construction for the new subfactor

M ⊂ M1, which has same index as [M : N ]. So letting M−1 = N , M0 = M , e0 =
eN , this allows constructing iteratively a whole tower of inclusions of II1 factors,
M−1 ⊂ M0 ⊂e0 M1 ⊂e1 M2 ⊂ · · · , with each Mi+1, i ≥ 0, being generated by Mi
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and a projection ei of trace λ = [M : N ]−1, having index [Mi+1 : Mi] = [M : N ]
and satisfying the properties:

(1) eixei = EMi−1
(x)ei, ∀x ∈ Mi;

(2) {ei}′ ∩Mi = Mi−1;
(3) τ (xei) = λτ (x), ∀x ∈ Mi.

In particular, the sequence of projections {ei}i≥0 with the trace τ satisfy the con-
ditions:

(1′) eiei±1ei = λei;
(2′) [ei, ej ] = 0, if |j − i| > 1;
(3′) τ (xei+1) = λτ (x), ∀x ∈ Alg({e0, e1, . . . , ei}).
By using the fact that [ei, N ] = 0 and that the index is multiplicative (if N ⊂

P ⊂ M are inclusions of II1 factors, then [M : N ] = [M : P ][P : N ]), one gets
that the algebra An generated by {1, e0, . . . , en−1} ⊂ N ′ ∩ Mn has dimension at
most [Mn : N ] = [M : N ]n+1, so it is in fact a finite dimensional von Neumann
subalgebra of M . Due to the relations (1′)–(3′), one deduces that e0 ∨ · · · ∨ en
is a central projection in An. The key point in the argument is that the trace of
its complement, τ (1 −

∨n
i=0 ei), which is always a nonnegative number ≤ 1, can

be calculated recursively (again due to (1′)–(3′)) and that it is equal to Pn+1(λ)
whenever Pn(λ), Pn−1(λ) > 0, where Pk(t), k ≥ 0, k ≥ −1, are the polynomials
defined by the formulas P−1 = 1, P0 = 1, Pn+1(t) = Pn(t) − tPn−1(t), n ≥ 0. A
rather elementary analysis of the roots of the polynomials Pn(t) then shows that
these conditions force λ = [M : N ]−1 to be either ≤ 1/4 or of the form sec2(π/n)/4,
for some n ≥ 3.

Thus, the index of any inclusion of II1 factors N ⊂ M lies in the set

{4 cos2(π/n) | n ≥ 3} ∪ [4,∞),

the first four values of which are 1, 2, 3+
√
5

2 = 1 + Φ, and 3. This takes care of
the restriction part in the Jones theorem. But note that this doesn’t exclude the
possibility that [M : N ] can only take the values 1, 2, 3 if less than 4!

The proof of the existence part in the theorem is equally brilliant. On the one
hand, Vaughan proved that if ({en}n≥0, τ ) is any set of projections with a trace
satisfying (1′)–(3′), then the von Neumann algebra it generates is approximately
finite dimensional and factorial, thus isomorphic to R (by [38]).

Then he noticed that in order to obtain a tower of inclusions of tracial von
Neumann algebras (not necessarily factorial!) N ⊂ M ⊂e0 M1 ⊂ · · · with a trace
τ on

⋃
i Mi satisfying (1)–(3) above, and thus also ({ei}i, τ ) satisfying (1′)–(3′),

all one needs is the existence of the first step (the “initial” basic construction)
N ⊂ M ⊂e0=eN M1 satisfying (a)–(d) for some scalar λ > 0, as the rest of the
tower and projections will automatically exist and satisfy (1)–(3) for that same λ.

He then proved that given any connected bipartite graph T , and an inclusion of fi-
nite dimensional von Neumann algebras

⊕
k∈K Mnk

(C) = N ⊂ M =
⊕

l∈L Mml
(C)

(direct sums of matrix algebras, called multi-matrix algebras in [16]) with the set K
equal to the set of “left/odd” vertices of T , the set L equal to the set of “right/even”
vertices of T and the multiplicity diagram describing the inclusion given by T (thus
T t	n = 	m when T is viewed as a K × L matrix), then the trace τ on M that has
weights proportional to the Perron–Frobenius eigenvector of T tT has exactly the
desired property, with the corresponding λ given by ‖T tT‖−1. Taking T to be the
Coxeter graph An−1, n ≥ 3, which is known to have norm 2 cos(π/n), one obtains
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for λ−1 = 4 cos2(π/n) a sequence of projections and a trace satisfying (1′)–(3′) for
that λ.

