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A NEW PERSPECTIVE ON THE SULLIVAN DICTIONARY

VIA ASSOUAD TYPE DIMENSIONS AND SPECTRA

JONATHAN M. FRASER AND LIAM STUART

Abstract. The Sullivan dictionary provides a beautiful correspondence be-
tween Kleinian groups acting on hyperbolic space and rational maps of the ex-
tended complex plane. We focus on the setting of geometrically finite Kleinian

groups with parabolic elements and parabolic rational maps. In this context
an especially direct correspondence exists concerning the dimension theory of
the associated limit sets and Julia sets. In recent work we established formulae
for the Assouad type dimensions and spectra for these fractal sets and certain
conformal measures they support. This allows a rather more nuanced compar-
ison of the two families in the context of dimension. In this expository article
we discuss how these results provide new entries in the Sullivan dictionary, as
well as revealing striking differences between the two families.

1. Introduction

Seminal work of Sullivan in the 1980s [39] resolved a long-standing problem in
complex dynamics by proving that the Fatou set of a rational map has no wan-
dering domains. This work served to establish remarkable connections between the
dynamics of rational maps and the actions of Kleinian groups. This connection
subsequently stimulated activity in both the complex dynamics and hyperbolic ge-
ometry communities and led to what is now known as the Sullivan dictionary ; see,
for example, [30]. The Sullivan dictionary provides a framework to study the rela-
tionships between Kleinian groups and rational maps; see Table 1. In many cases
there are analogous results, even with similar proofs, albeit expressed in a different
language; see [12, Table 1] and also [41] and references therein.

Both Kleinian groups and rational maps generate important examples of dy-
namically invariant fractal sets: limit sets in the Kleinian case, and Julia sets in
the rational map case; see Figure 1. The Sullivan dictionary is very well suited to
understanding the connections between these two families of fractals, and the corre-
spondence is especially strong in the context of dimension theory: in both settings
there is a critical exponent which, for certain classes of Kleinian groups and rational
maps, describes all of the most commonly used notions of fractal dimension. For
Kleinian groups the critical exponent is the Poincaré exponent, denoted by δ, and
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Table 1. Some well-known “entries” in the Sullivan dictionary in
the setting of geometrically finite Kleinian groups and parabolic
rational maps. See Section 2 for definitions and notation. In Sec-
tion 3 we describe an expansion of this dictionary, including several
new entries as well as some striking differences (“nonentries”).

Kleinian groups Rational maps

Kleinian group Γ rational map T
Kleinian limit set L(Γ) Julia set J(T )
Poincaré exponent δ critical exponent h

Patterson–Sullivan measure μ h-conformal measure m
dimH L(Γ) = dimB L(Γ) = δ dimH J(T ) = dimB J(T ) = h

dimH μ = δ dimH m = h
finite set of inequivalent parabolic points finite set of parabolic points Ω

rank of parabolic point k(p) petal number of parabolic point p(ω)
dimension bound δ > kmax/2 dimension bound h > pmax/(1 + pmax)

for rational maps the critical exponent is the smallest zero of the topological pres-
sure, denoted by h. For both nonelementary geometrically finite Kleinian groups
and parabolic (or hyperbolic) rational maps, the critical exponent coincides with
the Hausdorff, packing, and box dimensions of the associated fractal as well as the
Hausdorff, packing, and entropy dimensions of the associated ergodic conformal
measure of maximal dimension.

There has been a recent increase in interest in the Assouad type dimensions,
and these dimensions (and associated dimension spectra) do not behave in such a
straightforward manner in the presence of parabolicity. In particular, the critical
exponent does not necessarily give the Assouad dimension of the associated fractals.
As we shall see, by slightly expanding the family of dimensions considered, a much
richer and more varied tapestry of results emerges. In this expository paper we
discuss recent work from [19, 21, 22] and show how this can be used to provide a
new perspective on the Sullivan dictionary.

