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ESSENCE OF INDEPENDENCE:

HODGE THEORY OF MATROIDS SINCE JUNE HUH

CHRISTOPHER EUR

Abstract. Matroids are combinatorial abstractions of independence, a ubiq-
uitous notion that pervades many branches of mathematics. June Huh and his
collaborators recently made spectacular breakthroughs by developing a Hodge
theory of matroids that resolved several long-standing conjectures in matroid
theory. We survey the main results in this development and ideas behind them.

1. Introduction

The notion of “independence” resides everywhere, for example in graphs, vector
configurations, field extensions, hyperplane arrangements, matchings, and discrete
optimizations. Matroid theory captures the combinatorial essence of independence
shared in these structures. For example, let us consider G (in Figure 1) with edges
labeled {1, . . . , 5} and the set of vectors {v1, . . . , v5}.
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v1 v2 v3 v4 v5⎡⎣1 1 0 0 0
0 1 1 1 0
0 0 0 1 1

⎤⎦

Figure 1

We observe a common combinatorial structure: a subset of edges in G is acyclic
if and only if the corresponding subset of vectors is linearly independent. This
combinatorial structure is encoded as a matroid, introduced by Whitney [Whi32].

Definition 1.1. A matroid M = (E, I) consists of a finite set E = {1, . . . , n},
called its ground set, and a nonempty collection I of subsets of E, called the
independent sets of M, such that

• if I ∈ I and J ⊆ I, then J ∈ I, and
• if I, J ∈ I and |I| < |J |, then there exists an element j ∈ J \ I such that
I ∪ {j} ∈ I.

The definition implies that every maximal independent set of M has the same
cardinality r, which we call the rank of M.
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Graphs and vector spaces give prototypical examples of matroids:

• When E is identified with the set of edges of a finite graph G, setting

I = {I ⊆ E : the subset I of edges in G is acyclic}

defines a matroid M = (E, I). Matroids arising in this way are called
graphical matroids.

• When E is identified with a finite set of vectors spanning a vector space V ,
setting

I = {I ⊆ E : the subset I of vectors in V is linearly independent}

defines a matroid M = (E, I). Matroids arising in this way are called
realizable matroids.

We see that the graph G and the set of vectors in Figure 1 define the same matroid.

1.1. Combinatorial sequences from a matroid. Several long-standing con-
jectures in matroid theory, recently resolved by June Huh and his collaborators,
concern the behavior of sequences of invariants of a matroid. For a sequence
(a0, a1, . . . , am) of nonnegative real numbers, we say that it

• is unimodal if there exists 0 ≤ k ≤ m such that

a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ am;

• is log-concave if a2i ≥ ai−1ai+1 for all 1 ≤ i ≤ m− 1;
• has no internal zeros if aiaj �= 0 implies ak �= 0 for all 0 ≤ i ≤ k ≤ j ≤ 0;

and
• is top-heavy if ai ≤ ad−i for all 0 ≤ i ≤ d

2 , where d is the largest index such
that ad �= 0.

Note that a log-concave sequence is unimodal if and only if it has no internal zeroes.
For a survey of unimodality and log-concavity in combinatorics, see [Sta89,Bre94].

We consider the following sequences of invariants of a rank r matroid M. We
describe some of them only for a graphical or a realizable matroid, postponing their
descriptions for arbitrary matroids to Section 2.

(a) For 0 ≤ i ≤ r, let Ii be the number of independent sets of M of cardinality
i. In other words, the sequence (I0, . . . , Ir) is the f -vector of the simplicial
complex whose faces are the independent sets of M.

(b) We may also consider the h-vector. That is, for 0 ≤ i ≤ r, let I ′i be defined
by the identity

∑r
i=0 I

′
iq

r−i =
∑r

i=0 Ii(q − 1)r−i, where Ii is as in (a).
(c) Suppose M is the graphical matroid of a finite connected nontrivial graph

G. The chromatic polynomial χG(q) of G is defined as

χG(q) = the number of proper colorings of G with at most q colors,

where a coloring of the vertices is proper if no edge has both vertices the
same color. It is polynomial in q of degree r + 1 and is always divisible
by q(q − 1). Let (w0, . . . , wr) be the absolute values of the coefficients of
1
qχG(q), starting from the highest degree term.

(d) Continuing the assumption that M is the graphical matroid of G, we define
(w′

0, . . . , w
′
r−1) as the absolute values of the coefficients of 1

q(q+1)χG(q+1).
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(e) Suppose M is the realizable matroid of a set of vectors {v1, . . . , vn} spanning
a vector space V . Let (W0, . . . ,Wr) be a sequence defined by setting for
each 0 ≤ i ≤ r,

Wi = the number of i-dimensional linear subspaces V ′ in V such

that V ′ is the span of a subset of the vectors {v1, . . . , vn}.
We leave it as an exercise to check that for the matroid associated to the graph

or the vector configuration in Figure 1, we have

(I0, I1, I2, I3) = (1, 5, 10, 8), (w0, w1, w2, w3) = (1, 5, 8, 4),

(I ′0, I
′
1, I

′
2, I

′
3) = (1, 2, 3, 2), (w′

0, w
′
1, w

′
2) = (1, 2, 1),

(W0,W1,W2,W3) = (1, 5, 6, 1).

Notice in this example that every sequence is unimodal, log-concave, and top-heavy.
Several conjectures from the 1970s posited that these sequences are unimodal, log-
concave, or top-heavy for an arbitrary matroid. We describe these conjectures and
their history more fully in Section 2.2.

1.2. An approach from algebraic geometry. After decades of little progress, a
breakthrough occurred when many of these conjectures were resolved for realizable
matroids using algebraic geometry: Huh and Katz [Huh12,HK12] showed that the
sequence (c) (from Section 1.1) is log-concave (with no internal zeros); Huh [Huh15]
showed that (d) is log-concave (with no internal zeros); and Huh and Wang [HW17]
showed that (e) is top-heavy. These developments were particularly significant in
light of the following phenomena in matroid theory.

The geometry of realizable matroids often inspires purely combinatorial con-
structions for all matroids. Certain geometric properties, a priori applicable only
to realizable matroids, persist to all matroids through these purely combinatorial
constructions. This is surprising because almost all matroids are not realizable
[Nel18], but such a creative tension between geometry and combinatorics is a re-
curring theme in matroid theory.

A recent spectacular example of this phenomenon is the development of the
Hodge theory of matroids by June Huh and his collaborators [AHK18, ADH22,
BHM+22, BHM+], which successfully resolved conjectures about log-concavity or
top-heaviness of the sequences (a)–(e) for arbitrary (not necessarily realizable) ma-
troids. They established that matroids satisfy combinatorial analogues of certain
Hodge-theoretic properties in algebraic geometry, known sometimes as the Kähler
package:

Definition 1.2. Let A• =
⊕d

i=0 A
i be a finite-dimensional graded real vector

space with a symmetric bilinear form P : A• × Ad−• → R, and let K be a convex
subset of graded linear operators L : A• → A•+1 satisfying P (Lx, y) = P (x, Ly)
for all x, y ∈ A•. The triple (A•, P,K) is said to satisfy the Kähler package if the
following three properties hold for all nonnegative integers i ≤ d

2 :

(PD) Poincaré duality. The pairing P : Ai × Ad−i → R is nondegenerate.
(HL) Hard Lefschetz property in degree i. For any L1, . . . , Ld−2i ∈ K, the linear

map

Ai → Ad−i given by x 	→ L1 · · ·Ld−2ix

is an isomorphism.
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(HR) Hodge–Riemann relations in degree i. For any L0, L1, . . . , Ld−2i ∈ K, the
symmetric bilinear pairing

Ai ×Ai → R given by (x, y) 	→ (−1)iP (x, L1 · · ·Ld−2iy)

is positive definite when restricted to the kernel of the map Ai → Ad−i+1

given by x 	→ L0L1 · · ·Ld−2ix.

