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1. Amenable groups

The notion of amenability of groups was introduced by John von Neumann in his
analysis [vN29] of the Hausdorff–Banach–Tarski paradox. Felix Hausdorff showed
in [Hau14] that a sphere in R

3 can be partitioned into three sets A,B,C such that
A, B, C and B∪C are pairwise congruent, i.e., can be transformed into each other
by rotations. This shows that there is no nonzero finitely additive measure on the
sphere (and thus on R

3) which is defined on all subsets and is invariant with respect
to the group of rotations of the sphere (isometries of R3, respectively).

A more famous version is the Banach–Tarski paradox [BT24] stating that a ball
in R

3 can be partitioned into finitely many pieces, such that after moving the pieces
by isometries of R3, one can obtain two balls of the same radius as the original one.

Both results are essentially about the group of rotations of the sphere. Namely,
Hausdorff considers two rotations φ and ψ by angles π and 2π/3, respectively,
around two axes and shows that for all but countably many angles between the
axes, the group generated by φ and ψ is isomorphic to the free product C2 ∗ C3 of
cyclic groups of order 2 and 3, i.e., there are no relations between φ and ψ except
for the ones following from the obvious relations φ2 = ψ3 = 1. Since fixed points of
rotations are easy to control, one can first find a partition of the group satisfying
the necessary paradoxical properties and then transfer this partition to the sphere.

Imitating the Banach–Tarski paradox, a paradoxical decomposition of a
group G is a partition G = A1 � · · · � An � B1 � · · · � Bm into disjoint subsets
such that there exist elements g1, . . . , gn, h1, . . . , hm ∈ G such that we get parti-
tions G = g1A1 � · · · � gnAn = h1B1 � · · · � hmBm. Hausdorff–Banach–Tarski
paradoxes are based on the fact that free groups of rank at least 2 admit a para-
doxical decomposition.

An obvious obstacle to the existence of a paradoxical decomposition of a group
G is the existence of a G-invariant finitely additive probability measure on G, i.e.,
a map μ : 2G −→ [0, 1] such that μ(G) = 1, μ(A � B) = μ(A) + μ(B) for all
A,B ⊂ G such that A ∩ B = ∅, and μ(gA) = A for all g ∈ G and A ⊂ G. For
example, finite groups obviously do not have paradoxical decompositions. John
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von Neumann noticed that existence of a paradoxical decomposition is equivalent
to nonexistence of a G-invariant finitely additive probability measure.

J. von Neumann called groups with such an invariant measure “meßbar”, i.e.,
“measurable”. Later, Mahlon M. Day [Day57] introduced the English term “amen-
able”, probably a pun based on the word “mean”. It is natural to replace, in the
definition of amenable groups, a finitely additive measure on G by its natural ex-
tension to a G-invariant positive linear functional on �∞(G), which is then called an
invariant mean. Groups with such means could be called “meanable” (moyennable
in French, for example), and an anagram of this word is “amenable”.

It is easy to see that existence of a paradoxical decomposition (i.e., nonamen-
ability) is equivalent to the existence of a map P : G −→ G such that |P−1(g)| = 2
for every g, and the set {P (g)g−1 : g ∈ G} is finite. In fact, an easy argument
using the Cantor–Bernstein theorem implies that we can replace |P−1(g)| = 2 by
|P−1(g)| ≥ 2. Such a map is called a Ponzi scheme on the group: initially, every
element has one coin, and then each element g gives their coin to their “neighbor”
P (g), so that each element has at least two coins. Finite groups, obviously, do not
allow a Ponzi scheme. It is also easy to see that Z does not allow it, since if m is
the maximum of P (g) − g for g ∈ Z, then coins from an interval [−N,N ] end up
inside the interval [−N −m,N +m], so if (2N + 2m + 1) < 2(2N + 1), then it is
impossible to have |P−1(g)| ≥ 2. But (2N + 2m + 1)/(2N + 1) converges to 1 as
N → ∞.

A generalisation of this idea leads to the Følner criterion for amenability.

Theorem 1. A group G is amenable if and only if for every S ⊂ G and every

ε > 0 there exists a set F such that |SF |
|F | ≤ 1 + ε.

If G is finitely generated, then it is enough to check the condition for S a gener-
ating set such that S = S−1.

The “if” direction of Theorem 1 was explained above. The “only if” direction
can be proven using a version of Hall’s marriage theorem.