Figure 1. Left: an example of a Kleinian limit set. Here d = 2
and the boundary S2 has been identified with R2∪{∞}. Parabolic
points with rank 1 are easily identified. Right: an example of a
parabolic Julia set. Parabolic points with petal number 4 are easily
identified. See Section 2 for definitions and notation.
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2. Definitions and background

2.1. Dimensions of sets and measures and dimension interpolation. We
recall and motivate the key notions from fractal geometry and dimension theory
which we use. For a more in-depth treatment see the books [6, 18] for background
on Hausdorff and box dimensions, and [20] for Assouad type dimensions. We work
with fractals in two distinct settings. Kleinian limit sets will be compact subsets of
the d-dimensional sphere Sd which we view as a subset of Rd+1. On the other hand,
Julia sets will be compact subsets of the Riemann sphere Ĉ = C ∪ {∞}. However,
by a standard reduction we will assume that the Julia sets are compact subsets of
the complex plane C which we identify with R2; see Section 2.3. Therefore, it is
convenient to recall dimension theory for nonempty compact subsets of Euclidean
space only.

Throughout this section, let F ⊆ Rd be nonempty and compact. Perhaps the
most commonly used notion of fractal dimension is the Hausdorff dimension, but it
will be especially important for us to consider several notions of dimension together.
We write dimH F , dimB F , dimB F and dimB F for the Hausdorff, box, upper box,
and lower box dimensions of F , respectively, but we refer the reader to [6, 18] for
the precise definitions. We write

|F | = sup
x,y∈F

|x− y| ∈ [0,∞)

to denote the diameter of F . Given r > 0, we write Nr(F ) for the smallest number
of balls of radius r required to cover F . In the last ten years there has been an
increase in interest in the Assouad dimension in the context of fractal geometry.
This notion has been of central importance in other fields for much longer, however,
and stems from work in embedding theory and conformal geometry; see [27, 33].
The Assouad dimension of F is defined by

dimA F = inf

{
s � 0 | ∃C > 0 : ∀ 0 < r < R : ∀x ∈ F :

Nr(B(x,R) ∩ F ) � C

(
R

r

)s
}
.

The lower dimension is the natural dual to the Assouad dimension, and it is par-
ticularly useful to consider these notions together. The lower dimension of F is
defined by

dimL F = sup

{
s � 0 | ∃C > 0 : ∀ 0 < r < R � |F | : ∀x ∈ F :

Nr(B(x,R) ∩ F ) � C

(
R

r

)s
}

provided |F | > 0, and otherwise it is 0. Importantly (and using that F is compact),

dimL F � dimH F � dimB F � dimA F.

The Assouad and lower spectra were introduced much more recently in [23] and
provide an interpolation between the box dimension and the Assouad and lower
dimensions, respectively. The motivation for the introduction of these dimension
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spectra was to gain a more nuanced understanding of fractal sets than that pro-
vided by the dimensions considered in isolation. This is already proving a fruitful
programme with applications emerging in a variety of settings including to prob-
lems in harmonic analysis; see work of Anderson, Hughes, Roos, and Seeger [2]
and [34]. These spectra provide a parametrised family of dimensions by fixing the
relationship between the two scales r < R used to define the Assouad and lower
dimensions. Studying the dependence on the parameter within this family thus
yields finer and more nuanced information about the local structure of the set. For
example, one may understand which scales “witness” the behaviour described by
the Assouad and lower dimensions. For θ ∈ (0, 1), the Assouad spectrum of F is
given by

dimθ
A F = inf

{
s � 0 | ∃C > 0 : ∀ 0 < r < 1 : ∀x ∈ F :

Nr(B(x, rθ) ∩ F ) � C

(
rθ

r

)s
}
.

The lower spectrum of F , denoted by dimL F , is defined similarly by using the
parameter to fix the relationship R = rθ in the definition of the lower dimension.
It was shown in [23] that

dimB F � dimθ
A F � min

{
dimA F,

dimB F

1− θ

}
,(2.1)

dimL F � dimθ
L F � dimB F.

In particular, dimθ
A F → dimB F as θ → 0. The limit of dimθ

A F exists and coincides
with the quasi-Assouad dimension. The quasi-Assouad and Assouad dimensions do
not necessarily coincide, but in many cases of interest they do. It is not necessarily
true that dimθ

L F → dimB F as θ → 0, but it was proved in [20, Theorem 6.3.1] that
this does hold provided F satisfies a strong form of dynamical invariance. Whilst
the fractals we study are not quite covered by this result, we shall see that this
interpolation holds nevertheless.