Finally, defining R to be the II1 factor generated by ({en}n≥0, τ ) and Rλ its
subfactor generated by {en}n≥1, one obtains an inclusion of hyperfinite II1 factors
Rλ ⊂ R and the axioms (1′)–(3′) used once again easily imply that [R : Rλ] =
λ−1 = 4 cos2(π/n).2

The elegance and beauty of these arguments is striking (Jurg Frohlich used the
word “magical” for it, which I think is perfectly suited!)

As for the result itself, I would argue that it defies all intuition developed prior
to Vaughan’s work. There was nothing that could predict such phenomena.

There is of course nothing like it in the “classical, commutative world” of function
algebras. For an inclusion L∞(X) = N ⊂ M = L∞(Y ) to have a “good notion”
of index, one has to make some assumption of homogeneity of the inclusion (this
is somewhat analogous to the trivial centralizer requirement for inclusions of II1
factors), which basically amounts to requiring that the measurable surjective map
f : Y → X that implements such inclusion satisfies |f−1(x)| constant, for all x ∈ X
(a.e.), making [M : N ] equal to this common cardinal.

As explained before, II1 factors come from some “data” G, which are often geo-
metric/dynamic in nature, like a group (or a groupoid) acting on a space. Denoting
the corresponding II1 factor LG, by analogy with the notation for group factors,
any subfactor of finite index of LG that a “classical intuition” would conceive would
come from a subobject H ⊂ G (e.g., an embedding (H � X) ↪→ (G � Y )), with
a “classical” index [G : H] an integer, resulting in [LG : LH] = [G : H] being an
integer.

In turn, a “II1 factor intuition” may find the continuous part of the Jones spec-
trum [4,∞) as “normal”, because of the Murray–von Neumann theorem in [38] that
all amplifications Rt of the hyperfinite II1 factor are approximately finite dimen-
sional and thus isomorphic to R. But then the “discrete part” {4 cos2(π/n) | n ≥ 3}
looks like an anomaly!

While at first the sequence of numbers 4 cos2(π/n) may seem mysterious, the
proof of the existence of the subfactors Rλ ⊂ R of index λ−1 = 4 cos2(π/n) in the
Jones theorem provides a hint of the hidden structure behind this discrete part of
the spectrum: these numbers coincide with the square norms of the Coxeter graphs
An−1. A second proof to this theorem, that Vaughan obtained in early 1984 (see
[27] or [16]; the existence part was obtained independently by Pimsner and myself,
see [47], and was much emphasized in [42]), shows that in fact there is a graph-like
structure behind both the restrictions and existence parts for index < 4.

Thus, given any subfactor N ⊂ M , the increasing sequence of finite dimensional
algebras C = M ′ ∩M ⊂ M ′ ∩M1 ⊂ M ′ ∩M2 ⊂ M ′ ∩M3 ⊂ · · · is described by a
connected pointed bipartite graph, Γ = ΓN⊂M , called the principal (or standard)
graph of N ⊂ M , with the inclusions described by Γ,Γt,Γ,Γt, . . . ., starting from
the “initial” even vertex ∗ of the pointed graph, corresponding to C = M ′∩M (e.g.,
the edges from ∗ describing the inclusion M ′∩M ⊂ M ′∩M1). Also, when viewed as
a matrix, Γ = (akl)k,l, with akl the number of edges between the even vertex k and
the odd vertex l, the graph of N ⊂ M satisfies ΓΓt(	v) = [M : N ]	v, where 	v = (vk)k

2One can take the inclusion Rλ = vN({ei}i≥1, τ) ⊂ vN({ei}i≥0, τ) = R for λ−1 ≥ 4 as well,
but these subfactors have nontrivial relative commutant by [24], in fact by [44] they are of the
above “locally trivial” form R(t) ⊂ R, where t(1− t) = λ.