Classical Hodge theory tells us that these properties are satisfied when A• is
the cohomology ring of real (p, p)-forms on a complex projective manifold, P is the
Poincaré duality pairing, and K consists of multiplication by ample divisor classes;
see [Huy05] or [Voi02].

The geometry behind realizable matroids led to purely combinatorial construc-
tions for various cohomologies of a matroid. These constructions include the Chow
ring of a matroid [FY04,AHK18], the conormal Chow ring of a matroid [ADH22],
and the intersection cohomology of a matroid [BHM+]. For a matroid realizable
over C, all three satisfy the Kähler package due to classical algebraic geometry.
The incredible result of June Huh and his collaborators—Karim Adiprasito, Fed-
erico Ardila, Tom Braden, Graham Denham, Eric Katz, Jacob Matherne, Nick
Proudfoot, Botong Wang—is that the Kähler package continues to hold for these
cohomologies of a matroid even when the matroid is not realizable.

We survey this remarkable development in matroid theory and its connection
to algebraic geometry in four parts. In Section 2, we give a brief introduction to
matroids, and describe the long-standing conjectures resolved by the Hodge theory
of matroids. In Section 3, we explain how the conjectures in the case of realizable
matroids were resolved using algebraic geometry. In Section 4, we discuss the
Kähler package for Chow rings of fans and matroids and how the validity of (HR)
implies the conjectures about log-concavity. In Section 5, we discuss the intersection
cohomology of a matroid and explain its implication to top-heaviness.

Several interesting topics had to be omitted, even though they are closely related
to the topics discussed here. A partial list includes the following:

• The Kazhdan–Lusztig theory of matroids [EPW16], which was an inspira-
tion behind the construction of intersection cohomology of a matroid. We
point to [Pro18] for a survey of Kazhdan–Lusztig–Stanley polynomials in a
more general context.

• The study of matroids through the polyhedral geometry of their base poly-
topes, their subdivisions, and the geometry of the Grassmannian [GGMS87,
Laf03]. We point to the survey [Ard22, Section 4] and references therein.

• Other approaches to the cohomology of a matroid in the broader context
of tropical geometry, for instance [IKMZ19,AP].

We hope that this survey will spark the reader’s general interest in this active field
of the study of matroids from an algebro-geometric perspective.

Notation 1.3. Throughout, let E = {1, . . . , n} be a finite set of cardinality n. For
a subset S ⊆ E, we denote by eS =

∑
i∈S ei the sum of standard basis vectors in

kE , where the field k will be clear in context. An algebraic variety is reduced and
irreducible (over an algebraically closed field).
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2. Background in matroid theory

Here we give a minimal introduction to matroids. In addition to standard refer-
ences on matroids, such as [Wel76,Oxl11], we point to [Ard22,Bak18,Huh18,Kat16]
for surveys tailored towards studying matroids from an algebro-geometric view-
point.

2.1. Constructions. Since subsets of independent sets are independent, we may
specify a matroid by its maximal independent sets, called the bases of the matroid.

Example 2.1. For an integer 0 ≤ r ≤ n, the uniform matroid of rank r on E is
the matroid Ur,n whose bases are all subsets of cardinality r. When n = r, we say
that Un,n is the Boolean matroid on E. The Boolean matroid U0,0, i.e., when
E = ∅ so n = r = 0, is called the trivial matroid. Any uniform matroid Ur,n is
realizable over any infinite field k as a general collection of n vectors in V = kr.

Example 2.2. We may visualize a collection of vectors in a four-dimensional vector
space as a collection of points in the projective 3-space P3. For example, the five
column vectors of the matrix shown in Figure 2

⎡⎢⎢⎣
1 0 0 −1 0
0 1 0 −1 0
0 0 1 −1 0
0 0 0 0 1

⎤⎥⎥⎦

Figure 2

can be visualized as the purple points, four of which lie in a common projective
plane. The bases of this matroid are {1235, 1245, 1345, 2345}.

We define the dual matroid M⊥ of a matroid M on ground set E by declaring

the set of bases of M⊥ = {E \B : B a basis of M}.

For example, we have U⊥
r,n = Un−r,n. For the matroid in Example 2.2, its dual

has the set of bases {1, 2, 3, 4}. Many notions in matroid theory come in pairs via
matroid duality. For instance, an element e ∈ E is a loop of M if it is in no bases,
and is a coloop if it is in every basis of M. The matroid in Example 2.2 has no
loops and has a coloop 5, or equivalently, its dual matroid has no coloops and has
a loop 5.

Another useful way of describing a matroid is by its rank function. For a matroid
M = (E, I), its rank function rkM : 2E → Z is defined by

rkM(S) = max{|I| : I ∈ I and I ⊆ S} for every subset S ⊆ E.

In particular, an independent set of a matroid M is a subset I ⊆ E whose rank
rkM(I) equals its cardinality |I|. That is, independent sets are the minimal subsets
of E with respect to a given rank. Considering the maximal subsets leads to the
notion of flats of a matroid.
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Definition 2.3. A flat of a matroid M on E is a subset of E that is maxi-
mal for its rank. That is, a subset F ⊆ E is a flat of M if rkM(F ∪ {e}) >
rkM(F ) for all e ∈ E \ F .

The set of flats of a matroid M forms a poset under inclusion. This poset is a
lattice with meet and join defined by

F ∧ F ′ = F ∩ F ′ and F ∨ F ′ = the smallest flat containing F ∪ F ′.

For example, the lattice of flats of the matroid in Example 2.2 is shown in Figure 3.

∅

5 4 3 2 1

45 34 35 25 24 23 15 24 13 12

345 245 235 145 135 125 1234

12345

Figure 3

Exercise 2.4.

(1) Show that every subset is contained in a unique flat of the same rank. In
particular, the join of flats is well defined.

(2) How can one recover the bases of a matroid from the lattice of its flats?
(3) Compute the lattice of flats of the matroid of the graph in Figure 1.

We record some linear algebraic interpretations of the notions introduced for a
matroid M realized by a set of vectors {v1, . . . , vn} spanning a vector space V :

• The bases of M are subsets B ⊆ E such that {vi : i ∈ B} is a basis of V .
• An element e ∈ E is a loop if and only if ve = 0.
• We have rkM(S) = dim span{vi : i ∈ S} for any subset S ⊆ E.
• The flats of M are subsets F ⊆ E such that F = V ′ ∩{v1, . . . , vn} for some
linear subspace V ′ ⊆ V . That is, the flats correspond to the different spans
of subsets of the vectors.

Per the last bullet point, we now define the sequence (e) for arbitrary matroids.

Definition 2.5. For a matroid M of rank r, the Whitney numbers of the
second kind (W0,W1, . . . ,Wr) are defined by

Wi = the number of flats of M with rank i.

Exercise 2.6. Show that if M is the graphical matroid of the complete graph on N
vertices, then its flats of rank i correspond to partitions of N into N−i (nonempty)
parts. In particular, the numbers (W0,W1, . . . ,WN−1) in this case are known as
the Stirling numbers of the second kind.

Matroid duality also admits a linear algebraic interpretation, given in Exer-
cise 2.7.
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Exercise 2.7. Let kE � V be the map given by ei 	→ vi, and let K be its kernel.
The short exact sequence 0 → K → kE → V → 0 dualizes to 0 → V ∨ → kE →
K∨ → 0. Show that the surjection kE � K∨ realizes the dual matroid M⊥.

An important pair of operations for forming new matroids from a given matroid
is the restriction and contraction.

Definition 2.8. For a matroid M on ground set E, and a subset A ⊆ E, we define
two matroids M|A and M/A on ground sets A and E \A, respectively, by specifying
their rank functions:

rkM|A(S) = rkM(S) for all S ⊆ A;

rkM/A(S) = rkM(S ∪ A)− rkM(A) for all S ⊆ E \A.

The matroid M|A is called the restriction of M to A, and the matroid M/A is
called the contraction of M by A. The deletion M\A of M by A is the restriction
M|(E \A).