Sets F satisfying the conditions of the theorem (for given S and ε) are called

Følner sets of the group. The condition |SF |
|F | < 1 + ε is interpreted as almost

invariance of F . Namely, if we assume that 1 ∈ S, then SF ⊃ F , so the condition
means that only an ε-small portion of the elements of F are moved outside of F
by elements of S. Averaging over F is then an approximately invariant mean on
G. Passing to a weak limit (and using the axiom of choice in the form of weak-∗
compactness) we can find then the invariant mean on G. This way Følner condition
(and the closely related Reiter’s condition) replaces a nonconstructive condition of
existence of an invariant mean by a more manageable and potentially constructive
condition.

Amenability of groups has many more equivalent definitions, related to a wide
variety of useful applications of the concept in different areas of algebra and analysis.
For example, many applications of amenability come from the following fixed point
property.

Theorem 2. A group G is amenable if and only if every action of G by affine
transformations on a compact convex subset of a locally convex topological vector
space has a fixed point.

Amenability is an important property in the theory of random walks on groups.
Let μ be a probability measure on G. Suppose that it is symmetric, i.e., μ({g}) =
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μ({g−1}) for every g ∈ G. Additionally, suppose that its support (i.e., the set of
elements g ∈ G such that μ({g}) > 0) generates G. Then the measure μ defines
the associated random walk. It is the process 1, s1, s1s2, s1s2s3, . . . , where si are
independent, μ-distributed random variables taking values in G. Denote by μ∗n

the distribution of gn = s1s2 · · · sn, i.e., μ∗n(g) is the probability that the random
walk is at position g after n steps.

The behaviour of the random walk is tightly related to the associated Markov
operator on the Hilbert space �2(G) given by

Mμ(f)(x) =
∑

s∈G

f(sx)μ(s).

In other words, Mμ(f)(x) is the expected value of f(sx) when s is random
μ-distributed. The condition that μ is symmetric implies that Mμ is a self-adjoint
operator. The following characterization of amenability is due to H. Kesten; see
[Kes59a].

Theorem 3. Let G be a discrete group, and let μ be a symmetric measure on G
whose support generates G. Then the following conditions are equivalent.

(1) G is amenable;
(2) the norm of the operator Mμ is equal to 1;

(3) limn→∞
2n
√
μ∗2n(1) = 1.

The third statement of Theorem 3 means that a group G is nonamenable if and
only if the probability that the random walk s1 · · · sn is equal to the identity decays
exponentially fast with n. A tightly related criterion is the cogrowth criterion of
R. Grigorchuk [Gri80a].

Theorem 4. Let G be a finitely generated group, and let φ : Fk −→ G be an epimor-
phism from the free k-generated group to G. Let γ(n) be the number of elements of

the kernel of φ of length n. Then G is amenable if and only if lim supn→∞
n
√
γ(n) =

2k − 1.

Note that the total number of elements of length n in Fk is equal to 2k(2k−1)n−1,
so amenability is basically equivalent to the kernel having the same exponential
growth rate as the whole free group.

Another characterization of amenability in terms of a random walk is due to
Kaimanovich and Vershik [KV83] and independently to Rosenblatt [Ros81], who
showed that a group is amenable if and only if its Poisson boundary is trivial for
some symmetric measure μ with support generating G. Triviality of the Poisson
boundary is called the Liouville property of the random walk. The Poisson bound-
ary is obtained by taking the quotient of the space of trajectories (g1, g2, . . .) of
the random walk by the measurable hull of the equivalence relation identifying
two trajectories (gn) and (hn) if there exist n,m such that gn+t = hm+t for all
t ≥ 0. The Liouville property is equivalent to the condition that any bounded
function h : G −→ R that satisfies h(x) =

∑
s∈G f(sx)μ(s) (is μ-harmonic) is con-

stant. The Liouville property implies amenability in a constructive way, namely
(under the aperiodicity assumption that μ(1G) > 0) it is equivalent to the fact that
the sequence of convolutions μ∗n accumulates on an invariant mean in the weak-*
topology.

Amenable groups are prominent in ergodic theory, as the class of groups for
which many theories about Z-actions can be generalized. Indeed many results
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in classical ergodic theory involve averaging over intervals in Z and have been
extended to amenable groups by considering averaging over Følner sets. Another
famous application of amenability to ergodic theory is the theorem of Ornstein and
Weiss [OW80] that any two ergodic, free, probability measure preserving actions
of infinite amenable groups are orbit-equivalent, namely there exists a measurable
isomorphisms of the spaces which preserves the partitions into orbits.