THE LEGACY OF VAUGHAN JONES IN II1 FACTORS 451

is given by the square roots of the indices of irreducible subfactors appearing in
the inclusion M ⊂ M ⊂ M2n, n ≥ 1. This implies ‖ΓN⊂M‖2 ≤ [M : N ], with
equality whenever the graph is finite (by the Perron–Frobenius theorem). Since the
only bipartite graphs of norm < 2 are the Coxeter graphs An, Dn, E6, E7, E8, and
all have norms in {2 cos(π/m) | m ≥ 3}, this proves the restrictions in the Jones
theorem.

On the other hand, if one takes T to be any graph of norm 2 cos(π/n) (e.g.,
T = An−1) and letB−1 ⊂ B0 be an inclusion of multi-matrix algebras with inclusion
diagram given by T and trace given by the Perron–Frobenius eigenvector of T tT ,
with B0 ⊂e0 B1 the corresponding basic construction, then u := αe0 − (1 − e0),
with α = exp( 2πin ), is a unitary element and the embedding of (C0 ⊂ C1) :=
(B−1 ⊂ uB0u

∗) into (B0 ⊂ B1) is a commuting square (i.e., the corresponding trace
preserving expectations commute) that gives rise to commuting square embeddings
of the Jones towers (C0 ⊂ C1 ⊂e1⊂ · · · ) into (B0 ⊂ B1 ⊂e1⊂ · · · ), with the
inclusion of the inductive limits C∞ ⊂ B∞ giving a hyperfinite subfactor of index
‖T‖2 = 4 cos2(π/n). This provides the alternative proof of “existence” in the Jones
theorem.

The symmetries of a II1 factor N were initially considered to be its automor-
phisms, whose importance is as crucial in the study of the structure and classifica-
tion von Neumann algebras (cf. [8]) as it is for classical spaces. If θ ∈ Aut(N), then
the Hilbert N -bimodule L2N with left-right multiplication given by x·ξ ·y = xξθ(y)
completely encodes θ. If N ⊂ M is a subfactor of finite index, then the Hilbert
N − M bimodule NL2MM and the ∗-tensor category it generates can thus be
viewed as a quantized symmetry and the quantized group it generates, with an
index dim(QHP ) := dim(QH) dim(HP ), P,Q ∈ {N,M}, that is multiplicative and
takes (quantized) values in the semigroup {4 cos2(π/n) | n ≥ 3} ∪ [4,∞).3

Such quantized symmetries are specific to noncommutative algebras of observ-
ables on the Hilbert space, a fact that anticipated at the outset the importance of
this discovery to mathematical physics, plainly confirmed in subsequent years as
the article by Dai Evans and Yasu Kawahigashi in this issue shows [15]. That it
turned out to be equally important and relevant to low dimensional topology, due to
Vaughan’s spectacular discovery in 1984 (see [26], [28]) of his polynomial invariant
for knots by using the representations of braid groups entailed by the λ-sequence
of projections {ei}i and the trace τ , as the articles in this issue by Lou Kauffman
[33] and by Robert Lipschitz and Mikhail Khovanov [34] show, makes it “one of the
great jewels of the unity of mathematics”, as Alain Connes commented in [7].

The legacy of Vaughan’s revolutionary work within the theory of II1 factors has
been particularly deep and enduring. In fact, the whole area of operator algebras
has been influenced by him in multiple ways, directly and indirectly. First and
foremost, his work showed that the “symmetry picture” of a II1 factor is much
more subtle and complicated than was previously thought. Quantized symmetries
were there but were overlooked, and henceforth need to be taken into account.

Vaughan’s early 1980s work led right away to a huge number of exciting prob-
lems. It turns out that almost any question one would ask about these fascinating
structures proves to be hard and challenging, requiring new tools and new ideas.

3The idea of Hilbert bimodules as correlators (correspondences) between von Neumann alge-
bras is due to Connes [10], and it was key to defining a “good representation theory” for II1 factors
(see [12] and [46]). It was linked this way to subfactor theory in [46] and [42].
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Just 10–15 years after his initial work, there have already been countless contribu-
tions in this area; see the comprehensive book [14] which accounts for part of these
developments (see also [16], [44], the preliminary sections in [49] or [50] for basics
on subfactor theory, and [2] for general theory of II1 factors).

A common trait of problems on subfactors is that answers are hard to predict,
and the final answer often comes as a surprise. In what follows I will comment on
just a few of the results and problems in this area.