These operations behave particularly well for a flat F of a matroid M:

• the set of flats of M|F is {F ′ : F ′ a flat of M contained in F};
• the set of flats of M/F is {F ′ \ F : F ′ a flat of M containing F}.

These operations have a graphical and linear algebraic interpretations as well:
for the graphical matroid of a graph G, deletion corresponds to deleting the cor-
responding edges, and contraction corresponds to contracting the corresponding
edges. When a matroid M is realized by a set of vectors {vi : i ∈ E}, the restriction
M|A is realized by the subset of vectors {vi : i ∈ A}. The contraction M/A is
realized by the images of the vectors {vi : i ∈ E \ A} under the quotient by the
span of {vi : i ∈ A}.

Exercise 2.9. Show that deletion and contraction are dual notions, that is, we
have (M \A)⊥ = M⊥/A.

2.2. Invariants. Introduced for graphs by Tutte [Tut67] and extended to matroids
by Crapo [Cra69], the Tutte polynomial is among the most famous invariants of
a matroid. For the proofs of the statements here, as well as a fuller treatment of
Tutte polynomials, see [BO92].

Definition 2.10. Tutte polynomial of a matroid M of rank r on ground set E is
the bivariate polynomial defined by

TM(x, y) =
∑
S⊆E

(x− 1)r−rkM(S)(y − 1)|S|−rkM(S).

The Tutte polynomial is the universal deletion-contraction invariant:

Theorem 2.11. The Tutte polynomial can be defined recursively by

TM(x, y) =

⎧⎪⎨⎪⎩
xTM/e(x, y) if e ∈ E a coloop in M,

yTM\e(x, y) if e ∈ E a loop in M,

TM\e(x, y) + TM/e(x, y) if e ∈ E neither loop nor coloop
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with TU0,0
(x, y) = 1. If f is an invariant of matroids with values in a (commutative

unital) ring R such that f(U0,0) = 1 and there exists x0, y0, a, b ∈ R satisfying

f(M) =

⎧⎪⎨⎪⎩
x0f(M/e) if e ∈ E a coloop in M,

y0f(M \ e) if e ∈ E a loop in M,

af(M \ e) + bf(M/e) if e ∈ E neither loop nor coloop

for all matroids M and an element e, then we have

f(M) = a|E|−rkM(E)brkM(E)TM

(x0

b
,
y0
a

)
.

The theorem implies the following basic properties of the Tutte polynomial:

• The Tutte polynomial TM(x, y) of a matroid M has nonnegative coefficients.
• The constant term of TM(x, y) is zero unless M is the trivial matroid.
• For the dual matroid M⊥, we have TM⊥(x, y) = TM(y, x).

Univariate specializations of the Tutte polynomial lead to many interesting com-
binatorial sequences. For example, we deduce from the definition that for a matroid
M of rank r,

TM(q + 1, 1) =
r∑

i=0

Iiq
r−i,

where we recall from (a) that Ii is the number of independent sets of M of cardinality
i. Consequently, we have that the sequence (I ′0, . . . , I

′
r) of (b) is given by

TM(q, 1) =

r∑
i=0

I ′iq
r−i.

Another important specialization is the characteristic polynomial χM of a
matroid M of rank r, defined as

χM(q) = (−1)rTM(1− q, 0).

The basic properties of the Tutte polynomial listed above imply that the coefficients
of χM(q) have alternating signs, and that χM(q) is divisible by (q − 1) unless M
is a trivial matroid. Thus, one often divides out (q − 1) to define the reduced
characteristic polynomial χM(q) = χM(q)/(q−1). It follows from Theorem 2.11
that χM = 0 if M has a loop.

The characteristic polynomial of a graphical matroid essentially equals the chro-
matic polynomial of the graph in the following way.

Exercise 2.12. Show that if M is the graphical matroid of a finite graph G, and
G has c connected components, then qcχM(q) = χG(q). (Hint : Appeal to Theo-
rem 2.11 by showing that both satisfy an identical deletion-contraction relation).

We may now define the sequences (c) and (d), which we previously only defined
for graphical matroids, for arbitrary nontrivial matroids: they are the coefficients
of TM(1 + q, 0) and 1

qTM(q, 0), respectively.

Summarizing, we have the following sequences for a matroid M of rank r.

(a) The coefficients (I0, . . . , Ir) of TM(q + 1, 1) =
∑r

i=0 Iiq
r−i.

(b) The coefficients (I ′0, . . . , I
′
r) of TM(q, 1) =

∑r
i=0 I

′
iq

r−i.
(c) The coefficients (w0, . . . , wr) of TM(q + 1, 0) =

∑r
i=0 wiq

r−i.
(d) The coefficients (w′

0, . . . , w
′
r−1) of

1
qTM(q, 0) =

∑r
i=0 Iiq

r−1−i.

(e) The Whitney numbers of the second kind (W0, . . . ,Wr) of M.
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Theorem 2.13 ([AHK18,ADH22,BHM+]). Let M be a matroid of rank r.

(a) The sequence (I0, . . . , Ir) is unimodal, log-concave, and top-heavy.
(b) The sequence (I ′0, . . . , I

′
r) is unimodal, log-concave, and top-heavy.

(c) The sequence (w0, . . . , wr) is unimodal, log-concave, and top-heavy.
(d) The sequence (w′

0, . . . , w
′
r−1) is unimodal, log-concave, and top-heavy.

(e) The sequence (W0, . . . ,Wr) satisfies Wi ≤ Wj for all 0 ≤ i ≤ j ≤ r − i. In
particular, it is top-heavy.

The statements of the theorem were long-standing conjectures in matroid theory.
The unimodality and log-concavity conjectures are due to Welsh [Wel71] and Mason
[Mas72] for (a), Dawson [Daw84] for (b), Read [Rea68] and Hoggar [Hog74] for (c)
of graphical matroids, Heron [Her72], Rota [Rot71], and Welsh [Wel76] for (c), and
Brylawski [Bry82] for (d). Hibi [Hib92] and Swartz [Swa03] posed the top-heaviness
of (b) and (d) (respectively).1 Dowling and Wilson [DW74,DW75] conjectured the
top-heaviness of (e), generalizing a theorem of de Bruijn and Erdős [dBE48] on
point-line incidences in projective planes. There are two notable conjectures on (e)
that remain open: Rota [Rot71] conjectured its unimodality, and Mason [Mas72]
its log-concavity.

Remark 2.14. One may ask if there is a log-concavity statement for the whole Tutte
polynomial of a matroid that explains the log-concavity of the four specializations in
Theorem 2.13. This was achieved by Berget, Spink, Tseng, and the author [BEST]
who showed that the 4-variable transformation

(x+ y)−1(y + z)r(x+ w)|E|−rTM

(
x+ y

y + z
,
x+ y

x+ w

)
of the Tutte polynomial of a matroid M satisfies a multivariate version of log-
concavity. We note that without such a transformation, the coefficients of TM(x, y)
can fail to be unimodal [Sch93].

In this survey, we will explain how the sequences (c) and (d) are shown to be
log-concave with no internal zeros,2 and how the sequence (e) is shown to be top-
heavy. Since χM = 0 if M has a loop, and deleting loops of a matroid does not
change the lattice of its flats, we assume the following:

Assumption 2.15. From now on, a matroid is loopless unless specified otherwise.

3. The realizable case

We explain how the statements in Theorem 2.13 can be deduced using algebraic
geometry when the matroid in question is realizable. We assume familiarity with
algebraic geometry; those who prefer purely combinatorial treatments may skip this
section. For simplicity, we consider matroids realizable over C. For other fields,
one can run nearly identical arguments using the Chow cohomology ring [Ful98] or

1A slightly different terminology of flawlessness appears in [Hib92] and related works [Hib89,
JKL18]. A nonnegative sequence (a0, . . . , am) is flawless if it is top-heavy and additionally satisfies
a0 ≤ · · · ≤ a�d/2�, where d is the largest index such that ad �= 0. Note that unimodal and top-

heavy sequences are flawless.
2As observed by Lenz [Len13], a result of Brylawski [Bry77, Theorem 4.2] implies that the

statements for (a) and (b) follow from those for (c) and (d). The top-heaviness of (c) and (d)
follows from their unimodality due to [JKL18, Theorem 1.2].
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the �-adic (intersection) cohomology in place of singular (intersection) cohomology
(I)H•(−) with rational coefficients.