There is an analogous dimension theory of measures, and the interplay between
the dimension theory of fractal sets and the measures they support is fundamental
to fractal geometry, especially in the dimension theory of dynamical systems. For
example, a problem of interest is to identify dynamical measures witnessing the
dimension of the support, e.g., invariant measures of full Hausdorff dimension. Let
ν be a locally finite Borel measure on Rd, i.e., ν(B(x, r)) < ∞ for all x ∈ Rd and
r > 0. We write supp(ν) = {x ∈ Rd | ν(B(x, r)) > 0 for all r > 0} for the support
of ν. We say that ν is fully supported on F if supp(ν) = F . We write dimH ν for
the (lower) Hausdorff dimension of ν and note that dimH ν � dimH supp(ν) and
(using that F is compact)

dimH F = sup{dimH ν | supp(ν) ⊆ F};
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see [29]. The Assouad dimension of ν with supp(ν) = F is defined by

dimA ν = inf

{
s � 0 | ∃C > 0 : ∀ 0 < r < R < |F | : ∀x ∈ F :

ν(B(x,R))

ν(B(x, r))
� C

(
R

r

)s
}

and, provided | supp(ν)| = |F | > 0, the lower dimension of ν is given by

dimL ν = sup

{
s � 0 | ∃C > 0 : ∀ 0 < r < R < |F | : ∀x ∈ F :

ν(B(x,R))

ν(B(x, r))
� C

(
R

r

)s
}
,

and otherwise it is 0. By convention we assume that inf ∅ = ∞. The Assouad and
lower dimensions of measures were introduced in [25], where they were referred to
as the upper and lower regularity dimensions, respectively. It is well known (see
[20, Lemma 4.1.2]) that, for a Borel probability measure ν supported on F ,

dimL ν � dimL F � dimA F � dimA ν

and, furthermore, we have the stronger fact that

dimA F = inf {dimA ν | ν is a Borel probability measure fully supported on F}

and

dimL F = sup {dimL ν | ν is a Borel probability measure fully supported on F} .

For θ ∈ (0, 1), the Assouad spectrum of ν, denoted by dimθ
A ν, and the lower

spectrum of ν, denoted by dimθ
L ν, are defined similarly to the Assouad and lower

dimensions but, again, using the parameter θ ∈ (0, 1) to fix the relationship R = rθ.
It is known (see [17] for example) that

dimL ν � dimθ
L ν � dimθ

A ν � dimA ν

and, if ν is fully supported on F , then

dimθ
L ν � dimθ

L F � dimθ
A F � dimθ

A ν.

There are also upper and lower box dimensions for measures, recently introduced
in [17]. We omit the formal definitions, referring the reader to [17, 20]. Following
[17], it is useful to note that

dimB F = inf
{
dimB ν | ν is a finite Borel measure fully supported on F

}
with an analogous result for the lower box dimension. Furthermore, it was shown
that the upper box dimension of ν can be related to the Assouad spectrum of ν in
a similar manner to sets, that is, for θ ∈ (0, 1),

dimB ν � dimθ
A ν � min

{
dimA ν,

dimB ν

1− θ

}
,

and so dimB ν = limθ→0 dim
θ
A ν.
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2.2. Kleinian groups and limit sets. For a more thorough study of hyperbolic
geometry and Kleinian groups, we refer the reader to [4, 28]. For d � 1, we model
(d+ 1)-dimensional hyperbolic space using the Poincaré ball model

Dd+1 = {z ∈ Rd+1 | |z| < 1}

equipped with the hyperbolic metric dH, and we call the boundary

Sd = {z ∈ Rd+1 | |z| = 1}

the boundary at infinity of the space (Dd+1, dH). We denote by Con(d) the group
of orientation-preserving isometries of (Dd+1, dH). We say that a group is Kleinian
if it is a discrete subgroup of Con(d) (such groups are often referred to as Fuchsian
in the case when d = 1), and given a Kleinian group Γ, the limit set of Γ is defined

to be L(Γ) = Γ(0) \ Γ(0) where 0 = (0, . . . , 0) ∈ Dd+1. It is well known that L(Γ)
is a compact Γ-invariant subset of Sd; see Figure 1. If L(Γ) consists of zero, one
or two points, it is said to be elementary, and otherwise it is nonelementary. In
the nonelementary case, L(Γ) is a perfect set, and often has a complicated fractal
structure. We consider geometrically finite Kleinian groups. Roughly speaking,
this means that there is a fundamental domain with finitely many sides, but we
refer the reader to [8] for a precise definition. We define the Poincaré exponent of
a Kleinian group Γ to be

δ = inf

⎧⎨
⎩s > 0 |

∑
g∈Γ

e−sdH(0,g(0)) < ∞

⎫⎬
⎭ .