One of the very first questions in this subject, posed by Vaughan in [24] and [27],
was to find all possible values > 4 of indices of irreducible subfactors (i.e., subfactors
with trivial relative commutant), on which he commented in [27], “the current
feeling is that there should be a gap between 4 and the next irreducible index value”.
It has been shown in [47] that for any λ−1 > 4 there is a canonical family of II1
factors N ⊂ M of index [M : N ] = λ−1 and trivial relative commutant N ′∩M = C,
in fact with all relative commutants N ′ ∩ Mi in the tower N ⊂ M ⊂e0⊂ · · ·
being “minimal”, in that they are generated by the Jones projections {ei}i alone.
Equivalently, the graph of any of these subfactors is of the form ΓN⊂M = A∞.

Another question that Vaughan stated in [27] was to find all bipartite graphs that
can occur as graphs of subfactors. By now one knows that in this generality this
problem is out of reach. But many striking obstruction results have been obtained
over the years about nonoccurrence of certain graphs as graphs of subfactors. The
very first such result in [42] shows that, while the list of bipartite graphs Γ of
norm < 2 consists of An, Dn, E6, E7, E8, the graphs An, Deven, E6, E8 do occur as
graphs of subfactors but Dodd and E7 do not (cf. also [22]). More obstruction results
were obtained in [19], where it was shown for instance that any irreducible subfactor

N ⊂ M of index 4 < [M : N ] < 5+
√
13

2 has an A∞ graph. Since the set E2 of square
norms of (possibly infinite) bipartite graphs is a closed set consisting of an increasing
sequence of accumulation points (the first of which being 4 = limn 4 cos

2(π/n))

converging to 2+
√
5, followed by the half-line [2+

√
5,∞] (see e.g., [16, Appendix]),

this implied that if a bipartite graph Γ satisfies ‖Γ‖2 ∈ (4, 5+
√
13

2 ) ∩ E2, then it
cannot be a subfactor graph! More recently, results in [32] give a complete list of
subfactor graphs of square norm ≤ 5 (cf. also [1]).

Related to Vaughan’s early “subfactor graph question”, there has been a par-
allel interest in understanding not just the graph ΓN⊂M , but the whole standard
invariant of a subfactor N ⊂ M , given by the ensemble of higher relative commu-
tants in its tower, GN⊂M := ({M ′

i ∩Mj}j≥i, τ ). By the Jones local index formula
and properties of the tower, this is a system of inclusions of multi-matrix algebras
endowed with a trace, satisfying the commuting square condition, having the λ-
sequence of Jones projections ({ei}i, τ ) as a “spine” and the principal graph ΓN⊂M

(and a “sister” dual graph Γ′
N⊂M ) describing the inclusions. The higher relative

commutants were described in [42] as intertwining spaces between the Hilbert bi-
modules in consecutive tensor products H⊗M H∗⊗N . . . , H∗⊗N H⊗M . . . ., where
H =N L2MM , thus characterizing GN⊂M as a ∗ 2-tensor category (so in a way a
“group-like” object), with a complete axiomatization of these objects in the finite
depth case, corresponding to the graph ΓN⊂M being finite.

The result in [48] provides in fact a canonical construction of (nonhyperfinite!)
subfactors having “minimal standard invariant”, where the higher relative commu-
tants are generated by the Jones projections alone: if ({ei}i≥0, τ ) is the λ-sequence
of projections for some arbitrary λ−1 > 4, then the lattice Gλ consisting of the
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multi-matrix algebras Aij = {ek | i ≤ k < j} is a standard invariant of a subfactor
of index λ−1. It is called the TLJ λ-lattice (an abbreviation for Temperley, Lieb,
and Jones; see [15] in this issue for an explanation of this terminology).

The reconstruction method involved in the proof of this result in [48], which
uses tracial amalgamated free products, is pushed further in [51] to obtain an
axiomatization as abstract objects of the lattices of commuting squares of tracial
multi-matrix algebras G = ({Aij}j≥i≥0, τ ) that can occur as standard invariants
of arbitrary subfactors, irrespective of depth. These objects are called standard
λ-lattices in [51]. The usage of tracial amalgamated free product algebras in this
context led to fruitful connections with Voiculescu’s free probability theory, due to
the effort to adapt the random matrix model in [69] to identify such algebras as
free group factors (see [66] and [67]). An alternative version of the construction in
[51] allowed us to prove in [59] that any standard λ-lattice G can be realized as the
invariant GN⊂M of an inclusion of factors N ⊂ M with N � M � LF∞. In other
words, any abstract “quantized group” G can “act” on the free group factor LF∞!