Throughout this section, let M be a (nontrivial) matroid of rank r realized by
a set of vectors {vi : i ∈ E} spanning a vector space V 
 Cr. The corresponding
surjection CE � V dualizes to give an r-dimensional linear subspace V ∨ ⊆ CE .

Notation 3.1. Let us denote L = V ∨ to avoid repeated use of the superscript ∨.
The set of independent sets of M can then be described also as the collection

I = {I ⊆ E : the composition L ↪→ kE � kI is surjective}.
We will often projectivize and work with PL ⊆ Pn−1.

3.1. Hyperplane arrangements. We first discuss some structures of the matroid
M in terms of its realization as a subspace L ⊆ CE . For each i ∈ E, let Hi be the
ith coordinate hyperplane of CE . Our assumption that M is loopless implies that
L is not contained in any Hi. We thus have a hyperplane arrangement A on
L consisting of the hyperplanes {L ∩ Hi : i ∈ E}. Dualizing the correspondence
between the flats of M and the spans of subsets of the vectors {vi : i ∈ E}, we
obtain a correspondence

{flats of M} ←→ {subspaces of L arising as intersections of hyperplanes in A}

F ←→ LF = L ∩
⋂
i∈F

Hi.

Note that the correspondence is order-reversing and, in particular, a flat of rank
r − i maps to the linear subspace LF of dimension i.

Example 3.2. The columns of the matrix in Figure 4 realizes the matroid U3,4.
Equivalently, the embedded subspace L ⊆ C4, where L = {x1 + x2 + x3 + x4 = 0}
is the row-span of the matrix, realizes the matroid U3,4.

⎡⎣1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤⎦

Figure 4

Next to the matrix, we have depicted the lattice of flats of M and the projectiviza-
tion of the hyperplane arrangement A in PL 
 P2.

We denote the complement of the hyperplane arrangement by

L̊ = L \
⋃
A = L ∩ (C∗)E, and likewise, PL̊ = PL ∩

(
(C∗)E/C∗).

Exercise 3.3. Suppose i ∈ E is not a coloop, and let F be the smallest flat
containing i. Show that the subspace LF is a realization of the contraction M/F ,
and that the hyperplane arrangement complement L \

⋃
(A\ {LF }) is a realization

of the deletion M \ F . What happens when i is a coloop?
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The geometric study of (complements of) hyperplane arrangements and its in-
teraction with matroid theory is a rich and on-going research field; some references
include [OT92,Dim17]. Here, we only note the following classical fact [OS80], which
states that the characteristic polynomial records the dimensions of the cohomologies
of the arrangement complement.

Theorem 3.4. Let L ⊆ CE realize a matroid M of rank r. Then, we have

TM(1 + q, 0) =
r∑

i=0

dimHi(L̊)qr−i

or, equivalently, by applying the Künnuth formula to PL̊× C∗ 
 L̊,

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

dimHi(PL̊)qr−1−i.

3.2. Log-concavity via intersection degrees. We now explain how the log-
concavity of the sequences (c) and (d) can be shown using algebraic geometry. We
start by describing a general strategy for log-concavity.

Let X be a smooth projective C-variety X of dimension d. When considered as
a 2d-dimensional real compact manifold, Poincaré duality for the cohomology ring
H•(X) provides the isomorphism

∫
X

: H2d(X) → Z, called the degree map. Recall
that a divisor D on X is ample (resp., semi-ample) if the line bundle OX(mD) is
very ample (resp., globally generated) for some integerm � 0. The general strategy
arises from the following Khovanskii–Teissier inequalities (see [Laz04a, Section 1.6]
for a history and a fuller treatment).

Proposition 3.5. Let α, β ∈ H2(X) be the cohomology classes of two semi-ample
(or more generally, nef ) divisors on a smooth projective C-variety X of dimension
d. Then,

the sequence (a0, . . . , ad) of intersection degrees of α and β, i.e., ai =

∫
X

αd−iβi,

is log-concave with no internal zeros.

Sketch of the proof. By continuity, one can assume α, β to be ample, and then one
reduces to the case of surfaces via the Bertini theorem. Then, one of the equivalent
forms of the Hodge index theorem for surfaces [Har77, Exercise V.1.9] exactly yields
the desired log-concavity. We note that the Hodge index theorem for surfaces stated
as [Har77, Theorem V.1.9] is exactly the validity of the Hodge–Riemann relations
for surfaces. �

Thus, starting from the realization L ⊆ CE , one may seek a smooth projective
C-variety equipped with two semi-ample divisor classes α, β such that their inter-
section degrees yield the appropriate combinatorial sequence. We explain how this
is done for the sequences (c) and (d).

3.2.1. Log-concavity of (c). We show the slightly stronger statement that the closely
related sequence (w0, . . . , wr−1) defined by

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

wiq
r−1−i
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is log-concave with no internal zeros. Theorem 3.4 states that this sequence is
exactly the Betti numbers of the arrangement complement PL̊. The sought-after
projective variety is the wonderful compactification of a hyperplane arrangement
complement introduced in [DCP95].

Definition 3.6. The wonderful compactification WL is the variety obtained
by blowing up PL at all the points {PLF : rkM(F ) = r − 1}, then by blowing-
up all strict transforms of the lines {PLF : rkM(F ) = r − 2}, and so forth. Let
πL : WL → PL be the blow-down map.

By construction πL is isomorphism on the open loci PL̊. The boundary ∂WL =
WL \ PL̊ is a simple-normal-crossing divisor on WL [DCP95]. For the sought-after
divisor classes α, β on WL, the wonderful compactification for the Boolean matroid
plays a special role.

When M = Un,n, that is, when L = CE , the wonderful compactification is known
as the permutohedral variety XAn−1

. Explicitly, it is obtained from Pn−1 by
blowing up all n coordinate points of Pn−1, then blowing up all strict transforms
of

(
n
2

)
coordinate lines of Pn−1, and so forth. Let π1 : XAn−1

→ Pn−1 be the blow-
down map. Blowing down the exceptional divisors in a reverse manner (see [Huh18]
for a detailed description via toric geometry), one obtains a different blow-down
map π2 : XAn−1

→ Pn−1. The resulting birational transformation is the Cremona

transformation, crem : Pn−1 ��� Pn−1 given by [x1, . . . , xn] 	→ [ 1
x1
, . . . , 1

xn
] in the

projective coordinates.
Returning to the case where M is not necessarily Boolean, we note the follow-

ing: because the arrangement A on PL is the restriction to PL of the coordinate
hyperplane arrangement on Pn−1, the universal property of blowups implies that
WL is the strict transform of PL ⊆ Pn−1 under the blow-up π1. Summarizing, we
have a commuting diagram.

(†)
WL XAn−1

PL Pn−1 Pn−1

πL π1
π2

crem

Let h be the hyperplane class of Pn−1, and define divisor classes α and β on WL

to be the restrictions of π∗
1h and π∗

2h, respectively. Huh and Katz [HK12] showed
that

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

(∫
WL

αr−1−iβi

)
qr−1−i.

Since α and β are both hyperplane class pullbacks, they are globally generated, so
Proposition 3.5 implies the desired log-concavity.

How might one think to do this, at least in hindsight? Two key steps are as
follows.

(1) The commuting diagram (†) shows that α is also the pullback to WL of
the hyperplane class in PL, so we may loosely interpret multiplication by
α as restriction to a general hyperplane H in PL. As a linear subvari-
ety H ⊂ Pn−1, this hyperplane H is again a realization of a matroid,
known as the truncation matroid tr(M) of M. With well-known prop-
erties of characteristic polynomials [Zas87], it is straightforward to verify
that 1

1+qTtr(M)(1 + q, 0) is obtained from 1
1+qTM(1 + q, 0) by erasing the
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constant term and then dividing by q. That is, the sequence (w0, . . . , wr−2)
for tr(M) is obtained from that of M by simply removing the last entry.

