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A STROLL AROUND THE CRITICAL POTTS MODEL

MARTIN HAIRER

Abstract. Over the past decade or so, a broad research programme spear-
headed by H. Duminil-Copin and his collaborators has vastly increased our
understanding of a number of critical or near-critical statistical mechanics
models. Most prominently, these include the q-state Potts models and, essen-
tially equivalently, the FK cluster models. In this short review, we present a
small selection of recent results from this research area.
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1. Introduction

One of the simplest, yet extremely rich, models of statistical mechanics is the
Ising model, which has historically been introduced as a toy model for the behaviour
of ferromagnets. (This model was actually first invented by Wilhelm Lenz in 1920,
who then gave it to his student Ernst Ising to study.) The definition of the model
goes as follows. Given a finite connected graph G, identified here with its set of
vertices, we consider the configuration space Ω = {−1, 1}G and define on Ω an
energy functional E(σ) = − 1

2

∑
x∼y σxσy, where x ∼ y if and only if the vertices

x and y are connected by an edge in G. One should think here of the vertices
of G as indexing spatial locations (for example, of individual atoms in a metallic
solid) of the graph structure as indicating which locations are neighbours in space,
and of σx as denoting a spin variable associated to such a location. The energy is
then defined in such a way that states of low energy are those where many pairs of
neighbouring spins are aligned.

Given an inverse temperature β, one then defines a probability measure μβ on
Ω by setting μβ({σ}) = Z−1 exp(−βE(σ)), where Z is such that μβ(Ω) = 1. For
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definiteness, when we talk about “the Ising model on G at inverse temperature β”,
we mean the measure μβ as just described. The interpretation of the model in
terms of spins and atoms suggests that an interesting special case is that where G
is a large piece of a lattice, for example G = ΛN = {−N, . . . , N}d or G = Zd ∩NO
for some open set O ⊂ Rd with smooth boundary, with edges between nearest
neighbours. Writing μN

β for the Ising model on GN , it turns out that the limit

μβ = limN→∞ μN
β exists and can therefore be interpreted as the Ising model on Zd.

One very interesting qualitative feature of this model is that it exhibits a phase
transition in every dimension d ≥ 2: there exists a critical (dimension-dependent)
value βc which delineates two regimes in which the measure μβ behaves very dif-
ferently. At high temperature, namely for β < βc, the spontaneous magnetisation,
namely the random quantity M = N−d

∑
i∈ΛN

σi, converges to 0 in probability as
N → ∞. For β > βc on the other hand, it converges in probability to a limiting
random variable that can take exactly two possible values ±hβ �= 0 with equal
probabilities. The actual value of βc is only known in dimension 2 where it equals
βc = log

(
1 +

√
2
)
[Ons44]. (There is no phase transition at all in dimension 1

and the spontaneous magnetisation M always vanishes, so in some sense βc = +∞
there.)

The expression and just mentioned result for the spontaneous magnetisation M
has the flavour of a law of large numbers, so it is natural to ask whether there is an
associated central limit theorem describing the fluctuations of the magnetisation. In
other words, does the law of the quantity N−d/2

∑
i∈ΛN

(σi−M) converge to that of
a normal distribution? This is indeed the case when β �= βc, but the corresponding
variance diverges as β → βc. The behaviour at the critical temperature is highly
nontrivial and it is not even clear at first sight how such an expression should be
normalised. In other words, does there exist a value α such that the law of

N−α
∑
i∈ΛN

(σi −M)

admits a nondegenerate limit distribution as N → ∞ when β = βc? It was shown in
a recent series of works [CGN15,CGN16] that if one chooses α = 15/8 in dimension
d = 2, then this is indeed the case. Actually even more was shown there; namely,
one can consider the joint distribution of finitely many quantities of the form

(1.1) INφ (σ) = N−α
∑

x∈ΛN

φ(x/N)σx ,

for φ a smooth test function supported on [−1, 1]d, and these all converge. One way
of interpreting this is that there exists a random distribution ζ on the hypercube
such that the quantities INφ (σ) all converge jointly in law to the quantities ζ(φ).

This time however, unlike in the central limit theorem, the limiting distributions
are not Gaussian (the random variables ζ(φ) actually exhibit an even faster decaying
tail behaviour with logP(ζ(φ) > K) � −K16 rather than −K2) and no nice closed
form expression exists for them. However, there does exist a closed form expression
for their joint moments, which was first derived heuristically in the physics literature
in [BPZ84,Car84,BG93] and was recently made rigorous in [CHI15]. Note that the
exponent α appearing in (1.1) is closely related to the behaviour of Ecσuσv (where
Ec denotes the expectation under μβc

) since, assuming that Ecσuσv ≈ |u − v|−2δ,



A STROLL AROUND THE CRITICAL POTTS MODEL 57

one finds that

Ec

(
INφ (σ)

)2
= N−2α

∑
u,v

φ(u/N)φ(v/N)Ecσuσv

� N−2α
∑
u,v

|u− v|−2δ ≈ N2d−(2δ∧d)−2α ,

so that one expects the relation α = d − (δ ∧ d/2), which (correctly) leads to the
prediction δ = 1