Due to work of Patterson and Sullivan [32,38], it is known that for a nonelementary
geometrically finite Kleinian group Γ, the Hausdorff dimension of the limit set is
equal to δ. Further, it was later proved by Stratmann and Urbański [35, Theorem 3]
(see also Bishop and Jones [5, Corollary 1.5]) that the box and packing dimensions
of the limit set are also equal to δ. Even in the nonelementary geometrically infinite
case, δ is still an important quantity. In fact it always gives the Hausdorff dimension
of the radial limit set, and therefore always provides a lower bound for the Hausdorff
dimension of the limit set; see [5].

From now on we only discuss the nonelementary geometrically finite case. We
write μ to denote the Patterson–Sullivan measure, which is a measure first con-
structed by Patterson in [32]. Strictly speaking, there is a family of (mutually
equivalent) Patterson–Sullivan measures. However, we may fix one for simplicity
(and hence talk about the Patterson–Sullivan measure since the dimension theory
is the same for each measure). The geometry of Γ, L(Γ), and μ are heavily re-
lated. For example, μ is a conformal Γ-ergodic Borel probability measure which
is fully supported on L(Γ). Moreover, μ is exact dimensional (with dimension δ)
and therefore has Hausdorff, packing, and entropy dimension equal to δ. Exact
dimensionality is a consequence of the global measure formula together with finer
analysis of the parabolic fluctuations; see [37]. The limit set is Γ-invariant in the
strong sense that g(L(Γ)) = L(Γ) for all g ∈ Γ. However, μ is only quasi-invariant
and μ ◦ g is related to μ by a geometric transition rule; see [7, Chapter 14] for a
more detailed exposition of this.

If Γ contains no parabolic elements, then

dimA L(Γ) = dimL L(Γ) = dimA μ = dimL μ = dimB μ = δ;
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see [19]. Therefore, we assume from now on that Γ contains at least one parabolic
element.

Let P ⊆ L(Γ) denote the countable set of parabolic fixed points. For p ∈ P ,
write k(p) to denote the maximal rank of a free abelian subgroup of the stabiliser
of p (in Γ) and call this the rank of p. We write

kmin = min{k(p) | p ∈ P},
kmax = max{k(p) | p ∈ P}.

It was proven in [38] that δ > kmax/2.

2.3. Rational maps and Julia sets. For a more detailed discussion of the dy-
namics of rational maps, see [11, 31]. Let T : Ĉ → Ĉ denote a rational map of
degree at least 2, and write J(T ) to denote the Julia set of T , which is equal to the
closure of the repelling periodic points of T ; see Figure 1. The Julia set is closed
and T -invariant. We may assume that J(T ) is a compact subset of C by a standard
reduction. This is achieved by conjugating a point in the complement of the Julia
set to the point at infinity and noting that the case when the Julia set is the whole

of Ĉ is trivial.
A periodic point ξ ∈ C with period p is said to be rationally indifferent (or

parabolic) if (T p)
′
(ξ) = e2πiq for some q ∈ Q. We say that T and J(T ) are parabolic

if J(T ) contains no critical points of T , but contains at least one parabolic point.
Define h to be the smallest zero of the topological pressure t �→ P (T,−t log |T ′|).
In the parabolic setting, it was proven in [15] that dimH J(T ) = h. Furthermore, in
[16] it was shown that the box and packing dimensions of J(T ) are equal to h. Due
to work of Aaronson, Denker and Urbański [1,14,15] it is known that, for parabolic
T , there exists a unique atomless h-conformal probability measure m supported on
J(T ). It also again follows from the global measure formula together with finer
analysis of the parabolic fluctuations (for example [36, Lemma 5.3 or Proposition
5.4]) that m is exact dimensional (with dimension h) and therefore the Hausdorff,
packing, and entropy dimensions of m are also given by h.