(2) With the previous step, we now only need compare
∫
WL

βr−1 with the con-

stant term TM(1, 0). Let PL−1 be the closure of the image of PL̊ under the
Cremona transformation, often known as the reciprocal linear space.
By the construction of β, the degree of PL−1 as a subvariety of Pn−1 equals∫
WL

βr−1. On the other hand, the degree of PL−1 also equals TM(1, 0). This

last key fact was proven in several contexts [Ter02, PS06, Huh12, HK12].
A topological approach in [Huh12] is as follows: A result of Dimca and
Papadima [DP03] from (complex) Morse theory related the Euler charac-
teristic of a hypersurface complement to the degree of the gradient map.
The hypersurface {x1x2 · · ·xn = 0} ⊂ Pn−1 is the coordinate hyperplane
arrangement that restricts to the hyperplane arrangement A on PL, and
the gradient map of x1x2 · · ·xn is exactly the Cremona map. Combining
these facts with Theorem 3.4, one can deduce degPL−1 = TM(1, 0).

Exercise 3.7. Let L be as in Example 3.2. Verify that TM(1, 0) = 3, and verify
that PL−1 is a cubic surface known as the Cayley nodal cubic. This cubic surface
has four singular points, with a line through each pair of points. Explain where
these come from in terms of the wonderful compactification WL. (Bonus : This
cubic surface has three more lines, for the total of nine. Where do they come
from?)

3.2.2. Log-concavity of (d). The sought-after projective variety is the variety of
critical points X, formally introduced in [CDFV11] but implicit in previous works
related to Varchenko’s problem on critical points of master functions on an affine hy-
perplane arrangement [Var95]. Here, in order to build upon our previous discussion
in Section 3.2.1, we follow [BEST, Section 8] to describe a smooth birational model
of X in terms of the wonderful compactification WL, although it differs slightly from
the original description in [Huh15].

Consider the embedding WL ↪→ XAn−1
in the diagram (†). Let N = NWL/XAn−1

be the normal bundle, and let XL = PWL
(N∨) be the projectivization3 of the

conormal bundle with the projection map p : XL → WL. Recall the blow-down
map πL : WL → PL.

The sought-after divisor classes on XL are as follows. Let γ be the pullback of

the hyperplane class in PL via the composition XL
p→ WL

πL→ PL. Let δ = c1(O(1))
be the first Chern class of the line bundle O(1) from the construction of XL as a
projectivization of a vector bundle, which turns out to be semi-ample. One can
then translate [DGS12, Theorem 1.1] to the statement that

1

q
TM(q, 0) =

r−1∑
i=0

(∫
XL

γr−1−iδn−r−1+i

)
qr−1−i.

Proposition 3.5 now implies the desired log-concavity.
How might one think to do this, at least in hindsight? For the original for-

mulation of X, maximum likelihood problems in algebraic statistics provided a
motivation; see [Huh13,HS14]. For the related construction XL here, we highlight

3Our convention for the projectivization of a vector bundle E on a variety X is that PX(E) =
ProjX Sym•(E∨), which agrees with [EH16] but is the opposite of [Har77,Laz04b].
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some key steps. In either case, one uses properties of log-tangent bundles and their
characteristic classes; see [Alu05] for an introduction to these tools.

(1) By Theorem 3.4, the constant term equals(
1

q
TM(q, 0)

)∣∣∣∣
q=0

=

(
1

1 + q
TM(1 + q, 0)

)∣∣∣∣
q=−1

= (−1)r−1χtop(PL̊),

the signed Euler characteristic of PL̊. Euler characteristics satisfy the scis-
sors relation that χtop(X) = χtop(X \ Z) + χtop(Z) for a closed embed-
ding Z ↪→ X of C-varieties. More generally, Chern–Schwartz–MacPherson
(CSM) classes [Mac74] of C-varieties are homological objects that respect
such scissors relations. One then uses Exercise 3.3 to show that the degrees
of the CSM classes of PL̊ satisfy the same deletion-contraction relation sat-
isfied by the coefficients of 1

−qTM (−q, 0), so that Theorem 2.11 implies that

they are the same.
(2) Having related the CSM classes to 1

−qTM (−q, 0), we now relate powers of

δ with the CSM classes of PL̊. The varieties WL and XAn−1
have simple-

normal-crossing boundaries ∂WL and ∂XAn−1
= XAn−1

\ ((C∗)E/C∗). Un-
der the embedding WL ↪→ XAn−1

, one can show that ∂WL = WL∩∂XAn−1

scheme-theoretically. Consequently, one has a short exact sequence (see for
instance [EHL, Section 9])

0 → TWL
(− log ∂WL) → TXAn−1

(− log ∂XAn−1
)|WL

→ N → 0.

Because XAn−1
is a toric variety with the dense open torus (C∗)E/C∗, the

log-tangent bundle TXAn−1
(− log ∂XAn−1

) is trivial [CLS11, Chapter 8].

Thus, the normal bundle N is globally generated so that δ is semi-ample.
Moreover, the Segre classes of N , which are given by powers of −δ, equal
the Chern classes of TWL

(− log ∂WL), which are the CSM classes of the

complement WL \ ∂WL = PL̊ [Alu99].

3.3. The top-heaviness via intersection cohomology. We start with a general
strategy for establishing top-heaviness, which first appeared in [BE09] to establish
top-heaviness for Bruhat intervals. Suppose we have a (not necessarily smooth)
projective C-variety X with an affine stratification. There is a finite collection
{Uj}j∈J of locally closed subvarieties of X, called the strata, such that X is the

disjoint union of {Uj}j∈J , the closure Uj of any strata is again a union of strata,
and each strata is isomorphic to Cm for some m.

Theorem 3.8 ([BE09, Theorem 3.1]). For 0 ≤ i ≤ d = dimX, let bi be the number
of strata of dimension i. Then we have bi ≤ bj for all 0 ≤ i ≤ j ≤ d− i.

Sketch of the proof. Let us assume we have shown that dimH2i(X) = bi. If X were
smooth, the hard Lefschetz theorem implies that (b0, . . . , bd) is in fact unimodal and
symmetric, so we would be done. Since X may not be smooth, we need to consider
the intersection cohomology IH•(X), for which the hard Lefschetz theorem still
holds [GM83,BBD82]. There is a natural graded map H•(X) → IH•(X), fitting



ESSENCE OF INDEPENDENCE 87

into a commutative diagram

H2i(X) IH2i(X)

H2j(X) IH2j(X)

·c1(L)j−i ·c1(L)j−i

for any ample line bundle L on X, where the injectivity of the right vertical map
follows from the validity of the hard Lefschetz property for intersection cohomology.
Thus, if H•(X) → IH•(X) is injective, then the left vertical map is necessarily
injective, so we can conclude the desired bi ≤ bj .

The proof of dimH2i(X) = bi and the injection H•(X) ↪→ IH•(X) both follow
from combining a standard long exact sequence of cohomologies and the result
of Weber [Web04] (see also [BE09, Theorem 2.1]), which identified the kernel of
Hk(X) → IHk(X) in terms of the weight filtration on Hk(X) given by the mixed
Hodge structure [Del71]. �

Björner and Ekedahl [BE09] used Theorem 3.8 on Schubert varieties of a gener-
alized flag variety to deduce top-heaviness for Bruhat intervals of a finite crystal-
lographic Coxeter group. In our case, for a realization L ⊆ CE of a matroid M, we
consider its matroid Schubert variety YL defined as

YL = the closure of L inside (P1)E,

where CE ⊂ (P1)E via the identification P1 = C∪{∞}. Note that the identification
P1 = C∪ {∞} induces an affine stratification of (P1)E with strata {CS ×{∞}E\S :
S ⊆ E}. One shows that this stratification restricts to give an affine stratification
of YL by using the computation of (the Gröbner basis for) the defining ideal of
YL ⊆ (P1)E given by Ardila and Boocher [AB16].