8 . Interestingly, the limiting random distribution ζ exhibits a form
of covariance under the action of the conformal groupoid in the following sense.
Given any smooth simply connected domain D ⊂ R2, one can consider expressions
like (1.1), but this time with ΛN = ND ∩ Z2. It turns out that these do again
converge, this time to a random distribution ζD on the domain D. Given two such
domains D and D̄ and a bijective conformal map ψ : D → D̄, the pushforward η of
ζD̄ to D given by

(1.2) η(φ) = ζD̄(φ ◦ ψ−1)

is equal in law to the random distribution η̄ given by

(1.3) η̄(φ) = ζD(|ψ′|15/8φ) = ζD(|ψ′|αφ) ,
where α = 2 − δ is as above. This and a number of other properties of the Ising
model at criticality allows us to associate it to the conformal field theory with
central charge c = 1

2 .
The picture in dimensions greater than 2 is less clear. For d ≥ 5, it was shown in

[Aiz81,Aiz82,Frö82] that the correct scaling exponent to use in (1.1) at β = βc is
α = 1+ d

2 and that the limit is a Gaussian free field, namely the Gaussian random
distribution with correlation function given by the Green’s function of the Laplacian
(with Neumann boundary conditions on the square). In dimension d = 3, virtually
nothing is known rigorously about the critical Ising model, not even the value of
its scaling exponents, although much progress has been made at a nonrigorous
(but very well supported) level with the development of the conformal bootstrap
[ESPP+12, ESPP+14]. Regarding the case d = 4, it was somewhat unclear until
very recently whether the Ising model at criticality should be trivial (i.e., described
by Gaussian distributions) or not. This was eventually settled by Aizenman and
Duminil-Copin in the work [ADC21] where they show that any subsequential limit
for expressions of the form (1.1) as N → ∞ (and β → βc) must necessarily be
Gaussian.

1.1. A general picture. The general picture that has been emerging over the past
half century or so regarding the behaviour of many statistical mechanics systems
can be summarised as follows.

(1) Many of the simplest local equilibrium systems in dimension 2 or higher do
exhibit a phase transition, namely there exists a critical value βc at which
the qualitative large scale behaviour of the system changes abruptly. In
general, a system may depend on additional parameters in which case one
may see a more complicated phase diagram with several regions in param-
eter space where the global behaviour of the system displays qualitatively
different behaviour. In any case, the “high temperature / small β phase”
is expected to behave in such a way that what happens in well separated
regions of space is very close to independent.
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(2) In dimension 2, many of these systems appear to exhibit a form of conformal
invariance at criticality, even though no rotation symmetry is built a priori
into their description. When this happens, the link to two-dimensional con-
formal field theories (and the associated probabilistic objects like Schramm–
Loewner evolution (SLE) [Sch00], Quantum Loewner evolution (QLE)
[MS16], etc.) provides a hugely powerful machinery to predict—and in a
number of cases also rigorously prove—their behaviour. In the case of the
Potts model (see Section 2 for its definition), these links are on a strong
rigorous footing for q ∈ {0, 2}, but much needs to be done for other values
of q.

(3) The universe of local statistical mechanics models can be subdivided into
broad classes of models that exhibit a shared large-scale behaviour at crit-
icality. These are called universality classes and, in the two-dimensional
equilibrium case, they are expected to come in families parametrised by a
real parameter, the central charge. (For certain values of the central charge,
one expects to have several subclasses, but we will not discuss this kind of
subtlety here.) In particular, the large-scale behaviour of such models is
expected to be very stable under changes in the details of their microscopic
description, such as the shape of the grid on which they are defined, the
range of their interactions, etc.

(4) Although one still expects conformal invariance at criticality in higher di-
mensions, this is a much smaller symmetry there and therefore appears
to provide somewhat less insight.1 One also expects the situation there
to be more rigid than in two dimensions, with fewer universality classes.
(Possibly only a discrete family.)

(5) Models that have obvious variants in every dimension typically have a crit-
ical dimension above which their behaviour at criticality is trivial in the
sense that it exhibits Gaussian behaviour. (Typically, their correlation
function is given by the Green’s function of the Laplacian when one con-
siders models with a clear underlying spatial structure.) In the case of the
Ising universality class, this critical dimension is 4, while in the case of
Bernoulli percolation it is 6.

One important branch of modern probability theory aims to put this general
picture onto rigorous mathematical footing. The remainder of this article is devoted
to a short overview of some of the recent contributions to this vast programme,
mainly focusing around the example of the critical Potts model where much recent
progress was made by Hugo Duminil-Copin and his collaborators.