If T contains no critical points nor parabolic points, then it is hyperbolic and,
analogous to case of geometrically finite Kleinian groups with no parabolic elements,

dimA J(T ) = dimL J(T ) = dimA m = dimL m = dimB m = h;

see [21]. Therefore, we assume from now on that T is parabolic.
Write Ω to denote the finite set of parabolic points of T , and let

Ω0 = {ξ ∈ Ω | T (ξ) = ξ, T ′(ξ) = 1}.
As J(Tn) = J(T ) for every n ∈ N, we may assume without loss of generality that
Ω = Ω0. Following [16,36], for each ω ∈ Ω, we can find a ball Uω = B(ω, rω) with
sufficiently small radius such that on B(ω, rω) there exists a unique holomorphic
inverse branch T−1

ω of T such that T−1
ω (ω) = ω. For a parabolic point ω ∈ Ω, the

Taylor series of T about ω is of the form

z + a(z − ω)p(ω)+1 + · · · .
We call p(ω) the petal number of ω, and we write

pmin = min{p(ω) | ω ∈ Ω},
pmax = max{p(ω) | ω ∈ Ω}.

It was proven in [1] that h > pmax/(1 + pmax).
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3. A new perspective on the Sullivan dictionary

3.1. Recent results on Assouad type dimensions and spectra. In this sec-
tion we state various recent results concerning geometrically finite Kleinian groups
with parabolic elements and parabolic Julia sets. These results provide a new per-
spective on the Sullivan dictionary in the context of dimension theory. We will
examine this new perspective more thoroughly in Sections 3.2 and 3.3. The As-
souad and lower dimensions of limit sets of geometrically finite Kleinian groups and
associated Patterson–Sullivan measures were found in [19]. The analogous results
for parabolic Julia sets were proved in [21]. The results concerning Assouad type
spectra were proved in [21, 22]. Throughout we fix θ ∈ (0, 1).

3.1.1. Patterson–Sullivan measure μ.

dimAμ = max{2δ − kmin, kmax}
dimBμ = max{2δ − kmin, δ}
dimLμ = min{2δ − kmax, kmin}

dimθ
Aμ =

⎧⎪⎪⎨
⎪⎪⎩

δ +min
{
1, θ

1−θ

}
(kmax − δ) δ < kmin

2δ − kmin +min
{
1, θ

1−θ

}
(kmin + kmax − 2δ) kmin � δ < (kmin + kmax)/2

2δ − kmin δ � (kmin + kmax)/2

dimθ
Lμ =

⎧⎪⎪⎨
⎪⎪⎩

2δ − kmax δ � (kmin + kmax)/2

2δ − kmax −min
{
1, θ

1−θ

}
(2δ − kmin − kmax) (kmin + kmax)/2 < δ � kmax

δ −min
{
1, θ

1−θ

}
(δ − kmin) δ > kmax

3.1.2. Kleinian limit sets L(Γ).

dimAL(Γ) = max{δ, kmax}
dimLL(Γ) = min{δ, kmin}

dimθ
AL(Γ) =

{
δ +min

{
1, θ

1−θ

}
(kmax − δ) δ < kmax

δ δ � kmax

dimθ
LL(Γ) =

{
δ δ � kmin

δ −min
{
1, θ

1−θ

}
(δ − kmin) δ > kmin

3.1.3. h-conformal measures m.

dimAm = max{1, h+ (h− 1)pmax}
dimBm = max{h, h+ (h− 1)pmax}
dimLm = min{1, h+ (h− 1)pmax}

dimθ
Am =

{
h+min

{
1, θ pmax

1−θ

}
(1− h) h < 1

h+ (h− 1)pmax h � 1

dimθ
Lm =

{
h+ (h− 1)pmax h < 1

h+min
{
1, θ pmax

1−θ

}
(1− h) h � 1
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3.1.4. Julia sets J(T ).

dimAJ(T ) = max{1, h}
dimLJ(T ) = min{1, h}

dimθ
AJ(T ) =

{
h+min

{
1, θ pmax

1−θ

}
(1− h) h < 1

h h � 1

dimθ
LJ(T ) =

{
h h < 1

h+min
{
1, θ pmax

1−θ

}
(1− h) h � 1

3.2. New entries in the Sullivan dictionary. Given the array of results in
Section 3.1, it is clear that there are some parallels between the Kleinian and Julia
settings akin to the Sullivan dictionary. Here we take a closer look at some of these
parallels.