Theorem 3.9 ([HW17, Theorem 14], [PXY18, Lemmas 7.5 and 7.6]). The
matroid Schubert variety YL admits an affine stratification by the strata {UF :
F a flat of M} defined by

UF = YL ∩
(
CF × {∞}E\F ).

For each flat F , the strata UF is isomorphic to the image of the composition
L � CE � CF , which has dimension rkM(F ).

The top-heaviness of the sequence (e) now follows from Theorems 3.9 and 3.8.

Exercise 3.10. Verify Theorem 3.9 for a realization of the uniform matroid U2,3.

For Schubert varieties in generalized flag varieties, their intersection cohomology
is closely related to Kazhdan–Lusztig theory. The terminology “matroid Schubert
variety” was chosen because of the analogous relation between the intersection
cohomology YL and Kazhdan–Lusztig theory of matroid developed in [EPW16,
PXY18].

4. Tropical Hodge theory

We will begin by explaining how polyhedral fans and matroids give rise to co-
homology rings. We then discuss two fundamental theorems for these cohomology
rings concerning the validity of the Kähler package (Definition 1.2). We then ex-
plain how the log-concavity statements for arbitrary matroids can be deduced from
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these fundamental theorems. We will assume some familiarity with the basics of
polyhedral geometry. For a brief introduction see [Ful93, Chapter 1.2], and see
[Zie95] for a fuller treatment.

4.1. Chow rings of fans and matroids. Let N be a lattice, i.e., a finitely gener-
ated free abelian group Zm. Let N∨ denote its dual lattice. We write NR = N ⊗R.
Recall that a fan Σ in NR is rational if each ray ρ in Σ equals R≥0u for some
u ∈ N , simplicial if every k-dimensional cone in Σ is generated by k rays, and
pure-dimensional if every maximal cone has the same dimension. For each ray ρ,
let uρ ∈ N be the primitive ray generator, i.e., the element such that ρ∩N = Z≥0uρ.
Let Σ(1) denote the set of rays of Σ. The support of Σ is denoted |Σ|. A fan Σ in
NR is complete if |Σ| = NR.

Assumption 4.1. All fans we treat will be rational, simplicial, and pure-dimension-
al, but not necessarily complete.

Definition 4.2. The Chow (cohomology) ring (with real coefficients) of a fan
Σ in NR is the graded R-algebra

A•(Σ) =
R[xρ : ρ ∈ Σ(1)]

IΣ + JΣ
,

where IΣ and JΣ are the ideals

IΣ =
〈 ∏

ρ∈S

xρ : S ⊆ Σ(1) do not form a cone in Σ
〉

and

JΣ =
〈 ∑

ρ∈Σ(1)

m(uρ)xρ : m ∈ N∨
〉
.

It is an exercise to show that the kth graded piece Ak(Σ) of A•(Σ) is generated
by square-free monomials of degree k in the variables. In particular, Ak(Σ) = 0

for all k greater than the dimension d of Σ, and A•(Σ) =
⊕d

i=0 A
i(Σ) is a finite-

dimensional graded real vector space.

Exercise 4.3. For two fans Σ and Σ′, show that A•(Σ× Σ′) = A•(Σ)⊗A•(Σ′).

Borrowing language from algebraic geometry, let us call a linear combination of
the variables xρ a divisor and its image in A1(Σ) its divisor class on Σ. Because
Σ is simplicial, a divisor D =

∑
ρ∈Σ(1) cρxρ determines a piecewise-linear function

ϕD on |Σ| by assigning the value cρ to each primitive ray generator uρ.

Definition 4.4. A divisor D on a complete fan Σ is ample if the piecewise-linear
function ϕD is strictly convex, i.e., ϕD(u) + ϕD(v) < ϕD(u + v) for all u, v ∈ NR

not in the same cone of Σ. It is nef if only the weak inequality ≤ is satisfied.
For a not necessarily complete fan Σ, a divisor D is ample (resp., nef) if ϕD is

the restriction of the piecewise-linear function of an ample (resp., nef) divisor on a
complete fan containing Σ as a subfan. We denote by K(Σ) ⊂ A1(Σ) the convex
set of the divisor classes of ample divisors on Σ.4 We often consider K(Σ) as a set
of graded linear maps A•(Σ) → A•+1(Σ) given by multiplication.

4Technically, our definition of ample/nef divisors on noncomplete fans differs from that of
[ADH22], which makes our K(Σ) a subset of the one in [ADH22], but will suffice for our discussion.
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In terms of toric geometry, the ring A•(Σ) is the Chow cohomology ring of the
toric variety XΣ associated to the fan Σ [Dan78, Bri96]. When Σ is the normal
fan of a simple polytope, the toric variety XΣ is a projective variety with mild
(i.e., orbifold) singularities, whose ample cone is K(Σ). Classical results in alge-
braic geometry then imply the validity of the Kähler package for the ring A•(Σ).
Stanley used this to resolve McMullen’s g-conjecture on the number of faces of a
simple polytope [Sta80]. Afterwards, McMullen [McM93] gave a purely combina-
torial proof of the Kähler package that works even for nonrational fans (with no
associated toric variety in the background). In our case, the fans will not in general
be complete, so a priori there is no reason to expect any validity of the Kähler pack-
age, since the associated toric varieties are not in general compact. The miraculous
result is that certain fans from matroids turn out to enjoy the Kähler package.

For a matroid M on E of rank r, we construct a fan introduced and studied
in [Stu02,AK06,Spe08] as a tropical geometric analogue of linear spaces. The fan
will be in the real vector space over the lattice ZE/ZeE. For a subset S ⊆ E,
let us denote by eS the image of eS =

∑
i∈S ei ∈ RE under the quotient map

RE → RE/ReE .

Definition 4.5. The Bergman fan ΣM of a rank r matroid M is a pure (r − 1)-
dimensional fan in RE/ReE consisting of the maximal cones R≥0{eF1

, . . . , eFr−1
},

one for each maximal chain ∅ � F1 � F2 � · · · � Fr−1 � E of nonempty proper
flats of M.

Example 4.6. The Bergman fans of U2,3 and U3,4 are depicted in Figure 5.

Figure 5

Example 4.7. For the Boolean matroid Un,n, note that the maximal cones of
its Bergman fan ΣUn,n

correspond to permutations of the ground set E. The fan
ΣUn,n

is known as the permutohedral fan or as the braid arrangement, denoted
ΣAn−1

. Note that by construction the Bergman fan of any matroid M (on ground
set E) is a subfan of ΣAn−1

. See [AA] for a survey of remarkable combinatorial
properties of the permutohedral fan.

Definition 4.8. TheChow ring A•(M) of a matroidM is the Chow ring A•(ΣM)
of its Bergman fan. Explicitly, it is

A•(M) =

r−1⊕
i=0

Ai(M) =
R[xF : F a nonempty proper flat of M]

IM + JM
,
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where IM and JM are the ideals

IM =
〈
xFxF ′ : F �⊆ F ′ and F �⊇ F ′

〉
and

JM =
〈∑

F	i

xF −
∑
G	j

xG : i, j ∈ E
〉
,
where the two sums are over all flats

containing i and j, respectively.

Remark 4.9. When M has a realization L ⊆ CE , the wonderful compactification
WL defined in Section 3.2.1 is the closure of PL̊ inside the toric variety XΣM

.
The resulting pull-back map of cohomologies is an isomorphism between the Chow
ring A•(M) = A•(XΣM

) of the toric variety of ΣM and the cohomology ring of
WL [FY04,DCP95]. This Chow equivalence is informed by the theory of tropical
compactifications [Tev07]; see [MS15, Chapter 6] for an introduction. While the
Kähler package for the Chow ring in this realizable case thus follows from classical
Hodge theory, [AHK18, Theorem 5.12] states that the existence of such Chow
equivalence is equivalent to the realizability of the matroid.

