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MR0766964 (86e:57006) 57M25; 46L10

Jones, Vaughan F. R.

A polynomial invariant for knots via von Neumann algebras.

American Mathematical Society. Bulletin. New Series 12 (1985), no. 1, 103–111.

This remarkable paper announces the discovery of a new Laurent polynomial
with integer coefficients which is an invariant of the isotopy type of a tame oriented
link in oriented S3. The discovery of the new polynomial came out of investigations
of a family of finite-dimensional von Neumann algebras, those investigations being
quite unrelated to knot or link theory. The polynomial is easily seen to be distinct
from the well-known Alexander polynomial, indeed as this review is being written
it has been shown that both the Alexander and the new Jones polynomial are 1-
variable specializations of a new 2-variable polynomial invariant of links found by
P. Freyd et al. [see the following review; MR0776477].

The Jones polynomial can be computed from a representation of a link L as a
closed braid, i.e. one begins with an element b in one of the Artin braid groups Bn

and defines L = b̂ to be the link obtained from b by identifying the n free ends at
the beginning of the braid with corresponding free ends at the end of the braid in
a canonical fashion. Define the braid index of L to be the smallest integer n such
that L = b̂ for some b ∈ Bn. By definition, it is a link type invariant; however,
it has been uncomputable except in very special cases up to now. A sample of
one of the many theorems announced in the paper under review goes as follows.
The author introduces a family of representations rn,k Bn → Gn of the groups Bn,
where n, k = 1, 2, 3, · · · . Theorem 8 asserts that if b ∈ ker rn,k for some k ≥ 3, then
L = b̂ has braid index n.

The new polynomial is not a group invariant (it takes different values on the
trefoil and its mirror image), nor is it an invariant of the complementary space (it
takes different values on the so-called Whitehead link with k knots for each k =
1, 2, 3, · · · , whereas these links all have homeomorphic complements). Its geometric
meaning awaits explanation, at this writing, one year after the initial discovery.

For the benefit of the reader, we note a small error in Theorem 12. Relations
I, II, III and the definition of gi on page 105, line 2, imply that t−1gi − tg−1

i =

(
√
t− 1/

√
t). This in turn implies that the symbols + and − in Theorem 12 have
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been interchanged. Also, in the list of examples, the braid form of 818 is incorrect.
The correct entry is (12−1)4.

J. S. Birman

From MathSciNet, July 2023

MR0791846 (86k:46091) 46L35; 46L10

Haagerup, Uffe

A new proof of the equivalence of injectivity and hyperfiniteness for
factors on a separable Hilbert space.

Journal of Functional Analysis 62 (1985), no. 2, 160–201.

A von Neumann algebra M is said to be hyperfinite if there is an increasing
sequence of finite-dimensional sub-∗-algebras of M whose union is weakly dense.
The algebra is said to be injective if, as a Banach subspace of the space of all
bounded operators, it is complemented. In a wonderful paper [Ann. of Math. (2)
104 (1976), no. 1, 73–115; MR0454659], A. Connes proved that injective and
hyperfinite are equivalent, along with several other conditions, among them the
Effros–Lance condition of semidiscreteness, which means that the identity map
on M can be approximated by completely positive maps onto finite-dimensional
subspaces. Connes reduced the problem to the type II1 case where he used a
penetrating analysis of the automorphism group of a type II1 factor. His argument
is very subtle and of great technical difficulty. While there are many rich results
of considerable independent interest, as a proof of the main result and its many
corollaries, it remains enigmatic. It is important that more direct proofs be found.

The first new proof is due to the author. He never uses automorphisms. He
assumes the implication (injective ⇒ semidiscrete) and uses Choi and Effros’ char-
acterization of semidiscreteness (which involves matrix algebras rather than sub-
spaces) to begin to create the appropriate finite-dimensional subalgebras. The
author begins by giving a simple proof that injective implies hyperfinite in the
properly infinite case as follows: The Choi–Effros result gives, for any unitaries
u1, u2, · · · , uk in M , a finite-dimensional subfactor F of M , a completely positive
map T : F → M and yi’s in F with T (yi) close to ui. A method, attributed to
Kasparov, shows that T can be implemented by an isometry (since M is infinite),
i.e. T (x) = v∗xv, v∗v = 1. The author then approximates v by a unitary w and we
are done since w∗Fw approximately contains the ui’s.

The proof in the II1 case is an adaptation of the above argument, though one
encounters considerable technical problems. Kasparov’s isometry trick cannot work

so one must carry along a finite set {a1, · · · , ad} ⊆ M with T (x) =
∑d

i=1 a∗i xai. The
main technical result of the paper uses ultraproducts and an elegant probabilistic
argument to create a single unitary w out of the ai’s with w∗yiw close to ui as above.

To grossly oversimplify, the argument asserts that if x =
∑d

i=1 ωiai is a random
linear combination of the ai’s with |ωi| = 1, then there is a nonzero probability
that x is a unitary and does the job.

{Although the paper does have its tough parts, the argument is basically clear,
and the average difficulty per line is a tiny fraction of that of Connes’ paper.}

Vaughan Jones

From MathSciNet, July 2023
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MR0908150 (89c:46092) 46L99; 20F36, 22D25, 46L35, 46L55, 57M25

Jones, V. F. R.

Hecke algebra representations of braid groups and link polynomials.

Annals of Mathematics. Second Series 126 (1987), no. 2, 335–388.

The work of the author to find invariants for subfactors of factors had a spectac-
ular offspring in producing a completely new polynomial invariant VL attached to
a knot or an oriented link L [the author, Bull. Amer. Math. Soc. (N.S.) 12 (1985),
no. 1, 103–111; MR0766964]. Though this Jones polynomial VL is quite distinct
from the Alexander polynomial ΛL, both show a very tight relationship with skein
theory. This suggests a two-variable polynomial PL which subsumes both VL and
ΔL. Indeed, at least five groups of authors have independently defined this PL; see
papers by P. Freydet al. [ibid. (N.S.) 12 (1985), no. 2, 239–246; MR0776477] as
well as J. H. Przytyckiand P. Traczyk [Kobe J. Math. 4 (1988), no. 2, 115–139].

Here is Jones’ account of PL, defined via Hecke algebras of type A and Ocneanu
traces. There are in fact two definitions of PL: one involves closed braids à la
Markov and the other braids with an even number of strings closed to give plats.
Several examples are worked out, including knots and links which are closed 3 and
4 braids, and torus knots. The remarkable specializations ΔL and VL are discussed,
as well as some results for which the operator algebra origin of all this is indeed
useful, via positivity considerations.

There is a table which gives the braid index, a braid expression, amphicheiral-
ity information and the polynomials VL for all unoriented prime knots up to 10
crossings.

The paper gives perspective to a large body of results: Bureau representation,
structure of Hecke algebras, Ocneanu traces, Temperley-Lieb algebras, etc. It also
suggests exciting new problems: Hecke algebras of other types, relation to works
by Kazhdan and Lusztig, mapping class groups, etc.

Pierre de la Harpe

From MathSciNet, July 2023

MR0990772 (90h:57009) 57M25; 17B67, 57N10, 58D15, 58D30, 81E40

Witten, Edward

Quantum field theory and the Jones polynomial.

Communications in Mathematical Physics 121 (1989), no. 3, 351–399.

The author introduced the notion of a topological quantum field theory in a
previous article [same journal 11 (1988), no. 3, 353–386; MR0953828] where he
discussed the Donaldson invariants of 4-manifolds. The paper under review inter-
prets the Jones invariants of links in the 3-sphere in terms of quantum field theory
and at the same time introduces new invariants of links in arbitrary 3-manifolds. In
particular, there are new invariants of closed 3-manifolds. Mathematicians should
find this paper more accessible than the article cited above as the field theory here
does not involve supersymmetry. We explained some general features of topological
quantum field theory in our review of the previous article, so we proceed directly
to the current paper.