(1) Interpolation between dimensions. In both settings, the Assouad spectrum
always interpolates between the upper box and Assouad dimensions of the respec-
tive sets and measures regardless of what form it takes, that is, limθ→1 dim

θ
A F =

dimA F , where F can be replaced by μ, L(Γ), m, or J(T ). Recall that this interpo-
lation does not hold in general. Similar interpolation holds as θ → 1 for the lower
dimensions and spectra.

(2) Failure to witness the box dimension of measures. For the measures μ and
m, the lower spectrum does not generally tend to the box dimension as θ → 0. In
fact, if the lower spectrum does tend to the box dimension as θ → 0, then it is
constant and δ = kmin = kmax (in the Kleinian setting) and h = 1 (in the Julia
setting).

(3) General form of the spectra. For F a given set or measure, consider

ρ = inf{θ ∈ (0, 1) | dimθ
A F = dimA F}.

This quantity will be referred to as the phase transition parameter. Following some
algebraic manipulation, we find that, in the cases where the Assouad spectrum is
not constantly equal to the Assouad dimension,

(3.1) dimθ
A F = min

{
dimB F +

(1− ρ)θ

(1− θ)ρ
(dimA F − dimB F ), dimA F

}
,

where F can be replaced by μ, L(Γ), m, or J(T ). This formula, and the fact that
the Assouad spectrum can be expressed purely in terms of the phase transition ρ
together with the box and Assouad dimensions has appeared in a variety of settings;
see [20, Section 17.7] and the discussion therein. For example, this formula also
holds for self-affine Bedford–McMullen carpets. The phase transition ρ often has a
natural geometric significance for the objects involved and opens the door to a new
“dictionary” extending beyond the setting discussed here. It is worth noting that
(3.1) does not hold generally, even failing for simple examples, such as the elliptical
spirals considered in [10].

(4) The phase transition and the Hausdorff dimension bound. There is a cor-
respondence between the phase transition ρ and the general lower bounds for the
Hausdorff dimension. Applying (2.1) shows that, for any nonempty bounded set F ,
ρ � 1−dimB F/ dimA F . When the spectra are nonconstant, in the Kleinian setting
we always have ρ = 1/2, and in the Julia setting we always have ρ = 1/(1 + pmax).
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Combining this with the general Hausdorff dimension bounds δ > kmax/2 = kmaxρ
and h > pmax/(1 + pmax) = pmaxρ in both settings yields ρ > 1− dimB F/ dimA F ,
showing that the upper bound from (2.1) is never achieved in either setting (but
is sharp in the sense that examples can be constructed with Assouad spectrum
arbitrarily close to the upper bound from (2.1)).

(5) The realisation problem. Given the interplay between dimensions of sets and
dimensions of measures seen in Section 2.1, one may ask if it is possible to construct
an (invariant or quasi-invariant) measure ν which realises the dimensions of an
(invariant) set F , that is, dim ν = dimF . One can ask this about a particular choice
of dimension dim or if a single measure can be constructed to solve the problem
for several notions of dimension simultaneously. We note that the measures μ and
m always realise the Hausdorff dimensions of L(Γ) and J(T ), respectively. As for
the Assouad and lower dimensions, μ realises the Assouad dimension of L(Γ) when
δ � (kmin + kmax)/2 and realises the lower dimension when δ � (kmin + kmax)/2.
Similarly, for m to realise the Assouad dimension of J(T ), we require h � 1, and for
m to realise the lower dimension of J(T ), we require h � 1. A similar relationship
holds for the box dimension too: in the Kleinian setting we require δ � kmin and
in the Julia setting we require h � 1.

(6) A special case. Finally, we observe that in the (very) special case kmin =
kmax = pmax = 1, the formulae for the Assouad type dimensions and spectra are
identical in the Kleinian and Julia settings. Does this suggest that this special case
is one where we can expect the Sullivan dictionary to yield a particularly strong
correspondence in other settings?

3.3. New nonentries in the Sullivan dictionary. Here we discuss some notable
differences between the Kleinian and Julia settings. These are especially interesting
to us since the Sullivan dictionary previously provided a very strong parallel in the
context of dimension theory.