We note another fan associated to a matroid whose Chow ring will be used for
log-concavity statements.

Definition 4.10. The conormal fan ΣM,M⊥ of a (loopless and coloopless) matroid

M is a fan in RE/ReE ×RE/ReE whose support equals the support of the product
ΣM × ΣM⊥ .

We omit the precise definition, which involves the intricate and interesting com-
binatorics of the bipermutohedron and biflags introduced in [ADH22]. See [ADH22,
Section 2.8] for its origin story.

Remark 4.11. Just as the Chow ring A•(M) of a matroid M is modeled after the
wonderful compactification, the conormal Chow ring of a matroid is modeled after
the geometry described in Section 3.2.2. For instance, Exercise 2.7 suggests how the
product ΣM × ΣM⊥ can serve as a polyhedral model of the projectivized conormal
bundle XL = PWL

(N∨).

4.2. Fundamental theorems of tropical Hodge theory. We now discuss two
fundamental theorems concerning the Kähler package for Chow rings of not neces-
sarily complete fans. To state them, we need a few more terminologies.

For a cone σ of a fan Σ in NR, the star stσ(Σ) is a fan in NR/ span(σ) whose
cones are the images under the projection NR → NR/ span(σ) of the cones of Σ
containing σ. Geometrically, the toric variety Xstσ(Σ) of the star is the closure of
the torus-orbit of XΣ corresponding to the cone σ.

Exercise 4.12.

(1) The star of the Bergman fan ΣM at the ray R≥0eF corresponding to a
nonempty proper flat F is isomorphic to the product ΣM|F × ΣM/F .

(2) Show that the Chow ring A•(stσ Σ) of the star is isomorphic to the quotient
ring A•(Σ)/〈a ∈ A•(Σ) : a ·

∏
ρ∈σ xρ = 0〉.

A positive Minkowski weight on a (pure) d-dimensional fan Σ is a linear map
deg : Ad(Σ) → R such that deg(

∏
ρ∈σ xρ) > 0 for any maximal cone σ of Σ. It

defines a symmetric bilinear pairing A•×Ad−• → R by (x, y) 	→ deg(xy), which by
abuse of notation we also denote deg.
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Geometrically, Minkowski weights in general are fundamental objects in tropical
intersection theory, serving the role of Chow homology classes. For their definition
and properties, see [FS97,KP08] and [MS15, Chapter 6], as well as [AHK18, Section
5]. Fans arising in the context of tropical compactifications (Remark 4.9) provide
many examples of positive Minkowski weights. For instance, the following can be
deduced from what is known as the cover-partition property of flats.

Proposition 4.13 ([AHK18, Proposition 5.2]). For a matroid M of rank r, the
assignment xF1

· · ·xFr−1
	→ 1 for any maximal chain ∅ � F1 � · · · � Fr−1 � E of

nonempty proper flats of M gives a well-defined linear map degM : Ar−1(M) → R.

Similarly, the conormal fan of a matroid also has a natural positive Minkowski
weight degM,M⊥ . The key notion for the statement of the two fundamental theorems
is the notion of Lefschetz-ness of fans, introduced in [ADH22].

Definition 4.14. A fan Σ of dimension d is said to be Lefschetz if the following
are satisfied:

(1) HomR(A
d(Σ),R) is spanned by a positive Minkowski weight deg.

(2) The triple (A•(Σ), deg,K(Σ)) satisfies the Kähler package (Definition 1.2).
(3) For any positive-dimensional cone σ of Σ, the star stσ(Σ) is Lefschetz.

We can now state the two fundamental theorems.

Theorem 4.15 ([AHK18, Theorem 1.4]). The Bergman fan ΣM of a matroid M
is Lefschetz.

Theorem 4.16 ([ADH22, Theorem 1.6]). Let Σ and Σ′ be fans in NR with the
same support, and suppose K(Σ) and K(Σ′) are nonempty. Then Σ is Lefschetz if
and only if Σ′ is Lefschetz.

The product of two Lefschetz fans is again Lefschetz [AHK18, Section 7.2]. Com-
bining this with the two theorems yields the following.

Corollary 4.17. The conormal fan of the matroid is Lefschetz.

Exercise 4.18. Let M be a matroid of rank 3. Let α =
∑

G	i xG for any i ∈ E.
Note that α ∈ A•(M) is independent of the choice of i due to the linear relations
JM.

(1) Show that degM(x2
F ) = −1 for any flat F of rank 2.

(2) Show that degM
(
α2

)
= 1 for any element i ∈ E.

(3) Show that degM(αxF ) = 0 for any element i ∈ E and a flat F of rank 2.
(4) Use these steps to establish the Kähler package for A•(M) with K = R≥0α.

Let us give a broad overview of the proofs of the two theorems. Both employ
the following strategy for establishing the Kähler package for a graded R-algebra

A• of dimension d in the sense that A• =
⊕d

i=0 A
i. This general strategy and

variations thereof appear in several previous works on the Kähler package across
varied mathematical fields, such as the works of McMullen [McM93] on simple
polytopes, of Elias and Williamson [EW14] on Soergel bimodules, and of de Cataldo
and Migliorini [dCM09] on the topology of algebraic maps.

(i) It suffices to show the statements of (HL) and (HR) in Definition 1.2 in the
special case where L0 = L1 = · · · = Ld−2i, because this nonmixed version of
the Kähler package implies the original mixed version of the Kähler package
[Cat08] (see also [ADH22, Theorem 5.20]).
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(ii) Next, one can set up an induction on the dimension d as follows. In many
situations, the quotient algebra A•/ ann(x) for certain choices of x ∈ A1 is
again in the family of graded R-algebras that one is seeking to establish the
Kähler package for. Here, ann(x) denotes the annihilator {a ∈ A• : ax =
0}. The key observation then is that(

(HR) in degree i of A•/ ann(x)
for sufficiently many x ∈ A1

)
=⇒

(
(HL) in degree i
for the original A•

)
(see for instance [BES, Proposition 6.1.6]). Because the quotient A•/ ann(x)
has smaller dimension, i.e., its dth graded part is zero, one can now proceed
by induction on d.

(iii) By the validity of (HL) from the inductive hypothesis, the validity of (HR)
for any single element L ∈ K then implies (HR) for all L ∈ K. Thus, the
last step is to finish the induction by establishing (HR) for a well-chosen
L ∈ K. This is often the most intricate step.

Returning to the case of matroids, step (ii) is provided by Exercise 4.12, which
showed that A•(M)/ ann(xF ) 
 A•(ΣM|F ×ΣM/F ) for a nonempty proper flat F of
M. Hence, one can induct on the rank of the matroid. In the case of Theorem 4.16,
step (ii) is essentially built into the definition that the stars of Lefschetz fans are
Lefschetz, so that one can induct on the dimension of the fan.

In the original proof [AHK18] of Theorem 4.15, in order to carry out step (iii),
Adiprasito, Huh, and Katz introduced the notion of flips, inspired by the proof
of the Kähler package for simple polytopes by McMullen [McM93]. This process
converts the Bergman fan of ΣM through a sequence of fans until it reaches a fan for
which (HR) can be verified easily, and the process is set up such that the validity
of (HR) for any one fan in the sequence implies (HR) for all fans in the sequence.
Geometrically, one may interpret the process of flips as a combinatorial abstraction
of the process of constructing the wonderful compactification WL as a sequence of
blowups (Definition 3.6).

Afterwards, it was recognized that a key property of semi-small maps [dCM02]
inspires a strategy that can greatly simplify step (iii). For a map f : X → Y of
smooth projective varieties, the pullbacks to X of ample divisors on Y generally fail
(HL) and (HR) in the cohomology ring of X, since the pullbacks are generally not
ample onX but only nef (i.e., is a limit of ample divisors). However, a characterizing
property of a semi-small map is that the pullbacks still satisfy (HL) and (HR).