Fix a compact Lie group G. In this paper the author deals only with simple
groups, and to be definite we take G = SU(N); the general case is discussed further
by R. Dijkgraafand the author [“Topological gauge theories and group cohomology”,
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ibid., to appear], for example. Then if M is an oriented closed 3-manifold and A a
connection on a (necessarily) trivial SU(N)-bundle over M , one defines the Chern-
Simons invariant L(A). It takes real values, but changes by integers under gauge
transformations. Also, the possible Chern-Simons invariants are parametrized by
an integer k. (For a general compact group they are parametrized by H4(BG).)
The variables N and k turn out to be simply related to the variables in the Jones
polynomial. The Chern-Simons invariant is the Lagrangian of a classical field the-
ory; the classical solutions are the flat connections. But it is the quantum theory
which is of interest. The partition function, defined by integrating exp(2πiL(A))
over the space of connections, is proposed as a new invariant of the 3-manifold M .
If C is an oriented loop in M , and R a representation of SU(N), then for each
connection A we can evaluate the character of R on the holonomy of A around
C; this is well-defined and gauge-invariant. When this is inserted into the path
integral, repeatedly for a link with several components, one gets an invariant of a
link in M . The author asserts that since there are no background geometric data
(such as a metric) in the theory, these path integrals define topological invariants.

The author first addresses the issue of whether these Feynman path integrals
make sense. The usual perturbative calculations of quantum field theory here be-
come the large-k limit of the theory. This relates to previous work of A. S. Shvarts
[Lett. Math. Phys. 2 (1978), no. 3, 247–252] and A. M. Polyakov [Modern. Phys.
Lett. A 3 (1988), no. 3, 325–328; MR0927055]. The leading order behavior is
thus computed in terms of the Chern-Simons invariant, Reidemeister torsion, cer-
tain combinations of η-invariants, and linking numbers. As expected, these are all
topological invariants. This discussion points out one subtlety of the theory—the
need to frame the 3-manifolds and the links in order to carry out the path inte-
gral. Much more striking is the agreement with the large-k behavior of the exact
solutions computed later.

Next, the author considers the path integral on a 3-manifold of the form Σ×R,
where Σ is an oriented closed surface. Using standard principles of quantum field
theory which relate path integrals to canonical quantization and which prescribe the
treatment of symmetries, he is led to the conclusion that the quantum Hilbert space
attached to Σ is obtained by quantizing the moduli space of flat SU(N)-bundles
over Σ, which is a symplectic manifold. Since this moduli space is compact, the
quantum Hilbert space is finite-dimensional. What is the key to the entire pa-
per comes with the realization that this is exactly the description given by G.
Segal [“Two-dimensional conformal field theories and modular functors”, IAMP
Proceedings (Swansea, 1988), to appear] of the “space of conformal blocks” in the
(1 + 1)-dimensional conformal field theory usually called the Wess-Zumino-Witten
model. This space carries a (projective) representation of the mapping class group
which has been extensively studied, for example by V. G. Kac and M. Wakimoto
[Adv. Math. 70 (1988), no. 2, 156–236; MR0954660] in genus 1, and this even-
tually allows the author to make explicit computations. Similar remarks apply to
punctured surfaces, which enter when there are links.

The final ingredient is a general feature of quantum field theories, which we
might call the “gluing law”. It allows one to calculate a path integral by chopping
a manifold into smaller pieces. The author uses it to see how his invariants change
under surgery.

At this point one has a concrete prescription for computing the invariants. This
prescription is derived from the path integral, and in the author’s presentation its

https://mathscinet.ams.org/mathscinet-getitem?mr=0927055
https://mathscinet.ams.org/mathscinet-getitem?mr=0954660


SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS 573

validity depends on the path integral, but the algorithm itself is stated in terms
of elementary computable formulæ. The author uses this prescription to derive
the skein relation of knot theory, and so relate his invariants to the Jones knot
polynomials. He also uses it to prove a conjecture of Verlinde (previously proved
by G. Moore and N. Seiberg [Comm. Math. Phys. 123 (1989), no. 2, 177–254;
MR1002038]). Other illustrations of the theory are also given.

The paper ends with a hint that not only the space of conformal blocks of a (1+1)-
dimensional conformal field theory, but also the entire (1+1)-dimensional conformal
field theory, can be derived from the Chern-Simons theory in 2+1 dimensions.

The author’s paper catalyzed much activity by both mathematicians and physi-
cists. By now mathematicians have verified much of what he asserts without using
the path integral. The relationship to conformal field theory has been developed
in more detail by many physicists. We have neither the space nor the license to do
justice to these developments here.

Daniel S. Freed

From MathSciNet, July 2023

MR1078014 (92b:57008) 57M25; 14D20, 32G81, 58F06, 81S10, 81T40

Atiyah, Michael

The geometry and physics of knots. (English)

Lezioni Lincee. [Lincei Lectures].
Cambridge University Press , Cambridge, 1990, x+78 pp., $39.50,
ISBN 0-521-39521-6

This book, an expanded version of lectures given by the author in 1988, provides
an invaluable commentary for mathematicians to Witten’s important paper “Quan-
tum field theory and the Jones polynomial” [Comm. Math. Phys. 121 (1989), no.
3, 351–399; MR0990772], in which the topological invariant introduced by V. F.
R. Jones [Ann. of Math. (2) 126 (1987), no. 2, 335–388; MR0908150] for links in
S3 is generalized to links in arbitrary compact 3-manifolds. Witten’s approach is
based on path integrals, which are, as usual, not well defined, but which transform
manageably under surgeries (Verlinde’s fusion rules) and so can be treated as for-
mal symbols. (This evasion of treating path integrals directly ignores the success of
Witten’s stationary phase approximation to the path integrals [cf. D. Freed and R.
E. Gompf, “Computer calculation of Witten’s 3-manifold invariant”, Preprint; per
revr.].) In contrast, the author concentrates mostly on the (mathematically rigor-
ous) Hamiltonian aspects of topological quantum field theory, although he mentions
that this approach lacks the striking physical motivation of the Lagrangian/path
integral method and does not seem to elucidate the Witten-Freed-Gompf pertur-
bative calcluations.

The author’s task is to explain Witten’s claim that for each “level” k ∈ Z
there exists a topological quantum field theory Zk which assigns a complex number
Zk(M

3, L, μ) to a closed 3-manifold M3, an oriented link L ⊂ M3, and irreducible
special unitary representations μ = (μ1, · · · , μr) associated to the components of
the link, and which satisfies Zk(S

3,K, μs) = VK

(
exp(2πi/(k + 2))

)
, where K is a

knot, μs is the standard representation of SU(2), and VK is the Jones polynomial.
(In fact, Zk also depends on a choice of framing forM and for L; cf. the discussion of
Chapter 7 below.) Since the set of such values characterizes the Jones polynomial,
Witten’s theory generalizes the Jones polynomial to links in arbitrary 3-manifolds,
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and in particular produces new topological invariants of 3-manifolds by taking K
to be the empty knot. It is important to note, however, that even if one avoids
path integral questions by calculating Zk(M

3) via fusion rules, one is left with a
difficult consistency check that the invariant produced is independent of the series
of surgeries chosen; this has been shown recently for the large class of manifolds
obtained from S3 by plumbing on trees by P. Melvin, who has identified Witten’s
invariant with the topological invariant introduced by N. Reshetikhin and V. G.
Turaev [Invent. Math. 103 (1991), no. 3, 547–597; MR1091619].