Vaughan obtained in [29] a new axiomatization of the standard invariant of a
subfactor, described as a two-dimensional diagramatic structure of tangles and con-
catenations called planar algebra. This proved to be a very powerful calculus tool.
It led to an avalanche of results (see e.g., [6]), going a long way into understanding
these complicated objects. It eventually allowed a complete classification of the
planar algebras of index ≤ 5 in [32] (even up to index 5.25 in [1]). Also, a new
manner of obtaining the reconstruction in [59], directly from planar algebras, was
discovered in [16] and [17], leading to exciting new connections with free probability
theory and mathematical physics.

Another type of problem that Vaughan’s work triggered, of a more specific na-
ture, is to calculate the subfactor picture (i.e., “quantum symmetry picture”) of a
given II1 factor M = LG, associated to some given data G. In particular, the ques-
tion is to calculate the set C (M) of indices of irreducible subfactors of M = LG.
Quite interestingly, there are only two types of existing results where C (M) could
be fully calculated, and they are at opposite ends. Thus, if M = LF∞, then C (M)
is the whole Jones spectrum {4 cos2(π/n) | n ≥ 3}∪ [4,∞) by [59]. In striking con-
trast, it has been shown in [61] and [62] (cf. also [55] and [43]) that for a large class
of groups G, which includes any nonamenable group that is a product of hyperbolic
groups, and for any free ergodic probability measure preserving action G � X,
the group measure space factor M = L∞(X) � G has only subfactors of integer
index; in fact all subfactors of M come from “subobjects” H ⊂ G = (G � X)! In
particular, if M = L∞(X)� Fn, 2 ≤ n ≤ ∞, then C (M) = {1, 2, . . . }.

Thus, if a II1 factor M comes from “random-like” data, involving (amalgamated)
free products, such as those in [48], [51], [59], and [18], then C (M) is the full Jones
semigroup, while if M arises from a more “geometric background”, such as actions
of certain groups on the standard probability space, then C (M) can be extremely
rigid, reduced to some subset of the integers {1, 2, 3, . . . } (there are examples in
[68] with no irreducible subfactors at all; see also [21] and [64]).

The most exciting problem along these lines, formulated already in [24] (cf. also
[27], [30]), is to calculate the set C (R) of indices of irreducible subfactors of the
hyperfinite II1 factor. This case is particularly puzzling, as R can be constructed
from very geometric data (finitary, more generally amenable, due to [9]), while at
the same time it is the playing field for matrix randomness! It is conjectured in
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[58] that any index of an irreducible subfactor of R is the square of the norm of a
bipartite graph, i.e., C (R) ⊂ E2. A strategy and some tools are proposed in [58]
on how to approach this problem, whose resolution will certainly require some very
fine analysis. In fact, it is speculated in [58] that E2 ⊂ C (R) as well, a problem
that is however of a different, more calculatory nature. It amounts to solving the
so-called commuting square (c.sq.) problem for bipartite graphs (already hinted at
in [16], [45], [19]). The c.sq. problem was solved for the graph E10, whose square
norm ‖E10‖2 ≈ 4.0265 . . . gives the smallest value in E2 ∩ (4,∞), with a computer
assisted proof (see [19]). Before that, for many years the smallest known value in

C (R)∩ (4,∞) was 3+
√
3, with an ad hoc c.sq. construction Vaughan had in 1983

(see [16]). There are no known examples of nonalgebraic values β ∈ C (R) (so not
the square norm of a finite graph). Proving a general statement like E2 ⊂ C (R)
will probably require a very ingenious, holistic approach to the c.sq. problem that
may include “approximate solutions” to c.sq. and computer-assisted methods. See
[58] for a detailed discussion, including motivations behind these conjectures, as
well as for many related problems.