Amenability also plays a role in the theory of operator algebras and has impor-
tant generalizations there; see [Pat88]. A discrete group G is amenable if and only
if all irreducible representations of G are contained in the left-regular representa-
tions. This is also equivalent to the condition that the reduced C∗-algebra of the
group coincides with the full C∗-algebra. A generalization of amenability of groups
to C∗-algebras is called nuclearity and it is a central property of the theory.

2. Attempts to understand amenability of groups

Already in his first paper on amenability, J. von Neumann proved several per-
manence properties of the class of amenable groups.

Theorem 5. If a normal subgroup N of G and the quotient G/N are amenable,
then G is also amenable.

Any direct limit of amenable groups is an amenable group.
A subgroup of an amenable group is amenable. A quotient of an amenable group

is amenable.

We have seen that Z has Følner sets and, hence, is amenable. Finite groups are
also obviously amenable. Theorem 5 and the classical results on the structure of
commutative groups imply that all commutative groups are amenable. Moreover,
all solvable groups are amenable.

Let us continue using Theorem 5 in a systematic way. Denote by E0 the class of
finite and commutative groups. If we have defined the class Eα for an ordinal α, then
define Eα+1 as the class of groups that can be obtained from the groups from Eα
using the constructions described in Theorem 5. Namely, extensions of elements of
Eα by elements of Eα (see the first statement of Theorem 5), direct limits of elements
of Eα, passing to subgroups and to quotients. In fact, it is enough to consider the
first two constructions, since the classes Eα will be invariant with respect to the
other two. If α is a limit ordinal, then we define Eα is the union of the classes Eβ
for β < α.

The union of all classes Eα (which will be equal to Eω1
) is, by definition, the class

of elementary amenable groups. This class was introduced and studied by M. Day
in [Day57] and studied by C. Chou in [Cho80].

On the other hand, we know that the free group on two generators is not
amenable. (For example, the map erasing the first letter in every reduced word
is a Ponzi scheme.) Since subgroups of amenable groups are amenable, every group
containing a free subgroup is nonamenable.

We get in this way two classes of groups: elementary amenable (“obviously
amenable”) and groups with free subgroups (“obviously nonamenable”). For a while
these were the only two classes of groups for which amenability or nonamenability
was known. It is not hard to see, however, that there are groups not belonging
to either of these classes, as was already noticed by C. Chou. An early example
of such a group is the Thompson group, introduced by R. Thompson in the 1970s;
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see [CFP96, Tho80]. Its amenability is perhaps the most famous open problem
about amenability.

One can show that a finitely generated infinite torsion group cannot be elemen-
tary amenable, and it obviously cannot contain a free subgroup. A finitely generated
simple group cannot be elementary amenable, so if it has no free subgroups, then
its amenability is a nontrivial problem.

First examples of nonamenable groups without free subgroups were constructed
by A. Olshansky in [Ol80]. He proved nonamenability of some infinite finitely gen-
erated torsion groups using the co-growth criterion (Theorem 4). Later S. Adyan
showed that his previous result—that free Burnside of large odd exponent are
infinite—could be improved to yield nonamenability, also using the cogrowth crite-
rion. It is interesting that H. Kesten mentioned the Burnside problem in relation
with the spectral radius of the Markov operator in [Kes59b], but it seems that he
conjectured that Burnside groups are amenable.

Groups of Burnside type were used as a starting point by A. Olshansky and
M. Sapir in [OS02] to construct the first example of a finitely presented nonamenable
group without free subgroups.

Recently, M. Ershov proved in [Ers11] that Golod–Shafarevich groups are nona-
menable.

Existence of nonelementary amenable groups was known as the Day–von Neu-
mann problem (though, J. von Neumann never formulated it).

C. Chou showed that growth (i.e., the number of elements that are the product of
n or fewer generators and their inverses) of a finitely generated elementary amenable
group is either exponential or polynomial. It follows that a group of intermediate
growth (strictly between polynomial and exponential) is not elementary amenable.
Any nonamenable group must have exponential growth (an easy consequence of
paradoxical decomposition or Følner criterion).

The first examples of groups of intermediate growth—and thus the first example
of nonelementary amenable groups—were constructed by R. Grigorchuk in [Gri80b,
Gri83].

Groups of intermediate growth can be also considered “obviously amenable”,
similarly to commutative groups. So, it is natural to change the definition of ele-
mentary amenable groups by defining E0 as the class of all groups of sub-exponential
growth (including finite groups). Let us call this new class of groups subexponen-
tially amenable.