Witten’s invariant for a closed 3-manifold M is defined as follows. Let L(A) =
(1/4π)

∫
M

Tr(A ∧ dA + 2
3A ∧ A ∧ A) be the Chern-Simons action for a connection

A on a (necessarily) trivial SU(n)-bundle E over M . For a knot K in M and a
representation μ of SU(n), the Wilson line WK(A) = Trμ MonK(A) is the μ-trace
of the monodromy of A around K. Then formally

Zk(M,K, μ) =

∫
A
exp(ikL(A)) ·WK(A) DA

where the path integral is taken over the space of all connections A on E. More
generally, for a 3-manifold M with boundary Σ containing a link L (marked by rep-
resentations as above) hitting Σ in points {Pi} (marked by representations ∂μi asso-
ciated to the μi), Witten’s theory assigns a vector Z(M,L, μ) in a finite-dimensional
Hilbert space H = HΣ,{Pi},∂μi

. Moreover, this theory is exactly soluble in that un-
der chopping a closed 3-manifold M into two manifoldsM± with common boundary
Σ (with opposite orientations Σ±), the rules of topological quantum field theory
force Zk(M,L, μ) = 〈Z(M+, L ∩ M+, μ), Z(M−, L ∩ M−, μ)〉, where 〈 , 〉 is the
natural pairing of HΣ+

and HΣ− . Reducing M to S3 by a sequence of surgeries

finally reduces the calculation to one on S3, where explicit formulas are available.
As mentioned above, the author’s main focus is the construction of the spaces H;
the construction of the vector Z(M,L, μ) is only given by a formal expression, more
fully discussed and calculated in Witten’s paper.

The monograph is organized as follows. The first chapter presents a summary
of the main properties of the Jones polynomial. In the second chapter, topological
quantum field theory is presented in the axiomatic form developed by the author
[Inst. Hautes Études Sci. Publ. Math. No. 68 (1989), 175–186; MR1001453]. For
motivation (see the discussion of Chapter 5 below), there is also a review of the stan-
dard geometric quantization of a surface Σ: the linear symplectic space H1(Σ;R)
(which consists of classical fields by Hodge theory) gives rise to a holomorphic line
bundle L over Σ, once a complex structure σ is chosen on Σ, whose holomorphic
sections form the desired quantized state space HΣ,σ. The Stone-von Neumann
theorem guarantees that the projectivized state space is independent of choice of
complex structure. This independence is reinterpreted by stating that the bundle
over the Siegel upper half-space, the space of complex structures, whose fiber at
the point σ is HΣ,σ, admits a projectively flat connection. Moreover, the group
Λ = H1(Σ,Z) acts on H1(Σ;R), and quantizing the quotient H1(Σ,U(1)) should
be the same as taking the Λ-invariant piece of the Hσ. Forming the line bundle
L (or Lk for the level k theory) more or less as before leads to a bundle over the
Siegel half-space admitting a projectively flat connection.

In Chapter 3, the author begins the discussion of quantizing H1(Σ, G), where
G is a compact simply connected Lie group. Note that this space parametrizes
homomorphisms π1(Σ) → G, or equivalently the space of flat G-connections on
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Σ. By Narasimhan and Seshadri, H1(Σ, SU(n)) is homeomorphic to an algebraic
variety, the set of (equivalence classes) of semistable rank n holomorphic bundles
over Σ, once a complex structure is chosen. There is a generalization of this result
taking marked points on Σ into account. Chapter 4, which focuses on the relation-
ship between the symplectic and algebraic geometric viewpoints, treats the case of
a compact Lie group G acting on an algebraic variety X with ample line bundle.
Following Kirwan, the author outlines the identification of the Mumford quotient
of X by Gc with the symplectic quotient (reduced phase space) X//G = μ−1(0)/G,
where μ : X → Lie(G)∗ is the moment map. As before, one quantizes X to HX

using geometric quantization of the symplectic structure and a choice of Kähler
structure (if one exists), and for nice actions the G-invariant part of the quantum
Hilbert space for X will be the quantum Hilbert space of the Mumford quotient.
In particular, if Mλ is a coadjoint orbit in Lie(G)∗ associated to an irreducible
representation λ of G with associated symplectic quotient Yλ = μ−1(Mλ)/G, then
the quantum Hilbert space HYλ

= HomG(λ,HX), the λ-covariant part of HX .
In Chapter 5, the author constructs Witten’s quantum Hilbert space for the

surface Σ. For an unmarked surface, the “classical” symplectic space is the infinite-
dimensional linear space of connections A on the given bundle over Σ, and since the
gauge transformations G preserve the Chern-Simons action, the desired quantum
Hilbert space should be the G-invariant part of the quantum Hilbert space of A.
By analogy with the finite-dimensional situation, one expects that this quantum
space should be the quantization of the symplectic quotient A//G. By work of the
author and Bott, A has a moment map given by the curvature of the connection, so
A//G is the space of flat connections H1(Σ, G). As before, once a complex structure
σ has been chosen for Σ, there is a moduli space Mσ of holomorphic Gc-bundles
over Σ and a homeomorphism H1(Σ, G) → Mσ. Note that this has reduced the
quantization of the infinite-dimensional space A to the quantization of the compact
space Mσ; this ensures that the quantum space will be finite-dimensional. For
G = SU(n), A may be identified with the space of rank n holomorphic bundles over
Σ, which determines a Hermitian holomorphic line bundle L, Quillen’s determinant
line bundle, over A. L descends to a bundle, also called L, over Mσ, and the
holomorphic sections of Lk form the quantum space HΣ,σ. It must still be shown
that the quantum spaces are projectively independent of the choice of σ.

The case of a surface with marked points is slightly more complicated. A point
P on Σ determines an evaluation map eP : G → G and a dual map δP : Lie(G)∗ →
Lie(G)∗. Thus given points P = {P1, · · · , Pr} and representations λ = {λ1, · · · , λr}
with associated orbits Mλi

, there is a G-orbit M(P,Λ) =
∑

δPi
(Mλi

) ⊂ Lie(G)∗
and the generalized symplectic quotient [μ−1(M(P,Λ, k))]//G. Here the integer k
denotes that the symplectic form on A has been multiplied by k. This quotient can
be identified with connections which are flat outside P and which have δ-function
curvatures at P. Moreover, in polar coordinates at Pj the connection looks like
Ajdθ, where Aj is in the conjugacy class of the orbit (1/k)Mλj

and hence has
monodromy around Pj a kth root of unity. As such, the generalized symplectic
quotient is the moduli space of representations of (Σ,P) discussed in Chapter 3. The
quantum Hilbert space is again the space of holomorphic sections of a line bundle
over this moduli space. This is the rigorous formulation of the expectation that the
quantization of the marked surface should pick out the piece of the quantization ofA
(which is not defined) which transforms according to the representation

⊕
e∗Pj

(λj)
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of G. Finally, it is crucial to note that if the Pj are replaced by deleted disks centered
at Pj , the quantization procedure at the boundary circles becomes the conformal
field theory quantization via loop group representations as in a paper by G. Segal [in
IXth International Congress of Mathematical Physics, 22–37, Hilger, Bristol, 1989;
MR1033753]. This gives the unexpected connection between topological quantum
field theory in 2 + 1 dimensions and conformal field theory in 1 + 1 dimensions.

In Chapter 6, three approaches to the projective flatness of the bundle of quan-
tum spaces are outlined. The first, most direct approach, developed by Hitchin and
Axelrod-Della Pietra-Witten, initially treats A formally as a finite-dimensional lin-
ear space, for which the quantization and projective flatness are easily formulated.
Since A is infinite-dimensional, the formulas involved in the projective flatness di-
verge and must therefore be suitably regularized. The second approach is to replace
the marked points by disks as above, in which case Segal has shown the projective
flatness using loop group theory in the article cited above. The third approach, not
completely worked out at present, is based on N. J. Hitchin’s classification of Higgs
bundles [Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126; MR0887284]. The
main point is that the moduli space Mσ (for G = SU(n)) embeds into the moduli
space for Higgs bundles in such a way that Mσ appears as a degeneration of a family
of abelian varieties. Using this embedding, the author outlines how it should be
possible to prove the projective flatness on Mσ by reducing to the known projective
flatness in the abelian case.