2. The Potts and random cluster models

The Potts model is a natural generalisation of the Ising model: this time the
configuration space is given by Ω = {1, . . . , q}G, and the corresponding energy
functional is given by Eq(σ) = −

∑
x∼y 1{σx = σy}. This is often visualised by

interpreting the q values as “colours”, so that the effect of the energy functional is
to favour configurations where neighbouring vertices tend to have the same colour.
We denote by

Pβ,q(σ) ∝ exp
(
−βEq(σ)

)
,

1See however the recent breakthrough made in the approximation of the critical exponents of
the 3d Ising model using the conformal bootstrap [ESPP+12,ESPP+14] already mentioned above.
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the corresponding Gibbs measure. Note that the case q = 2 yields the Ising model,
modulo a recentering of the energy (which doesn’t affect the measures μβ = Pβ,2

since they are normalised to be probability measures). For q �= 2, the Potts model
does not exhibit the kind of exact solvability that the Ising model does in two
dimensions (as discovered by Onsager [Ons44] in his famous computation of its
partition function), so that it is one of the simplest possible models of statistical
mechanics that isn’t known to be exactly solvable.

One important feature of the Potts model is that it is very closely related to
a different model, the random cluster or FK model, introduced by Fortuin and
Kasteleyn [FK72], which however makes sense for all q > 0, not just integer values.
This model is usually interpreted as a percolation model, i.e., its state space is
given by Ω̄ = {0, 1}E , where E denotes the set of edges of the graph G and, given a
configuration ω ∈ Ω̄, we say that the edge e is open if ωe = 1 and closed otherwise.
Given two fixed parameters p ∈ (0, 1) and q > 0, the probability of a configuration
ω is then proportional to

Qp,q(ω) ∝ p|ω|(1− p)|1−ω|q|Kω| ,

where |ω| =
∑

e∈E ωe and Kω denotes the set of connected components (also called
clusters in this context) of the subgraph Gω of G given by replacing the edge set
E with the set Eω = {e : ωe = 1} of open edges. (Here an isolated vertex counts
as a connected component.)

It turns out (see for example [Gri06, Thm. 1.13]) that given any finite graph G
and provided that β and p are related by the identity

(2.1) p = 1− e−β

(and that q is an integer), one can find a probability measure P on Ω× Ω̄ with the
following properties.

• The marginal of P on Ω coincides with the Potts model, namely P(A×Ω̄) =
Pβ,q(A).

• The marginal of P on Ω̄ coincides with the random cluster model, namely
P(Ω×A) = Qp,q(A).

• Under P, almost every configuration (σ, ω) is such that for every open edge
xy (i.e., such that ωxy = 1), one has σx = σy.

• Conditional on a configuration σ, the law of ω under P is obtained by
setting the values {ωxy : σx = σy} to be i.i.d. Bernoulli random variables
with parameter p.

• Conditional on a configuration ω, the law of σ under P is obtained by
assigning to every cluster A ∈ Kω independently a colour σA ∈ {1, . . . , q}
and then setting σx = σA for all x ∈ A.

The advantage of the random cluster model is that it exhibits a nice duality in
the case when G is a connected planar graph (for example a chunk of the two-
dimensional lattice). In that case, one can define a dual graph (G∗, E∗) whose
vertex set G∗ consists of the faces of the original graph G and such that there is a
bijection between E and E∗ mapping any edge e ∈ E to the edge e∗ connecting the
two faces adjacent to e. (This may generate self-loops since G is allowed to have
vertices of degree 1.)

Every configuration ω on E then determines a dual configuration ω∗ on E∗ by
setting ω∗

e∗ = 1 − ωe, where e and e∗ are related as just described. See Figure 1
for an example of a configuration ω on a chunk of the square lattice, as well as the
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Figure 1. On the left, we draw a configuration ω for the random
cluster model with N = 11, with one of the clusters highlighted in
red. On the right, the same configuration is drawn together with its
dual configuration in light blue. The face of the dual configuration
corresponding to the cluster is shaded in light red.

corresponding dual configuration. Write Q∗
p,q for the pushforward of the measure

Qp,q under the map ω �→ ω∗. One then has the following result.

Proposition 2.1. The measure Q∗
p,q coincides with the random cluster model on

G∗ with parameters (p∗, q), where p∗ is given by

p∗ =
q − pq

p+ q − pq
.

Proof. Recall that, given any configuration ω, Gω is the (planar) subgraph of G
obtained by only retaining the open edges Eω = {e : ωe = 1}. The proof is then
based on two remarks. First, writing Fω for the set of faces of Gω (with the usual
convention that there is an infinite outer face) and Kω for the set of its connected
components, we note that one has the identity

|G|+ |Fω| = 1 + |Eω|+ |Kω| .

(This variant of the Euler characteristic formula is true for any planar graph and
can easily be shown by induction over the number of vertices and edges. The reason
why we have G appearing there is to emphasise that the vertex set of the graph
Gω is independent of the configuration ω, which will be important in what follows.)
The second remark relates the graph Gω to the subgraph G∗

ω∗ of G∗ generated by
the configuration dual to ω.2 One can see that connected components of Gω are
then in one-to-one correspondence with faces of G∗

ω∗ ; see Figure 1 for an illustration
of this fact. In other words, one has the identity |Kω| = |F ∗

ω∗ |.