(1) Assouad dimension. Our results show that Julia sets of parabolic rational
maps can never have full Assouad dimension, that is, we always have dimA J(T ) <
2. This uses our result together with [1, Theorem 8.8] which proves that h <
2. This is in stark contrast to the situation for Kleinian limit sets where it is
perfectly possible for the Assouad dimension to be full, that is, Γ ∈ Con(d) with
dimA L(Γ) = d = dim Sd for any integer d � 1. This can even happen when the
limit set is nowhere dense (that is, when δ < d; see [40, Theorem D]). We note
that dimA J(T ) < 2 also follows from [24, Theorem 1.4], where it was proved that
parabolic Julia sets are porous, together with [26, Theorem 5.2], which shows that
porous sets in Rd must have Assouad dimension strictly less than d. Our results
can thus be viewed as a refinement of the observation that parabolic Julia sets are
porous.

We note that Julia sets of general rational maps need not be porous, and may
even have positive area (even withtin the quadratic family); see [3, 9]. We proved
in [21] that Julia sets with Cremer fixed points have Assouad dimension 2 (and are
therefore not porous).

(2) Lower dimension. Our results, together with the standard bound
h > pmax/(1 + pmax), show that dimL J(T ) = min{1, h} > pmax/(1 + pmax),
that is, the lower dimension respects the general lower bound satisfied by the
Hausdorff dimension. Again, this is in stark contrast to the situation for Kleinian
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Table 2. Summarising the possible relationships between the
lower, Hausdorff, and Assouad dimensions of geometrically finite
Fuchsian limit sets, geometrically finite Kleinian limits sets, and
parabolic Julia sets with the obvious labelling. The symbol �
means that the configuration is possible, and × means the config-
uration is impossible. In other situations it is interesting to add
box dimension into this discussion, but here this always coincides
with Hausdorff dimension and so we omit it.

Configuration Fuchsian Kleinian Julia
L = H = A � � �
L = H < A � � �
L < H = A × � �
L < H < A × � ×

limit sets where the standard bound for Hausdorff dimension is δ > kmax/2 but
dimL L(Γ) = min{kmin, δ} � kmax/2 is possible, even in the d = 2 case.

(3) Relationships between dimensions. An interesting aspect of dimension theory
is to consider what configurations are possible between the different notions of
dimension in a particular setting. We refer the reader to [20, Section 17.5] for a
more general discussion of this. Our results show that

dimL J(T ) < dimH J(T ) < dimA J(T )

is impossible in the Julia setting but the analogous configuration is possible in the
Kleinian setting, even in the d = 2 case; see Table 2.

(4) Form of the spectra. Turning our attention to measures, the Assouad and
lower spectra of μ in the Kleinian setting can take three different forms, in compar-
ison to the Julia setting where we only have two possibilities for m. Furthermore,
in the Kleinian setting, both kmin and kmax appear in the formulae for the Assouad
and lower spectra, sometimes simultaneously, but in the Julia setting only pmax

appears.
(5) The realisation problem for dimension spectra. One can also extend the

realisation problem to the Assouad and lower spectra: when does an (invariant)
set support an (invariant or quasi-invariant) measure with equal Assouad or lower

spectra? In the Kleinian setting, we have dimθ
A μ = dimθ

A L(Γ) when δ � kmin and

dimθ
L μ = dimθ

L L(Γ) when δ � kmax. This can leave a gap when kmin < δ < kmax

where neither of the spectra are realised by the Patterson–Sullivan measure. This
is in contrast to the Julia setting, where dimθ

A m = dimθ
A J(T ) when h � 1 and

dimθ
L m = dimθ

L J(T ) when h � 1, and so at least one of the spectra is always
realised by m.

(6) Dimension spectra as a fingerprint. Suppose it is not true that kmin =
kmax = pmax = 1. Then simply by looking at plots of the Assouad and lower
spectra, one can determine whether the set in question is a Kleinian limit set or a
Julia set. Whenever the Assouad spectrum is nonconstant in either the Kleinian or
Julia setting, there is a unique phase transition at

ρ = inf{θ ∈ (0, 1) | dimθ
A F = dimA F}.
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However, ρ = 1/2 in the Kleinian setting and ρ = 1/(1+ pmax) in the Julia setting.
Note that in the Kleinian setting the phase transition is constant across all Kleinian
limit sets, whereas in the Julia setting the phase transition depends on the rational
map T . This allows one to distinguish between the Assouad spectrum of a Kleinian
limit set and a Julia set just by looking at the phase transition, provided pmax = 1.
However, even if pmax = 1, the spectra will still distinguish between the two settings
provided we do not also have kmin = kmax = 1.