An even more challenging problem is to classify all subfactors N ⊂ R of finite
index of the hyperfinite II1 factor. Since any action G �σ R of a finitely gener-
ated group G can be encoded (up to cocyle conjugacy) into an inclusion Nσ ⊂ R
with [R : Nσ] < ∞ and any nonamenable group can be shown to have “unclassifi-
ably many” actions on R, this problem cannot be solved in this generality. In fact,
most interesting is to classify subfactors N ⊂ R by their standard invariant, GN⊂R,
a problem that has been looked at since mid-1980s. It was proved in [47] that finite
depth subfactors of R are indeed completely classified by their standard invariant.
So in particular, subfactors N ⊂ R of index [R : N ] < 4, which all have finite
depth, are classified by GN⊂R. The notion of amenability for standard λ-lattices
G (equivalently planar algebras, or what I informally call “quantized groups”) was
developed in a series of papers [49], [52], and [53], being described in several equiva-
lent ways. One of them is that the graph ΓG of G satisfies the Kesten-type condition
‖ΓG‖2 = λ−1. It was shown in [49], [50], [52], and [53] that subfactors N ⊂ R with
GN⊂R amenable (i.e., ‖ΓN⊂R‖2 = [R : N ]) are completely classified by their stan-
dard invariant (see also [57] and [58]). Since for index [R : N ] = 4 the amenability
condition is automatic, this allowed a listing of all hyperfinite subfactors of index
≤ 4 in [49]. Combined with the list of planar algebras of index ≤ 5 in [32] (cf. also
[3] and [1]), it further allowed the classification of all subfactors N ⊂ R with graph
not equal to A∞ and index at most 5. The classification of hyperfinite subfac-
tors with amenable graph in [49]–[53] generalized the classification up to so-called
cocycle conjugacy of free actions of amenable group G on R in [41], in the case
G is finitely generated, and it allowed the classification of prime actions of com-
pact Lie groups on R in [65]. It is an open problem whether subfactors of R that
have amenable graph provide the largest class of hyperfinite subfactors that can be
classified by their standard invariant. To prove this, one needs to show that if a
subfactor N ⊂ R has nonamenable invariant GN⊂R, then there exists a subfactor
N0 ⊂ R such that GN0⊂R = GN⊂R but that cannot be conjugated to N via an au-
tomorphism of R (the analogous such statement for actions of nonamenable groups
G � R was shown in [25]). A problem related to both the classification problem
for hyperfinite subfactors and to the calculation of C (R) is to find the set G (R) of
all “quantized groups” (planar algebras, or standard λ-lattice) G that can “act” on
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R; i.e., that can occur as standard invariant of some subfactor N ⊂ R. It is for
instance wide open for what values λ−1 > 4 the TLJ λ-lattice Gλ can act on R.
It is however shown in [20] and [68] that if G1,G2 ∈ G (R), then their free product
G1 ∗ G2 (as defined in [5] and [6]) belongs to G (R). Also, by [54], if a standard
λ-lattice G is amenable, then G ∈ G (R).

A useful tool for investigating the structure of a subfactor N ⊂ M is the sym-
metric enveloping (SE ) inclusion of II1 factors M ⊗ Mop ⊂ M �

N
Mop defined in

[52] and [53], with M →
N

�Mop constructed in a canonical way from commuting

copies of M,Mop and a projection e that implements both the expectation of M
onto N and of Mop onto Nop (cf. also [42] for finite depth hyperfinite N ⊂ M , and
[36] for general finite depth N ⊂ M). This “quantum double” type construction is
used in [51] and [53] to define property (T) for λ-lattices (quantized groups) GN⊂M

and to obtain further characterizations of amenability. The SE-algebra framework
is also important for defining in [63] a representation theory for subfactors and
their quantized groups and for studying property (T), the Haagerup property, and
weak amenability (in Cowling–Haagerup style) for these objects. The SE-inclusion
is crucial in defining a notion of cohomology and L2-Betti numbers for subfactors
and their quantized groups in [60], generalizing Atiyah’s classical such notions for
groups.

I have mentioned only a few results and problems concerning “quantized symme-
tries” of II1 factors (subfactor theory). This subject has developed tremendously
since the initial discoveries of Vaughan where he constantly played a key role. His
extraordinary insight and stimulating personality will be greatly missed.
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