The first example of an amenable group, which is not subexponentially amenable
is the iterated monodromy group of z2 − 1, also known as the Basilica group (the
name coming from the name of the Julia set of z2 − 1). This group was introduced

for the first time by R. Grigorchuk and A.Żuk in [GŻ02], where also the question of
its amenability was raised. Its amenability was proved by L. Bartholdi and B. Virág
in [BV05] using a random walk. Their results were then generalized to the class of
groups generated by bounded automata in [BKN10].

More recently a nonconstructive proof of the existence of nonelementary amen-
able groups was obtained by P. Wesolek and J. Williams using methods from de-
scriptive set theory. They showed that elementary amenable groups form a nonBorel
subset of the space of marked groups. Since amenable groups are easily shown to
form a Borel subset, it follows that these two classes cannot coincide.
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3. Amenable groups via actions

It is generally accepted by now that the class of amenable groups does not have
a “purely algebraic” description (for example, in the spirit of the description of
the class of elementary amenable groups), as it is an essentially analytic condi-
tion. This motivates exploring groups that are close to the boundary between the
classes of amenable and nonamenable groups, and studying amenability of groups
by examples, as in the title of the book of Kate Juschenko.

All recent examples of interesting groups from the point of view of amenabil-
ity are built not using group-theoretic constructions, but as groups generated by
transformations of topological spaces. Typically, the corresponding action of the
group on the space is highly nonfree (has large stabilizers), so that it is usually
relatively easy to understand the orbits of the action. A prototipical example of
this situation is Thompson’s group F mentioned above, which is defined as the
group of all homeomorphisms of the interval [0, 1] given by piecewise affine map of
the form x �→ 2x + q for some dyadic rational q, with finitely many pieces whose
endpoints are dyadic rationals. The orbit of each individual point is contained in
its orbit under a subgroup of the affine group (which is an amenable group), yet
the group has a much more complicated structure coming from the independence
of its action on different points.

The partition of a space into orbits associated to a group action has a surpris-
ingly rich structure. As an equivalence relation, it can be considered a groupoid
whose elements are pairs (x, y) of points belonging to one orbit. Partially defined
multiplication and inversion come from transitivity and symmetry of the equiva-
lence relation. The orbit equivalence relation for an action of a countable group has
a natural structure of a Borel subset of the direct square of the space. Equivalence
relations on Borel and measure spaces were extensively studied in ergodic theory,
logic, and operator algebras; see, for example, [KM04]. One of the famous results of
this theory is the theorem of Ornstein and Weiss, mentioned above, giving a char-
acterization of orbit equivalence relations coming from ergodic actions of amenable
groups.

The notion of amenability of groups has a natural generalization to measured
groupoids; see [AR00]. In particular, nonamenability of the orbit equivalence
groupoid can be used to prove nonamenability of the acting group. This was used
by N. Monod in [Mon13] to construct examples of a nonamenable group without a
free subgroup with a much shorter and easier proof than the original Burnside type
examples. These examples have a similar flavor as Thompson’s group F , but are
defined as groups of piecewise projective homeomorphisms of the real line. Y. Lodha
and J. Moore constructed a finitely presented example of such a group in [LM16]
as a subgroup of Monod’s examples.

In the opposite direction (to prove amenability), this idea is generally harder to
implement, as the amenability of the orbit equivalence relation in the measurable
sense does not imply amenability of the acting group. For example, the amenabil-
ity of the equivalence relation of the action of Thompson’s group F does not say
anything about amenability of the group itself. Nevertheless, all currently known
examples of nonelementary amenable groups (which is the main subject of the
book) are groups of homeomorphisms of topological spaces, whose amenability is
proved using the orbits of the action. Essentially, the idea is that if the orbits are
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sufficiently small in a different sense, involving also the topology, then the group is
amenable.

To formalise this idea, if a group acts by homeomorphisms on a topological space,
then it is natural to consider a richer topological groupoid of germs of the action.
The corresponding notion of orbit equivalence (i.e., of having isomorphic groupoids
of germs) is defined as follows. We say that (G1, X1) and (G2, X2) are continuously
orbit equivalent if there exists a homeomorphism φ : X1 −→ X2 such that for every
g1 ∈ G1 and x ∈ X1 there exist g2 ∈ G2 and a neighborhood U of x such that
φ(g1(y)) = g2(φ(y)) for every y ∈ U . In other words, φ conjugates the local action
of G1 on X1 with the local action of G2 on X2.