3.4. Examples. We plot the Assouad and lower spectra for some examples. In the
Kleinian setting, we assume that d = 2 throughout for a more direct comparison
with the Julia setting, and we plot the following cases: δ < kmin, δ > kmax, and
kmin < δ < kmax. In the Julia setting, we plot examples with h < 1 and h > 1.
Figures 2, 3, and 4 are plots of the Assouad and lower spectra as functions of
θ ∈ (0, 1). The spectra of μ and m are plotted with dashed lines, and the spectra
of L(Γ) and J(T ) by solid lines. The Assouad spectra are plotted in black and the
lower spectra are plotted in grey.
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Figure 2. Left: a Kleinian limit set with δ = 0.6 and kmin =
kmax = 1. Right: a Julia set with h = 0.7 and pmax = 2.
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Figure 3. Left: a Kleinian limit set with δ = 1.9 and kmin =
kmax = 1. Right: a Julia set with h = 1.4 and pmax = 4.
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Figure 4. A Kleinian limit set with δ = 1.7, kmin = 1 and kmax =
2. In the Julia setting we always have either dimθ

A m = dimθ
A J(T )

or dimθ
L m = dimθ

L J(T ), and so plots of this form are impossible
in the Julia setting.

4. Future directions

This paper has focused on discussing geometrically finite Kleinian groups and
parabolic (or hyperbolic) rational maps. We now have a fairly complete dimensional
description of the Sullivan dictionary in these settings, at least from the point of
view of the notions of dimension we discuss here. It would be interesting to move
beyond these two settings, and many open questions remain.

In the Kleinian setting some geometrically infinite examples were discussed in [19]
which demonstrate that the situation can be fairly wild. That said, one may con-
sider certain classes, such as geometrically infinite but finitely generated Kleinian
groups. Here it is not known if the box and Hausdorff dimensions of the limit set
necessarily agree. One can ask how the Assouad dimension (and spectra) fit into
this story. For example, is it true that, for a finitely generated Kleinian group,
the Assouad dimension (and Assouad spectrum) can be characterised by parabolic
points and a critical exponent? One could also move to nonproper settings and
groups acting on infinite dimensional spaces; see [13].

In the rational maps setting even more questions arise. Most concretely, one can
try to derive formulae for the dimensions and dimension spectra we consider here
for rational maps whose Julia set contains critical points. One might expect most
of the theory to go through in the nonrecurrent case, that is, when the presence of
critical points is not so influential, but it is harder to predict what happens in the
presence of recurrent critical points. In [21] we proved that the Assouad dimension
of a Julia set with a Cremer fixed point is 2. It is a well-known (and very difficult)
open problem to determine if the Hausdorff dimension of such Julia sets is also 2.
An intermediate (and also open) question is to determine if the box dimension is
2. Since we are now equipped with a family of dimensions interpolating between
the box and Assouad dimensions, we are led to a (continuous) hierarchy of open
questions. For example, can it be shown that the Assouad spectrum approaches
2 as θ → 1, or perhaps equals 2 for some θ ∈ (0, 1)? Another promising direction
is to consider transcendental dynamics. Here the dimension theory is often quite
different from the rational maps case, and there appears to be very little known
about the Assouad type dimensions.



116 JONATHAN M. FRASER AND LIAM STUART

Acknowledgments

The authors thank an anonymous referee for several helpful comments.

About the authors

Jonathan Fraser is a Professor of Mathematics at the University of St Andrews
in Scotland. Liam Stuart completed his PhD in Mathematics in 2022, also at St
Andrews. Both authors are interested in fractal geometry, dimension theory, and
conformal dynamics. They hope this work helps motivate the relatively new area
of dimension interpolation in fractal geometry.

References

[1] Jon Aaronson, Manfred Denker, and Mariusz Urbański, Ergodic theory for Markov fibred
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[14] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational
maps with rationally indifferent periodic points, Forum Math., 3 (1991a), no. 6, 561–580.

[15] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a ratio-
nally indifferent periodic point, J. Lond. Math. Soc., 2 (1991b), no. 1, 107–118.
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