Chapter 7 is devoted to a presentation of the formal Lagrangian/path integral
approach to the Jones-Witten theory. Applying stationary phase approximation
formally to the path integral defining Zk(M) (i.e. for K the empty knot) leads to
an asymptotic expression in k as k → ∞ involving determinants and signatures
of elliptic operators associated to flat connections on the given bundle over M .
This expression becomes meaningful after zeta- and eta-function regularization,
both of which involve a choice of metric on M . The resulting complex number
has an amplitude which is, as expected, a topological invariant (essentially the
sum of the Ray-Singer analytic torsions of the elliptic complex associated to each
flat connection). However, the phase is not independent of the metric. To rectify
this, Witten adds an ad hoc counterterm, a metric analogue of the Chern-Simons
functional, to his stationary phase formula. This produces a topological phase
factor as demanded, but this invariant depends on the framing chosen for M . (This
part of the theory is only sketched in the monograph. More details can be found
in Witten’s paper. For the canonical framing of twice the tangent bundle found in
a paper by the author [Topology 29 (1990), no. 1, 1–7; MR1046621], the added
phase factor vanishes, as shown by Freed and Gompf. Moreover, Freed and Gompf
correct Witten’s stationary phase approximation; there is an error due to the fact
that equation (2) on page 62 of this book is only true mod 1.)

The last chapter of final comments gives a formal expression for the vector
Z(M) ∈ Z(Σ) for the case ∂M = Σ, outlines the appearance of the skein rela-
tion characterizing the Jones polynomial in Witten’s theory, and mentions how
Witten’s invariant can be computed for closed 3-manifolds via a sequence of surg-
eries reducing the given manifold to S3. A full discussion of these points could very
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well have doubled the size of the book, so the reader is left instead with a series of
tantalizing comments. Again, Witten’s paper should be consulted for details.

Steven Rosenberg

From MathSciNet, July 2023

MR1091619 (92b:57024) 57N10; 17B37, 57M25, 81R50

Reshetikhin, N.; Turaev, V. G.

Invariants of 3-manifolds via link polynomials and quantum groups.

Inventiones Mathematicae 103 (1991), no. 3, 547–597.

The authors construct new topological invariants of compact oriented 3-manifolds
and of framed links in such manifolds. The invariant of (a link in) a closed oriented
3-manifold is a sequence of complex numbers parametrized by complex roots of 1.
For a framed link in the three-sphere the terms in the sequence are equal to the
values of a Jones polynomial of the link evaluated in the corresponding roots of
1. Thus, for links in the three-sphere, the invariants in this paper are essentially
equivalent to the Jones polynomial.

In this context the Jones polynomial refers to the original one-variable Jones
polynomial and its relatives obtained from the quantum group SL(2)q. The original
Jones polynomial corresponds to the fundamental representation of the quantum
group. The invariants in the paper are constructed by labelling each component of
the link with a given representation of the quantum group. This gives a particular
Jones polynomial corresponding to the labelling. The authors show that, by using
values of q that are roots of unity, and by summing (with appropriate coefficients)
the Jones polynomials of a link corresponding to such a coloring, an invariant of
framed links is obtained that is also invariant under the Kirby moves. The Kirby
moves are modifications of framed links that give homeomorphic 3-manifolds in the
class of 3-manifolds obtained by surgery on framed links.

In this way, invariants of 3-manifolds are obtained via invariants of knots and
links. Each three-manifold is presented as surgery on a framed link, and the in-
variant of that link, being invariant under Kirby moves, is an invariant of the
3-manifold.

The paper uses a number of techniques and formulations. First of all there is the
notion of a ribbon Hopf algebra (of which the universal enveloping algebra for the
quantum lie algebra for SL(2)q is an example). In another paper [Comm. Math.
Phys. 127 (1990), no. 1, 1–26; MR1036112] the authors showed that ribbon Hopf
algebras are an appropriate category of Hopf algebras for formulating invariants of
framed links. In this method the invariant is formulated as a functor from a category
of diagrams (with tangles as morphisms) to a corresponding module category. The
functor takes a closed link diagram to a morphism from the complex numbers to
itself, hence to a number. The core of the algebraic part of the paper is a careful
treatment of the quantum group for SL(2)q at roots of unity, showing that the
representation theory is appropriate for the solution to the problem of obtaining
invariants of the Kirby moves.

This paper is important as the first construction of a nontrivial 3-manifold in-
variant via invariants of framed links and the Kirby moves. It is also important as
an instantiation of the program of invariants of 3-manifolds initiated by E. Wit-
ten [ibid. 121 (1989), no. 3, 351–399; MR0990772]. Witten’s program uses ideas
from quantum field theory and conformal field theory. The present paper is more
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elementary, but presumably produces the same invariants as the Witten program.
The relationships between the Reshetikhin-Turaev approach and the Witten pro-
gram will become clear as soon as the relationships between quantum groups and
conformal field theory are more fully understood.

Louis H. Kauffman

From MathSciNet, July 2023

MR1318886 (97d:57004) 57M25

Bar-Natan, Dror

On the Vassiliev knot invariants.

Topology. An International Journal of Mathematics 34 (1995), no. 2, 423–472.

This paper is one of the standard introductions to the subject of Vassiliev in-
variants. It synthesises the axiomatic approach to Vassiliev’s work à la Birman and
Lin with the theory of quantum knot invariants of Reshetikhin and Turaev.

J. S. Birman and X. S. Lin [Invent. Math. 111 (1993), no. 2, 225–270;
MR1198809] characterized Vassiliev’s invariants as finite-type invariants. A knot
invariant which takes values in an abelian group can be extended to singular knots—
that is, immersions of the circle in 3-space which have a finite number of transversal
self-intersections. This extension is done by considering a singular knot as an al-
ternating sum of proper knots obtained by resolving each of the double points in
the two possible directions. A knot invariant is said to be of finite type or of type
n if, for some n ∈ N, it vanishes on knots with more than n double points.

The Reshetikhin-Turaev invariant τV [see, e.g., Comm. Math. Phys. 127 (1990),
no. 1, 1–26; MR1036112] is a (framed) knot invariant which depends on a semi-
simple Lie algebra g and a representation V , and it takes values in the complex
power series in a formal parameter h. For example, the Jones polynomial with
the substitution q = eh gives a power series in h which is actually the invariant
coming from the defining representation of SU(2). The author was working on
perturbative Chern-Simons theory and noticed connections with diagrams in the
Vassiliev theory. This led to the realization that the coefficient of hn in τV is a
type-n invariant. This added impetus to both approaches.

The Vassiliev theory is underpinned by certain combinatorial objects. To a knot
with n double points can be associated a chord diagram—that is, an oriented circle
with chords marked on it—each chord corresponding to a double point, the chord
ends signifying the points on the circle which meet at the double point. It is not
difficult to show that the value that a type-n Vassiliev invariant takes on a singular
knot with n double points depends only on the underlying chord diagram of the
singular knot. Thus a type-n invariant naturally determines a function on the set
of chord diagrams with n chords. This function can be thought of as the leading
term or “symbol” of the invariant. From topological considerations each of these
functions can be shown to satisfy two combinatorially defined relations—known
as the four-term (4T) and one-term (1T) relations (the latter also referred to as
“isolated chord” and as “framing independence”). Functions of this form satisfying
4T and 1T are called weight systems.