2Note that G∗
ω∗ is very different from the dual graph of Gω .
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Using this correspondence and the fact that |Eω| + |E∗
ω∗ | = |E| by definition of

the dual configuration, it then follows that

Q∗
p,q(ω

∗) ∝ p|ω|(1− p)|1−ω|qk(ω) ∝
(
p/(1− p)

)|Eω |
q|Kω|

=
(
p/(1− p)

)|E|−|E∗
ω∗ |

q|F
∗
ω∗ | ∝

(
(1− p)/p

)|E∗
ω∗ |

q1+|K∗
ω∗ |+|E∗

ω∗ |−|G∗|

∝
(
q(1− p)/p

)|E∗
ω∗ |

q|K
∗
ω∗ | =

(
p∗/(1− p∗)

)|E∗
ω∗ |

q|K
∗
ω∗ | ∝ Qp∗,q ,

which is precisely the desired claim. �
Since the square lattice is self-dual, this leads to the natural conjecture that the

critical value of p for the random cluster model on Z2 is given by the (unique) value
pc ∈ (0, 1) such that p∗c = pc, namely

p2c(q − 1)− 2pcq + q = 0 ⇒ pc =
q −√

q

q − 1
= 1− 1

1 +
√
q
.

Thanks to (2.1) and the close link between the random cluster model and the Potts
model, this motivates the following recent result [BDC12].

Theorem 2.2. The critical inverse temperature for the q-colour Potts model is
given by βc = log(1 +

√
q).

Of course the analogous result also holds for the random cluster model. In the
remainder of this article, we describe several recent results for the random cluster
and Potts models at criticality. Our main focus is on the two-dimensional case, but
we will see that one important result is the continuity of the phase transition in
dimension 3.

3. (Dis)continuity of phase transitions

One very natural question in statistical mechanics is whether one can take the
limit N → ∞ for the finite volume Gibbs measures. At this stage, we note that
there are actually several inequivalent natural ways in which one can define the
Ising or Potts model in a region of size N of Zd. One possibility is to simply
consider ΛN = {−N, . . . , N}d as a subgraph of the lattice Zd, as we have done
so far. However, one could also extend configurations σ ∈ {1, . . . , q}ΛN to all of

{1, . . . , q}Zd

by fixing a reference configuration σ̄ ∈ {1, . . . , q}Zd

and postulating
that σx = σ̄x for x �∈ ΛN . (A natural choice is to take σ̄ constant, and we will
mainly consider such a situation here.) Finally, one could identify −N with N in
ΛN and consider the Potts model on larger and larger discrete tori. In this way, we
have different choices of boundary conditions yielding different definitions for the
finite volume measures μβ,N .

In many examples of interest (including the case of the Potts models), the mea-
sure μβ = limN→∞ μβ,N is well defined (i.e., independent of the choice of boundary
condition) for β < βc while one can obtain several distinct limits in the case β > βc.
Figure 2 shows typical samples drawn from μβ for the Ising model with σ̄ ≡ 1. In
the case β > βc, the resulting sample clearly “remembers” the bias introduced by σ̄
in the sense that a typical configuration consists of a “sea” of spins taking the dom-
inant value +1 (brown) with small “islands” of spins taking the value −1 (yellow).
Had we set σ̄ ≡ −1, we would have obtained a sample with the opposite behaviour,
which illustrates the nonuniqueness of the infinite-volume measure μβ in this case.
In the case β < βc on the other hand, each one of the two possible spin values is
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Figure 2. Typical Ising configurations for β < βc (left) and β >
βc (right).

about equally represented, and the measure is symmetric under the substitution
1 ↔ −1, which illustrates the uniqueness of μβ . It is in fact a theorem in the case
of the Ising model that for β > βc there exist exactly two translation invariant
infinite volume measures μ±

β corresponding to boundary conditions σ̄ ≡ ±1, and
that every accumulation point of μβ,N for any sufficiently homogeneous boundary
condition as N → ∞ is a convex combination of μ+

β and μ−
β . (In fact a similar

statement holds for the Potts model with q states, where one has exactly q distinct
infinite volume Gibbs measures when β > βc.)

This raises the question of the uniqueness of μβ at β = βc. If it is, then we say
that the phase transition is continuous, otherwise it is said to be discontinuous.
The reason for this terminology is that continuity in this sense turns out to be
equivalent to the continuity of the maps β �→ μ±

β at β = βc. It has been known

for quite some time [Yan52,AF86] that the phase transition for the Ising model is
continuous in dimensions d = 1, 2 as well as d ≥ 4. The reason why dimensions 1 and
2 are typically much better understood is that the Ising model is solvable in these
dimensions in the sense that explicit expressions can be derived for the expectation
of a large number of observables under μβ,N . (This solution is straightforward in
d = 1 [Isi25] where no phase transition is present, but it was a major breakthrough
when Onsager obtained his exact solution for d = 2 [Ons44].) Dimension d = 4 on
the other hand is the upper critical dimension beyond which the model is expected
to be trivial (i.e., described by Gaussian random variables in the scaling limit)
which allows us to use a number of powerful techniques, including for example the
lace expansion [HS94,Sak07].