For a given action (G,X), the topological full group [[G]] is the maximal group of
homeomorphisms of X such that the identity map is a topological orbit equivalence
between (G,X) and ([[G]], X). In other words, it is the group of all homeomor-
phisms φ : X −→ X such that for every x ∈ X there exists a neighborhood U of x
and an element g ∈ G such that φ|U = g|U .

The first result on amenability, where the use of the groupoid of germs is explicit
(though a different terminology was used in the original paper) is the theorem of
K. Juschenko and N. Monod [JM13] on topological full groups of minimal homeo-
morphisms of the Cantor set.

Theorem 6. Let a : X −→ X be a homeomorphism of the Cantor set such that
all orbits of the Z-action generated by it are dense in X. Then the topological full
group of the Z-action is amenable.

This theorem provides the first examples of amenable finitely generated infinite
simple groups. It was proved by H. Matui [Mat06] that if the homeomorphism a
is expansive, then the derived subgroup of the topological full group is simple and
finitely generated.

One of main tools in the proof of Theorem 6 is the fact that there is a natural
locally finite (i.e., a direct limit of finite groups) subgroup H of the topological
full group [[Z]] such that for every element g ∈ [[Z]] the germs of g belong to the
groupoid of germs of elements of H in all but finitely many singular points. Locally
finite groups are amenable (see Theorem 5), and amenability of the topological full
group can be concluded from the amenability of H by studying its action on the or-
bits of singular points, which coincide with the orbits of the original Z-action. The
crucial point is to leverage the very simple geometry of Z to show that this action
satisfies a strong form of orbit-wise amenability, now called extensive amenability
(this terminology was introduced only later in [JMMS18]). It was later observed
in [JNS16] that the main geometric property needed to show extensive amenability
is the recurrence of a simple random walk of Z, and this method was extended
to prove amenability of a wide variety of nonelementary amenable groups acting
on compact spaces (including the examples from [BV05] and [BKN10]) using the
groupoid of germs of their actions. Extensive amenability was later studied system-
atically in [JMMS18], where this method was also used to establish amenability of
some subgroups of the group of interval exchanges (which can be seen as topologi-
cal full groups of a class of Z2-actions on the Cantor set). It is now a widely open
problem to find new criteria to establish the extensive amenability of an action
beyond recurrence of the random walk on its orbits, which would potentially lead
to many new applications.
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4. Overview of the book

The focus of Kate Juschenko’s book are examples of nonelementary amenable
groups and techniques outlined in the previous section of this review. It is a good in-
troduction to the cutting edge of the subject. The book starts with a self-contained
introduction to the theory of amenability of discrete groups. The first chapter after
the introduction (Chapter 2) starts with a discussion of the Hausdorff–Banach–
Tarski paradox, the definition of amenability, and important criteria of amenabil-
ity. Additionally, Appendix A contains more criteria of amenability (e.g., Kesten’s
criterion) with proofs.

Chapter 3 discusses the class of elementary amenable groups. An important
part of this section are examples of groups that do not belong to this class. For
example, it is shown that groups of Burnside type, groups of intermediate growth,
and simple infinite finitely generated groups cannot be elementary amenable. The
chapter is concluded with some examples of groups acting on rooted trees which
are not elementary amenable,

The rest of the book is devoted to different classes of examples of nonelemen-
tary amenable groups. Chapter 4 is based on the paper [JM13] on amenability
of topological full groups of minimal Z-actions, see Theorem 6. It contains all
the necessary background, e.g., the reconstruction theorem of T. Giordano, I. Put-
nam, and C. Skau [GPS99] and Boyle’s flip conjugacy theorem [BT98]. Chapter 5
describes the techniques of extensively amenable actions from [JMMS18], generaliz-
ing the Juschenko–Monod theorem. Direct applications of the theory of extensively
amenable actions are described in Chapter 6.

Chapter 7 describes the results of [Nek18], which provide another class of infi-
nite simple finitely generated groups. They are first examples of simple groups of
intermediate growth and are subgroups of the topological full groups of expansive
Z-actions.

The last three chapters, Chapters 8–10, describe the results of the paper [JNS16],
where extensive amenability of actions is used to prove amenability of a wide class of
groups acting on topological spaces. In particular, this includes groups generated
by bounded automata (both acting on rooted trees and on spaces of paths in a
Bratteli diagram).

The book has two appendices: a collection of different criteria of amenability
(with proofs of their equivalence) and a collection of open problems.
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