The invariants in this paper take values in a field F = Q, R or C. Let Ar be the
graded vector space over F which has as the homogeneous components of degree n
linear combinations of chord diagrams with n chords, modulo the ideal generated
by the 1T and 4T relations. Note that an element of Ar is not necessarily a finite
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linear combination of chord diagrams. Although this is a simple space to define,
the 1T and 4T relations make it difficult to figure out even the dimensions of the
homogeneous parts; up to now the dimensions are known only up to degree 9.

M. Kontsevich’s theorem (also known as the fundamental theorem) [in I. M.
Gel′fand Seminar, 137–150, Amer. Math. Soc., Providence, RI, 1993; MR1237836]
says that over F, the structure of the Vassiliev invariants is the same as the structure
of Ar; the first rigorous proof (due to Kontsevich) is presented in the paper under

review. The theorem consists of the transcendental construction of a function Z̃,
the Kontsevich integral, from the set of knots to Ar, with the property that a knot
with n double points is mapped to its underlying chord diagram plus higher order
terms (i.e. diagrams with more than n chords). Z̃ is universal in the sense that all
Vassiliev invariants factor through it. Dualizing this means that, modulo invariants
of lower order, a Vassiliev invariant is determined by the weight system it defines.

Actually, the construction of Z̃ given in the paper under review, although the
first rigorous one, is not very satisfactory as it is not easy to do any calculations
with. Other constructions have since appeared but nothing entirely satisfactory—
see a paper by the author and A. Stoimenow [in Geometry and physics (Aarhus,
1995), 101–134, Dekker, New York, 1997] for an overview of some of these.

The set of knots admits the operation of connected sum, which makes it into a
commutative monoid, and the set of F-valued knot invariants has a commutative
product coming from the multiplication in F; similarly Ar can be given a natural
Hopf algebra structure with the product and coproduct having simple combinatorial
definitions, so that Z̃ respects these structures. There is a different normalization
of Z̃ which is relevant for the Reshetikhin-Turaev invariants mentioned below.

The structure theory of Hopf algebras implies that Ar is actually a polynomial
algebra generated by its so-called primitive elements. Again the structure of these
primitive elements is not properly understood, but Ar has an alter ego in which
they are easier to spot: it is sometimes more convenient to consider the space of
Chinese character diagrams which have extra trivalent vertices and a relation STU
replacing 4T. The author proves that this space is isomorphic to Ar.

The quantum invariants are really naturally defined for framed knots, and one
can repeat the above theory for framed knots. One obtains a Hopf algebra A which
is chord diagrams modulo just the 4T relation (or Chinese character diagrams
modulo just STU); and as an algebra it is generated by one more primitive element
than Ar—the diagram with one chord. There is also a natural Hopf algebra map
Ar → A which corresponds to assigning the zero framing to a knot.

Recall that for V a representation of the semi-simple Lie algebra g, the coefficient,
τnV , of h

n in τV is a type-n invariant; so the τnV define weak weight systems (i.e. they
satisfy 4T but not 1T). These weak weight systems have a simple description: a
chord diagram (or Chinese character diagram) gives a recipe for “glueing together”
various tensors associated to g to obtain an element of the center of the universal
enveloping algebra of g; taking the trace of this in the representation V gives a
number—this is the value of the weight system on the diagram.

For the classical Lie algebras with certain representations, the author gives com-
putationally easier ways of evaluating these weight systems. This is possible because
of the behaviour of these weight systems with respect to some operations in the
representation ring of a fixed g. On the level of (framed) knots one can define
various cabling operations. One is the ith disconnected cabling, which results in
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an i-component link consisting of i parallel (along the framing) copies of the orig-
inal knot. Evaluating τV⊗W on a knot gives the same result as evaluating τ on
the second disconnected cabling with (in the language of quantum invariants) one
component coloured by V and one by W—this generalizes in the obvious way to
higher-order cabling. The disconnected cabling operation descends to a map on the
chord diagram level which can be utilised to evaluate τV⊗W .

Also very interesting is the ith connected cabling operation on knots which results
in a knot which wraps i times around the old knot. This operation is known to
be related to the Adams operation in the representation ring of g. On the level of
chord diagrams one obtains a family of combinatorially defined maps ψi : A → A
satisfying ψiψj = ψij , and indeed these are adjoint to the Adams operations, ψ̂i,
in the representation ring of g, i.e. for a diagram D, τn

̂ψiV
(D) = τnV (ψ

iD). Further,

each homogeneous part of A splits naturally into a direct sum of simultaneous
eigenspaces for these operations, and spanning sets for these eigenspaces are given
by the Chinese characters which are introduced.

A question raised in this paper is, do all weight systems come from semisimple Lie
algebras? This has been answered in the negative by P. Vogel [“Algebraic structures
on modules of diagrams”, Preprint, Inst. Math. Jussieu, Paris; per revr.].

The author also presents another method for constructing weight systems which
is at least as strong as the semisimple Lie algebra method. It involves the use
of marked surfaces but why marked surfaces should lead to knot invariants is not
clear. This construction is conjectured to give all weight systems.

Many of the subsidiary results in the paper are left as exercises for the reader, and
several outstanding problems are listed. All in all, this paper is a good introduction
to a subject in the intersection of many areas of current mathematical interest.

Simon Willerton

From MathSciNet, July 2023

MR1473221 (98h:46067) 46L37; 46-01, 46L10, 57M25

Jones, V.; Sunder, V. S.

Introduction to subfactors. (English)

London Mathematical Society Lecture Note Series, 234.
Cambridge University Press , Cambridge, 1997, xii+162 pp., $37.95,
ISBN 0-521-58420-5

The theory of subfactors originates in an apparently rather special problem in
functional analysis: to understand the structure of inclusions of von Neumann
factors of type II1. However, this problem turns out to be related to several other
fields in mathematics and mathematical physics, particularly to algebraic topology,
statistical mechanics and quantum field theories.

From a technical viewpoint, the theory took off with Jones’ seminal paper [Invent.
Math. 72 (1983), no. 1, 1–25; MR0696688] from the early eighties, where the index
of subfactors was defined, and its possible values determined. Specifically, the index
[MN ] of an inclusion N ⊆ M is defined as the Murray-von Neumann coupling
constant [cf. F. J. Murray and J. von Neumann, Ann. Math. (2) 37 (1936), 116–
229; JFM 62.0449.03] of N in the standard representation L2(M, trace), and Jones
proved (1) [MN ] ∈ {4 cos(2π/n) n = 3, 4, · · · }∪ [4,∞] with all values being realized
for some inclusion N ⊆ M . The proof is essentially algebraic, after the relevant
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algebraic relations have been extracted from the subfactor; this amounts, roughly,
to iterating a construction of E. Christensen [Math. Ann. 243 (1979), no. 1, 17–
29; MR0543091], and then proving that the resulting sequence (ej) of projection
satisfies (2) eiej = ejei for |i− j| > 1, (3) ejej±1ej = [MN ]−1ej for j > 1.

Now, in addition to the use in proving (1), the above relations were recognized
by Jones to be very similar to Artin’s braid group relations. By an ingenious
development of this connection, Jones succeeded to construct a new polynomial
invariant for knots [cf. Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111;
MR0766964; Ann. of Math. (2) 126 (1987), no. 2, 335–388; MR0908150]. Moreover,
Jones, and others, found spectacular applications of the theory to mathematical
physics [cf., e.g., V. F. R. Jones, in Proceedings of the International Congress of
Mathematicians, Vol. I, II (Kyoto, 1990), 121–138, Math. Soc. Japan, Tokyo, 1991;
MR1159209]. In 1990, Jones was awarded the Fields medal for his outstanding
cross-disciplinary work originating in von Neumann algebras.