This leaves the case d = 3 which is of course the physically most interesting one
since the Ising model is a toy model of ferromagnetism, and its dimensions repre-
sent the usual spatial dimensions. Heuristic considerations suggest that the phase
transition is also continuous there, and this is consistent with physical experiments,
assuming that the Ising model belongs to the same universality class as that of a
genuine physical magnet. In the article [ADCS15], Duminil-Copin et al. gave the
first rigorous proof that this is indeed the case. The proof relies on the introduction
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of the quantity

M(β) = inf
B⊂Z3

1

|B|2
∑

x,y∈B

∫
σxσy μ

0
β(dσ) ,

where μ0
β denotes the infinite volume limit obtained from using free conditions, as

well as three main steps. First, they rely on results of [FSS76, FILS78] to argue
that the Fourier transform of x �→

∫
σ0σx μ

0
β(dσ) belongs to L1 at β = βc, which

implies that M(βc) = 0. Then, and this is the main step, they show that having
M(β) = 0 implies that a certain percolation model with long-range correlations
constructed from the Ising model admits no infinite clusters. Finally, they use a
variant of the switching lemma [GHS70] to show that the quantity

∫
σ0σx μ

+
β (dσ)−∫

σ0σx μ
0
β(dσ) is dominated by an explicit function times the probability of the

origin belonging to an infinite cluster in the above mentioned model and therefore
has to vanish at β = βc. Once this is known, it is not too difficult to show that the
spontaneous magnetisation of the Ising model at criticality must vanish (namely
one has

∫
σ0 μ

+
βc
(dσ) = 0), which in turn yields the desired uniqueness statement.

Considering more general values of q for the Potts model illustrates in a rather
striking way the fact that continuity of the phase transition, whatever the dimen-
sion, is a rather nontrivial property that isn’t necessarily expected in general. In-
deed, it was conjectured by Baxter in the 1970s [Bax71, Bax73] that the Potts
model on Z2 exhibits a continuous phase transition if and only if q ≤ 4. The pair
of articles [DCST17,DCGH+21] by Duminil-Copin et al. provides proofs of both
directions of this conjecture. For the sake of brevity we will not comment on the
proofs in any detail, but we note that the proof of continuity of the phase transition
for q ≤ 4 is almost completely disjoint from that in the case of the 3d Ising model.
A milestone is again to show that the model at criticality with boundary condition
set to one fixed element of S admits no infinite cluster. However both the proof
of this fact (exploiting a form of discrete holomorphicity of certain cleverly chosen
observables) and the proof of its equivalence with the uniqueness of the infinite-
volume measure at criticality (actually they show equivalence of a list of five quite
distinct properties which are of independent interest for the study of the critical
Potts model) are completely different.

Regarding the proof of discontinuity when q > 4, the main tool is a close relation,
first discovered by Temperley and Lieb [TL71] in a restricted context and then by
Baxter et al. [BKW76] in more generality, between the critical FK model on Z2

and the so-called six-vertex model. Configurations of the latter can be visualised
as jigsaw pieces where one assigns to each vertex of Z2 (or a subset thereof) one of
the following six (oriented) tiles.

Further, one enforces the admissibility constraint that the tiles fit together seam-
lessly. One also postulates that the probability of seeing a given admissible con-
figuration is proportional to c#p, where #p denotes the number of purple tiles in
the configuration and c is some fixed constant. The relation between the six-vertex
model and the critical FK model holds for the specific choice c =

√
2 +

√
q. Similar



64 MARTIN HAIRER

to the link between the FK and Potts models, the relation between the two models
is not quite deterministic, but takes the form of a coupling between the FK model
on a square lattice and the six-vertex model on a smaller rotated square lattice
(the six-vertex model on Z2 with nearest-neighbour connections is coupled to the
cluster model on the even sublattice of Z2 with nearest-neighbour connections) such
that the corresponding conditional probabilities are straightforward to describe by
a sequence of i.i.d. choices.

The advantage gained from this relation is that the six-vertex model is solvable
in a certain sense using the transfer matrix formalism. This doesn’t get one out
of the woods since the transfer matrices VN involved are very large: they act on a

vector space of dimension 2N , but are block diagonal with each block V
[n]
N acting

on a subspace of dimension
(
n
N

)
. Each of these blocks is irreducible with positive

entries and therefore admits a Perron–Frobenius vector. The main technical re-
sult of [DCST17] is a very sharp asymptotic for the Perron–Frobenius eigenvalues

of V
[N/2−r]
N for fixed r as N → ∞. Interestingly, the authors are able to prove

that the ratios between these values converge to finite (and explicit, at least as
explicit convergent series) limits as N → ∞ and that the values themselves diverge
exponentially in N with known exponent, but the common lower-order behaviour
of that divergence is not known. This asymptotic is however sufficient to obtain
good control over the partition function of the six-vertex model and to exploit it
to compute an explicit expression for the inverse correlation length of the critical
Potts model with free boundary conditions when q > 4. The finiteness of that
expression finally allows us to deduce the discontinuity of the phase transition. In
fact it allows us to prove more than that, namely it shows that under the measure
with free boundary conditions, the probability that the cluster containing the origin
touches the boundary of a large ball decays exponentially in the radius of the ball,
with an exponent that can be deduced from the above asymptotic.

To conclude this section, I would like to mention the beautiful article [DCRT19]
which, although not quite dealing with the question of continuity of the phase
transition, does have a related flavour. The question there is that of the sharpness
of the phase transition which in this particular case is couched as the question
whether it is really true that the measure μβ has exponentially decaying correlations
(in the sense that the covariance between f(σ0) and f(σx) decays exponentially fast
as |x| → ∞ for any nice enough function f : S → R) for every β < βc and not
just for small enough values where a perturbation argument around β = 0 (where
f(σ0) and f(σx) are independent under μ0 as soon as x �= 0) may apply. One
difficulty with this type of statement is that one does in general not know any
closed-form expression for βc: in the case of the FK model on the square lattice
such an expression can be derived by the duality argument described in Section 2,
but it is not known for more general situations. The main result of [DCRT19] is
that the phase transition of the FK model on any vertex-transitive infinite graph
is sharp.

The main tool in their proof is a novel and far-reaching generalisation of the
OSSS inequality [OSSS05]. The context here is that of increasing random variables
f : {0, 1}E → [0, 1] (for a finite set E and for the natural coordinate-wise partial
order on {0, 1}E), where {0, 1}E is furthermore equipped with a probability measure
P that is itself monotonic in the sense that for every F ⊂ E and every e ∈ E \ F ,
the conditional probabilities P(we = 1 | FF ) are increasing functions on {0, 1}F .
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(Here FF denotes the σ-algebra generated by the evaluations w �→ we for e ∈ F .)
One then considers any algorithm that reveals one by one the values of an input
w ∈ {0, 1}E to f in such a way that the coordinate to be revealed next depends
in a deterministic way on the information gleaned from the revealment up to that
point. (In particular, the first coordinate to be revealed is always the same since no
information has yet been obtained.) The algorithm stops once the revealed values
are sufficient to determine the value f(w) with certainty, thus yielding a random

set Ê ⊂ E of revealed values. The result of [DCRT19] is then that one has the
inequality

(3.1) Var(f) ≤
∑
e∈E

P(e ∈ Ê) Cov(f, we) ,

which looks formally the same as the result of [OSSS05], but the assumption there
was that the measure P is simply the uniform measure. Since the latter is clearly
monotonic (it is such that P(we = 1 | FF ) is constant), the results of [OSSS05]
follow as a special case.

Using this result, [DCRT19] then obtain the following dichotomy which yields
the desired sharpness statement.

Theorem 3.1. Let G be any transitive graph and let Pβ,n be the FK measure on
the ball Λn of radius n in G. Then there exists βc ∈ R such that, for every β < βc

there exists cβ > 0 such that Pβ,n(0 ↔ ∂Λn) � e−cβn, uniformly in n. For β > βc

on the other hand, there exists c > 0 such that Pβ,n(0 ↔ ∂Λn) ≥ cmin{1, β − βc}.
Once (3.1) is known, the proof of Theorem 3.1 is surprisingly simple and relies

on two ingredients. First, one can show that the measures Pβ,n and the function
10↔∂Λn

satisfy the assumptions of (3.1). Setting θn(β) = Pβ,n(0 ↔ ∂Λn), a clever
choice of search algorithm for the (potential) cluster connecting the origin 0 to ∂Λn

then allows us to show that one has the bound

(3.2) θ′n(β) �
∑
e∈E

Covβ(10↔∂Λn
, we) ≥

n

8Σn(β)
θn(β)(1− θn(β)) ,

where Σn =
∑n−1

k=0 θk. The fact that the first inequality holds is known and can be
checked in an elementary way. The second fact is that any sequence of functions
β �→ θn(β) satisfying a differential inequality of the form (3.2) necessarily satisfies
a dichotomy of the type appearing in the statement of Theorem 3.1. Since we are
not interested in the regime where θn is large, we can rewrite (3.2) as θ′n ≥ cn

Σn
θn.

The fact that the θn then should satisfy such a dichotomy is quite clear: if β is such
that they converge to a nonvanishing limit θ, then Σn/n ∼ θ and one must have
θ′ ≥ c. If on the other hand they converge to 0 on a whole interval [a, b], then that
convergence must take place sufficiently fast so that Σn/n � θn (since otherwise
the previous argument applies). Since Σn/n ∼ θn for θn ∼ n−α as soon as α < 1, it
is then plausible that for any c < b one has θn � n−1/2 (say), implying θ′n � √

nθn
and therefore θn � e−

√
n(c−β) for β < c. This shows that Σn is bounded for β < c,

leading to θ′n � nθn and therefore an exponentially (in n) small bound as claimed.