After the explosive developments of the eighties, the theory of subfactors seems
to have stabilized in the nineties, as a research field which is deeply rooted in
von Neumann algebras, yet with a distinctive character coming from the ongoing
interaction with the above-mentioned fields of application. The field has also seen
its first generation of monographs, mainly aimed at introducing other researchers
to the field.

The volume under review seems to be the first which is primarily meant as an
introduction for the beginning graduate student in the field. In the words of the
authors, “the aim of this book is to give an introduction to some of the beautiful
ideas and results which have been developed, since the inception of the theory of
subfactors, by such mathematicians as Adrian Ocneanu and Sorin Popa; an attempt
has been made to keep the material as self-contained as possible; in fact, we feel it
should be possible to use this monograph as the basis of a two-semester course for
second-year graduate students with a minimal background in Hilbert space theory.”
In the opinion of the reviewer, this is to be understood as follows: a sound founda-
tion in von Neumann algebras, up to type classification of factors, should either be
assumed from the start, or developed prior to studying the book, in which Section
1.1 merely gives a brief overview of the required knowledge (including good refer-
ences to existing textbooks, which may be useful for the instructor or the student).
From this point on, the book really is reasonably self-contained, with clear albeit
condensed style of proof suitable for the level of prospective students. The main
exceptions are, unfortunately but in a sense also inevitably, some deep and tech-
nically very demanding theorems of the subjects, in particular the Ocneanu-Popa
spanning theorem (5.6.3 in the book, cf. references given at the end of the book),
but also the infinite-index criterion contained in the Pimsner-Popa inequality (5.1.3
in the book). Of course, these analytic sides of the theory may well be postponed
to later study for the student who is really determined to work on subfactors.

In brief outline, the topics covered are: basics of von Neumann algebra and fac-
tors (partially without proofs), coupling constant and index, the basic construction,
principal graphs, the bimodule pictures, Pimsner-Popa basis and index inequality,
examples of commuting squares coming from braid groups and statistical mechancis,
path algebras and Ocneanu compactness argument; and finally a chapter with de-
tailed computation of invariants for important examples of subfactors (arising from
the above class of commuting squares), mainly from works of the authors.
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In conclusion, this handy volume (162 pp., including bibliographical notes and
subject index) fills a real need for a discipline about to reach maturity. Its study
may be well prepared by readings from the book by the second author [An invitation
to von Neumann algebras, Springer, New York, 1987; MR0866671].

Carl Winsløw

From MathSciNet, July 2023

MR1729488 (2001c:46116) 46L37; 46L10, 81R50

Popa, Sorin

Some properties of the symmetric enveloping algebra of a subfactor,
with applications to amenability and property T.

Documenta Mathematica 4 (1999), 665–744.

S. T. Popa [Math. Res. Lett. 1 (1994), no. 4, 409–425; MR1302385] introduced
the symmetric enveloping inclusionM∨Mop ⊂ M �

eN
Mop associated to an extremal

inclusion of II1 factors N ⊂ M with finite Jones index. The algebra M �
eN

Mop

is constructed as follows: It can be shown that the C∗-algebra generated by M ,
JMJ and the Jones projection eN (as a subalgebra of B(L2(M))) has a unique
trace. The symmetric enveloping II1 factor M �

eN
Mop is then obtained from this

C∗-algebra via the GNS-representation with respect to this trace.
The first two chapters of the paper under review deal with the construction and

the basic properties of the symmetric enveloping algebra. In particular, it is shown
how the construction relates to the tower of factors associated to N ⊂ M , and
various descriptions of the enveloping II1 factor are given. If N ⊂ M is hyperfi-
nite with strongly amenable graph [see S. T. Popa, Acta Math. 172 (1994), no. 2,
163–255; MR1278111], then the inclusion M ∨ Mop ⊂ M �

eN
Mop is isomorphic

to Ocneanu’s asymptotic inclusion M ∨ (M ′ ∩M∞) ⊂ M∞ (see, e.g., D. E. Evans
and Y. Kawahigashi’s monograph [Quantum symmetries on operator algebras, Ox-
ford Univ. Press, New York, 1998; MR1642584] for a discussion of the asymptotic
inclusion), where M∞ denotes the weak closure of the union of the factors in the
Jones tower associated to N ⊂ M . Note that M ∨ Mop ⊂ M �

eN
Mop has finite

Jones index if and only if N ⊂ M has finite depth.
Popa computes in Chapter 3 the symmetric enveloping inclusion associated to a

locally trivial subfactor associated with finitely many automorphisms of a II1 factor
Q [see, e.g., S. T. Popa, op. cit.; MR1278111]. The symmetric enveloping algebra is
in this case a (cocycle) crossed product by the (possibly infinite) group G generated
by these automorphisms in the outer automorphism group of Q.

Chapter 4 discusses thinness and quasi-regularity properties of the symmetric
enveloping II1 factor (see also [L. M. Ge and S. T. Popa, Duke Math. J. 94 (1998),
no. 1, 79–101; MR1635904] for other results on thinness). A II1 factor M is said
to be thin if there exist two hyperfinite subfactors R1 and R2 in M such that M is
the ‖ · ‖2-closure of R1R2. Now, if N ⊂ M is an extremal inclusion of hyperfinite
II1 factors with finite Jones index, then M �

eN
Mop is thin. Other results along this

line are proved in Chapter 4. Moreover, the first two relative commutants of the
basic construction for M ∨ Mop ⊂ M �

eN
Mop are computed (in the finite depth

case, this result follows from Ocneanu’s description of the principal graphs of the
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asymptotic inclusion [see, e.g., D. E. Evans and Y. Kawahigashi, op. cit.]). The
computation shows that M �

eN
Mop is a generalized crossed product construction

over M ∨Mop, i.e. the quasi-normalizer of M ∨Mop generates all of M �
eN

Mop.

Chapter 4 ends with an ergodicity theorem for higher relative commutants. Popa
shows that if N ⊂ M is an inclusion of II1 factors with finite index and {Mj}j∈Z

is a tunnel-tower associated to N ⊂ M , then the Jones projections {ej}j∈Z have

trivial relative commutant in A−∞,∞ =
⋃

i,j M
′
i ∩Mj

w
. In particular, A−∞,∞ is

always a factor! Moreover, if N ⊂ M is in addition extremal, then a tunnel can be
chosen such that the Jones projections {ej}j∈Z have trivial relative commutant in
the symmetric enveloping II1 factor M �

eN
Mop.

Popa shows in Chapter 5 that amenability of N ⊂ M [S. T. Popa, op. cit.;
MR1278111] is equivalent to the statement that M �

eN
Mop is amenable relative to

M ∨Mop. In particular, the details of some of the results that he announced in [op.
cit.; MR1302385] are provided here. Other conditions equivalent to amenability of
the subfactor are given, for instance a Følner-type condition. As an application of
these results, Popa shows that if a standard λ-lattice [see S. T. Popa, Invent. Math.
120 (1995), no. 3, 427–445; MR1334479] has an amenable sublattice, then it must
be amenable as well. Furthermore, finite index sublattices of amenable standard
λ-lattices must be amenable.

In Chapter 6 several additional characterizations of amenability are proved. For
instance, amenability of the standard invariant of an extremal inclusion of subfac-
tors is shown to be equivalent to a maximality property of the local Connes-Størmer
entropies of the core of N ⊂ M . The simplest characterization of amenability of
N ⊂ M is probably the Kesten-type condition ‖ΓN,M‖2 = [M : N ], where ΓN,M

denotes the principal graph of N ⊂ M [see, e.g., F. M. Goodman, P. de la Harpe
and V. F. R. Jones, Coxeter graphs and towers of algebras, Springer, New York,
1989; MR0999799]. As a consequence of the results of this chapter, Popa shows
that intermediate subfactors of amenable subfactors are themselves amenable, and
reduced subfactors of amenable subfactors are amenable (a similar result in the
finite depth case was proved in [D. H. Bisch, Pacific J. Math. 163 (1994), no. 2,
201–216; MR1262294]). Given a nondegenerate commuting square of finite index
subfactors such that the indices of the horizontal inclusions are finite as well, Popa
shows that (strong) amenability of the standard invariant of the top inclusion is
equivalent to (strong) amenability of the standard invariant of the bottom inclusion.