4. Rotational invariance for the critical FK models

As already mentioned a number of times, a crucial feature of two dimensional
equilibrium statistical mechanics is that most models (at least those with suffi-
ciently local interactions) are expected to obey a form of conformal invariance, or
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rather equivariance as in (1.2), when considering large-scale observables (crossing
probabilities, averages, etc.) at the critical temperature. This expectation and the
resulting link to the well understood world of two-dimensional conformal quantum
field theories allows us to generate a plethora of conjectures regarding the large-scale
behaviour of these models, but these are in many cases extremely hard to prove.
Consider for example the N -step two-dimensional self-avoiding random walk, which
is simply the uniform measure on all injective functions h : {0, . . . , N} → Z2 such
that h(0) = 0 and such that |h(i + 1) − h(i)| = 1 for all i < N . If the injectivity
condition on h is dropped, one recovers the simple random walk which is well known
[Don51] to converge to Brownian motion for large N , provided that it is rescaled

by
√
N .

Back to the self-avoiding random walk, exploiting the expected conformal in-
variance of its suitably rescaled large-N limit and the known properties of the
Schramm–Loewner evolutions, one expects the size of h(N) to be of order N3/4 and
its rescaling by N3/4 to converge to a specific continuous random curve, namely
SLE8/3 [LSW04]. Rigorously however, almost nothing nontrivial is known about
this model: although the diameter of the range of h trivially has to be at least√
N/π, the current best lower bound on the endpoint does not even match that!

Instead, one only knows the bound (E|h(N)|p)1/p ≥ 1
6N

p/(2p+2) that was recently
obtained by Madras [Mad14]. Similarly, while one trivially has |h(N)| ≤ N , the best
nontrivial upper bound is pretty much the weakest possible improvement, namely
that for every p ≥ 1 one has limN→∞ N−1(E|h(N)|p)1/p = 0, obtained around the
same time by Duminil-Copin and Hammond [DCH13]. One main obstruction is
that there is at the moment no proof showing that the self-avoiding random walk
is conformally invariant at large scales.

While this illustrates the importance of showing that statistical models are con-
formally invariant (or at least rotationally invariant as a crucial first step) at crit-
icality, the strategy of proof for such claims has so far mostly relied on finding
a large enough collection of observables that already satisfy a discrete analogue
of conformal invariance, typically by solving a discrete analogue of the Cauchy–
Riemann equations. See for example Chelkak and Smirnov’s proof of conformal
invariance for the Ising model on isoradial graphs [CS12] and Smirnov’s proof of
conformal invariance for critical percolation [SS11]. The two-dimensional FK model
with q ≤ 4 already mentioned in Section 3 is one of the simplest models where con-
formal invariance at criticality is expected, but where it is not known how to obtain
this from a suitable discrete conformal invariance. In the recent work [DCKK+20],
Duminil-Copin et al. succeeded in taking the first step towards conformal invari-
ance by showing that the large-scale behaviour of these models is indeed rotationally
invariant.

To define the notion of large-scale behaviour, we recall that the configuration
space of the FK model is the same as that for regular percolation; see Figure 1. Such
a configuration can alternatively be described as a collection of non-self-intersecting
loops separating the percolation clusters from the clusters of the dual configuration.
(Actually it naturally yields two collections of loops, depending on whether the loop
encloses a percolation cluster of the primary or of the dual configuration, but we
will ignore this detail for the sake of our exposition.) Given two collections F and F̄
of non-self-intersecting loops in the plane, one then defines a distance between them
in the following way. Given (small) η > 0, write Bη ⊂ R2 for a large chunk of a fine
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lattice in R2, for example Bη = ηZ2 ∩ [−η−1, η−1]2. Given a loop γ and assuming
that its image doesn’t intersect the set Bη, one then denotes by [η]γ its homotopy
class in R2 \ Bη. One then obtains a distance by postulating that dH(F , F̄) ≤ η if
and only if, for every γ ∈ F that encloses at least two elements of Bη but not all of
it, there exists γ̄ ∈ F̄ such that [γ]η = [γ̄]η and vice versa. (The H here stands for
homotopy.)

Given a metric space (M,d), the metric d lifts naturally to a metric on the space
of probability measures on M which metrises the topology of weak convergence (at
least when M is nice, for example Polish). This is done by considering the Wasser-
stein (also sometimes called Kantorovich–Rubinstein or Monge–Kantorovich) dis-
tance

(4.1) d(μ, ν) = inf
P∈C(μ,ν)

∫
d(x, y)P(dx, dy) ,

where C(μ1, μ2) denotes the set of all couplings between μ1 and μ2, that is, proba-
bility measures on M2 with ith marginal equal to μi. Note that with this definition,
the map that assigns to x the probability measure δx concentrated at x is an isom-
etry.3

Fix now once and for all q ∈ [1, 4] and consider a smooth bounded simply con-
nected domain Ω ⊂ R2. For ε > 0, write Pε,Ω for the critical FK measure (viewed
as a measure on collections of loops separating clusters and dual clusters) on εZ2∩Ω
with free boundary conditions. We also write Pε for the limit of Pε,Ω as Ω → R2

and, given an angle θ ∈ R, we write Rθ for the rotation by θ, which naturally acts
on loops in R2. The large-scale rotational invariance of the critical FK model can
then be formulated as follows.

Theorem 4.1. For every domain Ω ⊂ R2 as above and every angle θ one has

lim
ε→0

dH
(
R∗

θPε,Ω,Pε,RθΩ

)
= 0 .

Furthermore, one has limε→0 dH(R∗
θPε,Pε) = 0.

We only focus on the second statement since it turns out that the first one can
be deduced from it without too much effort. In fact, the authors of [DCKK+20]
show a type of universality statement for the FK model on rectangular lattices,
but its formulation requires some preparation. One starts by defining a specific
class of isoradial embeddings of the two-dimensional square lattice into the plane.
Recall that a planar graph embedded in the plane is isoradial if, for each face f ,
there exists a circle of radius 1 containing all the vertices of f . (For example, the
canonical embedding of the square lattice is isoradial.)

Given a bi-infinite sequence α : Z → (−π
2 ,

π
2 ), we consider the map ια : Z

2 → R2

given by

ια : (x, y) �→
(
x+ sy, cy

)
, sy =

∑
k∈(0,y]

sin(αk) , cy =
∑

k∈(0,y]

cos(αk) ,

with the convention that for y < 0,
∑

(0,y] = −
∑

(y,0]. This defines an isoradial

graph L(α) by considering the embedding of {(x, y) : x+ y even} (joined by diag-
onal edges) under ια (see Figure 3). The dual graph L∗(α) of L(α) is then given

3In fact, (4.1) in general only makes sense between measures such that the distance to some
arbitrary fixed point has a finite first moment. One can always either restrict oneself to such
measures or replace d by 1 ∧ d which generates the same topology as d.
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Figure 3. Examples of graphs L(α). On the left is a generic α
while on the right α is constant but nonzero. The graph itself is
drawn in black, the vertices of its dual graph are drawn in white,
and the associated diamond graph is light gray. In red, we draw
one of the symmetry axes of the second graph.

by the embedding of {(x, y) : x+y odd}. The associated diamond graph has as its
vertices both the vertices of L(α) and the centres of its faces, and its edges are given
by all pairs (v, f) with v a vertex and f a face such that v ∈ f . The diamond graph
is simply given by the embedding of the usual lattice Z2 with nearest-neighbour
edges under ια.

It is crucial at this stage to note that the critical FK model on L(α) is not given
by simply pushing forward the critical FK model on Z2 under the map ια. Instead,
one reweighs each edge of the graph in a very specific way that depends on the
length of the edge. More specifically, viewing a configuration of the FK model as
a subset ω ⊂ E of the set of edges of the (finite) graph on which the model is
considered, the probability of seeing a given configuration ω is proportional to

(4.2)
( ∏

e∈ω

pe

)( ∏
e∈E\ω

(1− pe)
)
qk(ω) ,

where k(ω) denotes the number of connected components of the subgraph ω. The
formula for pe as a function of q and the length of the edge e is explicit but not
relevant for the sake of this discussion.

The most important step in the proof is to show that the large-scale connectivity
properties of the critical FK model on L(α) are very close to those of the model on
L(Tjα), where Tj swaps the jth and (j + 1)-th component:

(Tjα)k =

⎧⎨
⎩

αj+1 if k = j,
αj if k = j + 1,
αk otherwise.

Furthermore, there exists a natural coupling between the FK measures on the two
lattices which implements this closedness. This part of the proof exploits the link
to the six-vertex model and its solvability using the transfer matrix formalism. One
then deduces from this that the model on the standard lattice L(0) is very close
to that on a rotated rectangular lattice L(α) with k �→ αk constant (see the right
half of Figure 3). This works by fixing some large N > 0 (which is then eventually

sent to infinity) and starting from α
(i)
k = α1k≥N and then swapping components
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in such a way as to move some of the nonzero components down until one ends up

with α
(f)
k = α(1|k|≤N + 1k>3N ). Since one has L(0) ≈ L(α(i)) and L(α) ≈ L(α(f)),

the desired statement follows if one can control the error made at each step of the
argument. This turns out to be extremely delicate, and one has to exploit subtle
stochastic cancellations along the way. One trick is to allow the vertices of the set
Bη around which the homotopy classes are computed to move a little bit with each
application of a swapping operator Tj and to show that this motion ends up being
diffusive (and therefore slow) rather than ballistic.

Once one knows that limε→0 dH(Pε,L(0),Pε,L(α)) = 0, the second part of The-
orem 4.1 follows at once. The idea is simply to note that L(α) is invariant under
reflection along a line with angle π

4 − α
2 , but that the effect of this reflection on

L(0) is the same as that of a rotation by angle α (since it is itself invariant under
reflection along a line with angle π

4 ), so that

dH(Pε, R
∗
αPε) ≤ dH(Pε,L(0),Pε,L(α)) + dH(Pε,L(α), R

∗
αPε,L(0))

= 2dH(Pε,L(0),Pε,L(α)) ,

and the claim follows.

About the author

Martin Hairer works in the general area of probability theory with a main fo-
cus on the analysis of stochastic partial differential equations. His work has been
distinguished with a 2014 Fields Medal and the 2021 Breakthrough Prize in Math-
ematics. He currently holds positions at École Polytechnique Fédérale de Lausanne
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