Chapter 7 gives a characterization of amenability of a subfactor in terms of the
associated enveloping II1 factor. It is shown that an extremal inclusion N ⊂ M is
amenable if and only if M �

eN
Mop is the hyperfinite II1 factor. Other characteriza-

tions, for instance in terms of hypertraces or in terms of representations of N ⊂ M ,
are given as well. Furthermore, Popa shows the following surprising result: Given
an extremal inclusion of hyperfinite II1 factors N ⊂ M with amenable standard
invariant and an inclusion of factors Q ⊂ P embedded in N ⊂ M as commuting
squares, then the standard invariant of Q ⊂ P is amenable as well.

In Chapter 8 Popa proves that amenability of a subfactor N ⊂ M is equivalent to
an Effros-Lance type condition, namely the simplicity of certain natural C∗-algebras
associated to the subfactor (for instance the simplicity of C∗(M, eN , JMJ) [see also
E. G. Effros and E. C. Lance, Adv. Math. 25 (1977), no. 1, 1–34; MR0448092]).
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Popa introduces in Chapter 9 a notion of property T for the standard invari-
ant of a subfactor. Property T for von Neumann algebras was introduced by A.
Connes [J. Operator Theory 4 (1980), no. 1, 151–153; MR0587372; A. Connes and
V. F. R. Jones, Bull. London Math. Soc. 17 (1985), no. 1, 57–62; MR0766450]
and a notion of relative property T was studied independently by Popa [“Cor-
respondences”, Preprint, Natl. Inst. Sci. Inf. (INCREST), Bucharest, 1986; per
bibl.] and C. Anantharaman-Delaroche [Math. Japon. 32 (1987), no. 3, 337–355;
MR0914742]. The standard invariant of an extremal subfactor N ⊂ M is said to
have property T if the symmetric enveloping II1 factor M �

eN
Mop has property T

relative to the II1 factor M ∨Mop. Considerable effort goes into showing that this
definition depends only on the standard invariant of N ⊂ M and not on the par-
ticular choice of the extremal inclusion N ⊂ M . For the locally trivial subfactors
associated with finitely many automorphisms, property T of the standard invariant
is shown to be equivalent to Kazhdan’s property T of the associated group G. For
examples of irreducible subfactors with property T standard invariant, see [D. H.
Bisch and S. T. Popa, Geom. Funct. Anal. 9 (1999), no. 2, 215–225; MR1692494].
Popa proves that if a sublattice of a standard λ-lattice has property T, then the
standard λ-lattice itself must have property T. The converse is true if the sublat-
tice has finite index. In particular, the Temperley-Lieb-Jones A∞ sublattice of an
infinite depth amenable standard λ-lattice does not have property T. The paper
ends with a number of open questions regarding property T for standard lattices.

There are two appendices. The first appendix gives a simple proof of the main
result in [S. T. Popa, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 6, 743–767;
MR1717575] for inclusions of type II1 factors with finite index. Based on an ar-
gument of Connes [Ann. of Math. (2) 104 (1976), no. 1, 73–115; MR0454659],
the second appendix contains a proof of a perturbation result for square integrable
operators in semifinite von Neumann algebras.

Dietmar H. Bisch

From MathSciNet, July 2023

MR2257402 (2007h:46077) 46L37

Grossman, Pinhas; Jones, Vaughan F. R.

Intermediate subfactors with no extra structure.

Journal of the American Mathematical Society 20 (2007), no. 1, 219–265.

The paper under review makes some important advances in the study of interme-
diate subfactors and of angles between subfactors, notably with a surprising rigidity
result, in the spirit of V. F. R. Jones’ original work [Invent. Math. 72 (1983), no. 1,
1–25; MR0696688].

The notion of an intermediate subfactor N ⊂ P ⊂ M was first investigated by D.
H. Bisch, with an abstract characterization of the corresponding Jones projection
[Pacific J. Math. 163 (1994), no. 2, 201–216; MR1262294]. Then Bisch and Jones
worked out the diagrammatics of the whole system of projections [Invent. Math.
128 (1997), no. 1, 89–157; MR1437496]. A finiteness result regarding intermediate
subfactors was obtained by Y. Watatani [J. Funct. Anal. 140 (1996), no. 2, 312–334;
MR1409040]. In general, the classification problem for a given inclusion N ⊂ M is
reputed to be difficult.
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As for the notion of an angle between two subfactors P,Q ⊂ M , this was intro-
duced by T. Sano and Watatani in [J. Operator Theory 32 (1994), no. 2, 209–241;
MR1338739]. A finiteness result, leading to the conclusion that under suitable as-
sumptions the angle should be “quantized”, comes from a result of Jones and F.
Xu [Internat. J. Math. 15 (2004), no. 7, 717–733; MR2085101]. Once again, the
general questions here are reputed to be difficult.

The new idea in the paper under review is that a good framework for both
problems is that of quadrilaterals of subfactors N ⊂ P,Q ⊂ M . There are two
natural assumptions on such a quadrilateral, namely the finiteness of the index,
[M : N ] < ∞, and the irreducibility condition N ′ ∩M = C.

The simplest case is the one in which there is “no extra structure”. This means
that all four subfactors N ⊂ P , N ⊂ Q, P ⊂ M , Q ⊂ M have no extra structure,
in the sense that they correspond to the Temperley-Lieb algebra. This assumption
is very natural, in view of the above-mentioned work of both Bisch-Jones and Sano-
Watatani. For instance, this condition makes the angle between P and Q a usual
real number (in general, the angle appears as a somewhat abstract spectral theoretic
quantity).

The main result is that under the above assumptions, one of the following hap-
pens: (1) the quadrilateral commutes, in the sense that the expectations onto P,Q
commute; (2) [M : N ] = 6, the angle is π/3, and the whole situation is described

by an action of S3; or (3) [M : N ] = 6 + 4
√
2, the angle is arccos(

√
2− 1), and the

quadrilateral comes from a GHJ subfactor associated to D5.
The proof heavily relies on planar algebra methods, with technical ingredients

from [V. F. R. Jones, in Essays on geometry and related topics, Vol. 1, 2, 401–
463, Enseignement Math., Geneva, 2001; MR1929335] and [Z. A. Landau, Geom.
Dedicata 95 (2002), 183–214; MR1950890].

Teodor Banica

From MathSciNet, July 2023

MR2805599 57M27; 18G40, 57R58

Kronheimer, P. B.; Mrowka, T. S.

Khovanov homology is an unknot-detector.

Publications Mathématiques. Institut de Hautes Études Scientifiques (2011),
no. 113, 97–208.

In this paper the authors extend their study of singular instanton Floer homology
of knots and links [J. Topol. 4 (2011), no. 4, 835–918; MR2860345], based on
their earlier work on instantons on 4-manifolds with codimension-2 singularities
[Topology 32 (1993), no. 4, 773–826; MR1241873; Topology 34 (1995), no. 1, 37–
97; MR1308489].

The most striking application is their theorem which is stated in the title. M. G.
Khovanov defined a bigraded cohomology theory Kh which categorifies the Jones
polynomial in [Duke Math. J. 101 (2000), no. 3, 359–426; MR1740682], and in-
troduced a related reduced version Khr in [Experiment. Math. 12 (2003), no. 3,
365–374; MR2034399]. The authors prove that the reduced Khovanov homology
Khr(K) of a knot K is isomorphic to the reduced Khovanov homology of the un-
knot if and only if the knot is the unknot. Whether the Jones polynomial detects
the unknot is still an open question.
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Given a 3-manifold Y and a knot or link K in Y , the authors consider the
resulting orbifold Y̌ with cone angle π/2 along K, and they consider an orbifold
bundle P̌ → Y̌ determined by some ‘singular bundle data’ P defined in the article.
This defines an ordinary PU(2) bundle P → Y \K. In this setup they consider
a space of connections C(Y,K,P) (as usual, with some L2

k Sobolev completion

of the actual connection space). With an orbifold metric on Y̌ one can define
the Chern-Simons functional CS on this space of connections. Extending ideas of
A. Floer [in Geometry of low-dimensional manifolds, 1 (Durham, 1989), 97–114,
London Math. Soc. Lecture Note Ser., 150, Cambridge Univ. Press, Cambridge,
1990; MR1171893], they study the Morse homology of this functional yielding an
abelian group I(Y,K,P). This involves the discussion of moduli spaces of flow lines
which correspond to moduli spaces of anti-selfdual connections on the 4-manifold
R × Y , involving issues of compactness, transversality, and orientations of moduli
spaces. Some new index computations are necessary due to the singularities.

The authors show that their construction defines a functor from a suitable cobor-
dism category to the category of projective abelian groups (morphisms defined up
to sign).

The extension of the authors’ work [op. cit.] is that the embedded surfaces (ap-
pearing when studying the effect of cobordisms) now no longer need to be orientable.
Also, the singular bundle data is more general than previously; in particular, the
bundle P does not need to extend to all of Y . Finally, the condition for avoidance of
reducible (singular) critical points of the Chern-Simons functional reads as follows:
A surface Σ in Y is a non-integral surface if either

(1) Σ is disjoint from K and the second Stiefel-Whitney class w2(P ) is nonzero
on Σ, or

(2) Σ is transverse to K and K · Σ is odd.

The singular bundle data P is said to be non-integral if it admits a non-integral
surface.

Given a knot K in the 3-sphere, there is no non-integral surface for any singular
bundle data. This is circumvented by introducing a 2-component link K� which
is K together with the boundary of a meridional disc centered in a marked point
of K. The singular bundle data is then chosen so that w2(P ) is Poincaré dual
to an arc ω on the meridional disc joining the two components of K�. Up to
canonical isomorphism, this determines a non-integral singular bundle data P for
(S3,K�), and the resulting group I(S3,K�,P) is denoted I�(K). More generally,
the construction may also be applied to links with a marked point, and there is
a second version I�(K) introduced where the above construction is applied to the
distant union of K with an unknot U bearing a marked point.

That Khovanov homology detects the unknot is finally proved in the following
two steps. In a first step, which uses a version of Floer’s excision theorem [P. J.
Braam and S. K. Donaldson, in The Floer memorial volume, 195–256, Progr. Math.,
133, Birkhäuser, Basel, 1995; MR1362829], the authors prove that I�(K) ⊗ Q is
isomorphic to KHI(S3,K;Q), a version of instanton Floer homology for closed
3-manifolds built from the knot complement that the authors introduced in [J.
Differential Geom. 84 (2010), no. 2, 301–364; MR2652464]. They have proved that
the rank of KHI(S3,K;Q) is strictly bigger than 1 if and only if the knot K is not
the unknot, so KHI detects the unknot.
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Khovanov homology of a link K is constructed from a cube of resolutions of a
diagram of K. At each vertex there is a group, and each edge yields a homomor-
phism coming from a natural pair of pants cobordism between the two resolutions
at the endpoints of the edge. There is an associated bi-graded complex, and its
homology is the Khovanov homology of K.

The instanton Floer homology I� of a link K can also be computed from the
resolution cube (Theorem 6.8 in the article). This uses an unoriented skein exact
triangle sequence that the authors establish and an algebraic trick that was also used
by P. S. Ozsváth and Z. Szabó in [Adv. Math. 194 (2005), no. 1, 1–33; MR2141852].

In the computation of I�(K) via the resolution cube the differential is compatible

with a natural filtration yielding an exact sequence that converges to I�(K).
At the E1 page the chain groups occurring for I# at the edges are the same as the

groups occurring in the unreduced Khovanov chain complex of the diagram. The
authors study the differentials and deduce that the E2 page is isomorphic to the
unreduced Khovanov homology Kh(K) of the mirror image K of K. Via the long
exact skein exact sequence they deduce the statement for the reduced theories. As
a consequence, there is a spectral sequence from the reduced Khovanov homology
of a link K converging to the instanton Floer homology I�(K).

Together with the first step mentioned before, this shows that the rank of the
reduced Khovanov homology Khr(K) of a knot K is equal to that of the unknot if
and only if the knot K is the unknot.

Raphael Zentner

From MathSciNet, July 2023

MR4374438 46L37; 18M60

Jones, V. F. R.

Planar algebras, I.

New Zealand Journal of Mathematics 52 (2021 [2021–2022]), 1–107.

The paper under review is an exact copy of V. F. R. Jones’ original paper posted
at arXiv in 1999 [“Planar algebras, I”, preprint, arXiv:math/9909027]. The paper
stayed in preprint form for more than 20 years, and it has now been published
following Jones’ untimely death.

Jones’ 1983 paper “Index for subfactors” [Invent. Math. 72 (1983), no. 1, 1–25;
MR0696688] started a revolution in the world of von Neumann algebras. The fact
that the possible values of the index [M : N ] for an inclusion N ⊂ M of II1-factors
are

(1)
{
4 cos2

π

k
: k ∈ N, k ≥ 3

}
∪ [4,∞]

was immediately remarkable and suggested lots of connections. Jones’ proof that
the numbers above are the allowable (and existing) values of the index used an idea
called the basic construction, where, starting from the initial inclusion N ⊂ M of
II1@-factors, one produces a tower of inclusions N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · , where
Mk+1 is generated by Mk and the so-called Jones projection ek. The projections
{ek} satisfy the same relations as the generators of the Temperley-Lieb algebra,
known in statistical mechanics. Via its relation with the braid group and more
ingenuity by Jones, this suggested a new polynomial invariant for knots [V. F. R.
Jones, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111; MR0766964; Ann.
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of Math. (2) 126 (1987), no. 2, 335–388; MR0908150]. Besides this most famous
connection, there was a lot of interest in the index, and subfactors became an area
on its own. Some details about this interest and developments are mentioned in
the first paragraph of the present paper.

Even after S. T. Popa’s definitive classification results in the early 1990s [Acta
Math. 172 (1994), no. 2, 163–255; MR1278111; Classification of subfactors and
their endomorphisms, CBMS Regional Conf. Ser. in Math., 86, Conf. Board Math.
Sci., Washington, DC, 1995; MR1339767] there was a lot to do in subfactor theory.
It was then that the “Planar algebras, I” paper opened a big new avenue of research.
It features a novel approach of creating a graphic language to encode properties
like those in the generators of the Temperley-Lieb algebra. Technically, Jones uses
planar algebras to provide a new encoding of the standard invariant; this invariant,
the “tower of relative commutants” was suggested by the ideas in his original index
paper, and formalized and studied by Ocneanu, Popa, and others. The planar
algebra approach allows Jones to prove many relations by graphical means and thus
avoid complicated symbolic manipulations. Since “Planar algebras, I” appeared in
1999, subfactors have become a thriving area, with lots of young researchers getting
very interesting new results. At the time of writing this review, Mathematical
Reviews shows 94 papers with “Planar algebra(s)” in the title, and that is just
the tip of the iceberg of all the research inspired by Jones’ “Planar algebras, I”
paper. It is great for the mathematical community that this great paper is finally
in printed form.

Mart́ın Argerami

From MathSciNet, July 2023
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