This inspires the following approach: One can look for a map Ã• → A• of graded
algebras, behaving like a pullback along a semi-small map. If (HR) is known to

hold for Ã•, say by induction, step (iii) would follow.
This insight allowed Braden, Huh, Matherne, Proudfoot, and Wang to give a

considerably simplified proof of Theorem 4.15 in [BHM+22]. Using that the deletion
M\e of a matroid M by a non-coloop element e behaves like a semi-small map, they
carry out step (iii) by an induction that reduces to the case of Boolean matroids.
This insight on semi-small maps is also essential in the proof of Theorem 4.16 by
Ardila, Denham, and Huh. A key step [ADH22, Theorem 5.9], building upon the
works [W�lo97,AKMW02], states that any two fans with the same support can be
related by a sequence of edge stellar subdivisions, which are operations on fans that
play the role of semi-small maps in toric geometry.
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4.3. Applications of Hodge–Riemann relations in degree 1. The Kähler
package gives rise to log-concave sequences in the following way.

Proposition 4.19. Suppose Σ is a Lefschetz fan of dimension d with a positive
Minkowski weight deg. Then, for any nef divisor classes α and β,

the sequence (a0, a1, . . . , ad) defined by ai = deg(αd−iβi)

is log-concave with no internal zeros.

Proof. We may assume that α, β are ample, and show that the sequence is strictly
positive and log-concave, since a limit of such sequences is necessarily log-concave
with no internal zeros. Strict positivity is then implied by Hodge–Riemann rela-
tions (HR) in degree 0. For log-concavity, (HR) in degree 1, with L1 · · ·Ld−2 =
αd−i−1βi−1, implies that the symmetric bilinear pairing A1(Σ)×A1(Σ) → R given
by (x, y) 	→ deg(xy ·αd−i−1βi−1) has at most one positive eigenvalue. This implies
that the symmetric matrix[

deg(α2 · αd−i−1βi−1) deg(αβ · αd−i−1βi−1)
deg(αβ · αd−i−1βi−1) deg(β2 · αd−i−1βi−1)

]
cannot be positive definite, but it also cannot be negative definite because all of
its entries are positive. Hence, the determinant of the matrix is nonpositive or,
equivalently, a2i ≥ ai−1ai+1. �

Returning to showing log-concavity for a matroid M of rank r, one now searches
for appropriate divisor classes on the Bergman fan ΣM or the conormal fan ΣM,M⊥ .
This step benefits heavily from the geometry of realizable matroids explained in
Section 3.

The divisor classes for the log-concavity of the sequence (c) come from an involu-
tive symmetry of the permutohedral fan ΣAn−1

(Example 4.7). As −ei = eE\i, the

minus map x 	→ −x on RE/ReE gives an involution of ΣAn−1
. This equips ΣAn−1

with two distinguished coarsenings to a normal fan of a simplex: Let ΣΔ (resp., be
Σ∇) be the fan whose rays are {ei : i ∈ E} (resp., {−ei : i ∈ E}) and whose cones
are generated by any subsets of the rays with cardinality ≤ n− 1. The fan ΣAn−1

is a common refinement of both the fans ΣΔ and Σ∇.
Let us fix an element i ∈ E, and let ϕΔ be the piecewise-linear function on

ΣΔ given by ei 	→ 1 and ej 	→ 0 for all j �= i, which is clearly a convex (but not
strictly convex) function. Restricting this piecewise-linear function to ΣM, it defines
a divisor on ΣM whose divisor class is denoted α ∈ A1(M). Similarly, starting with
the fan Σ∇, we obtain a divisor class β. Both α and β are nef, and independent
of the choice of i ∈ E we fixed. Algebraically, we may take α =

∑
F	i xF and

β =
∑

F �	i xF for any choice of i ∈ E. We have the following.

Proposition 4.20 ([HK12, Proposition 5.2], [AHK18, Proposition 9.5]). With the
notations as above, we have

1

1 + q
TM(1 + q, 0) =

r−1∑
i=0

degM(αr−1−iβi)qr−1−i.

Combining the proposition with Theorem 4.15 and Proposition 4.19, we obtain
that the coefficients of 1

1+qTM(1 + q, 0) are log-concave with no internal zeros,

which implies the same property for the coefficients of TM(1 + q, 0), i.e., the log-
concavity of the sequence (c). One can also consider other kinds of divisor classes
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on ΣM and their values under degM to study properties of matroids; see for instance
[Eur20,BES,BST,DR22].

Remark 4.21. In geometric terms, the toric variety of ΣAn−1
is the permutohedral

variety defined in Section 3.2.1. That the fan ΣAn−1
coarsens to ΣΔ and Σ∇

gives the two blow-down maps π1, π2 : XAn−1
→ Pn−1, related by the Cremona

transformation, which were described in (†). Thus, the divisor classes α and β here
and the computations involving them agree with those described in Section 3.2.1.

For the sequence (d), recall that the conormal fan of a matroid M is a fan in
RE/ReE × RE/ReE with support equal to the support of ΣM × ΣM⊥ . Let

p : RE/ReE × RE/ReE → RE/ReE be the projection to the first factor, and

s : RE/ReE × RE/ReE → RE/ReE be the addition map (x, y) 	→ x+ y.

By pulling back the piecewise-linear function ϕΔ on RE/ReE along these two maps,
we obtain two divisor classes γ and δ.

Proposition 4.22 ([ADH22, Theorem 1.2]). With the notations as above, we have

1

q
TM(q, 0) =

r−1∑
i=0

degM,M⊥(γr−1−iδn−r−1+i)qr−1−i.

Combining the proposition with Corollary 4.17 and Proposition 4.19, we conclude
the log-concavity of the sequence (d). The proposition was proved via an intricate
combinatorics of biflags in [ADH22] and the Chern–Schwartz–MacPherson classes
of matroids [LdMRS20]. By developing a new framework of tautological classes of
matroids, Berget, Spink, Tseng and the author proved a formula [BEST, Theorem
A and Theorem 9.7] that contains both Proposition 4.20 and Proposition 4.22 as
special cases.

Note that only a part of the Kähler package, the Hodge–Riemann relations in
degrees at most 1, was required for concluding log-concavity. Extracting the essence
of the analytic properties behind (HR) in degrees at most 1 leads to the fascinating
theory of Lorentzian polynomials [BH20] and (equivalently) completely log-
concave polynomials [ALOGV18]. One powerful feature of this theory is that it
often allows one to reduce to dimension 2 cases, mirroring the feature in classical
algebraic geometry that (HR) in degree 1 can be reduced to the case of surfaces. For
instance, by reducing to an analysis of rank 2 matroids, Brändén and Huh [BH20]
and independently Anari, Liu, Oveis-Gharan, and Vinzant [ALOGV18] proved that
the sequence (a) is in fact ultra-log-concave, in the sense that

I2i(
n
i

)2 ≥ Ii−1Ii+1(
n

i−1

)(
n

i+1

) for all i,

which was conjectured by Mason [Mas72]. Moreover, by analyzing rank 3 matroids
(cf. Exercise 4.18), one can use Lorentzian polynomials to give a simplified proof of
the log-concavity of the sequence (c) [BES,BL]. We point to [Huh22, Section 2] for
a survey of Lorentzian polynomials and their applications.

5. Intersection cohomology of a matroid

We describe the intersection cohomology of a matroid, and its role in showing
the top-heaviness of the sequence (e). We begin by considering the following graded
algebra.
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Definition 5.1. For a matroid M of rank r, its Möbius algebra is a graded R-
algebra B•(M) =

⊕r
i=0 B

i(M) where Bi(M) has basis {yF : F a rank i flat of M}
for each 0 ≤ i ≤ r, and multiplication is given by

yF · yF ′ =

{
yF∨F ′ if rkM(F ) + rkM(F ′) = rkM(F ∨ F ′)

0 otherwise.

A strategy for the top-heaviness is to show that there is an injective linear map
Bi(M) → Br−i(M) for every i ≤ r/2. The statement of the hard Lefschetz property
inspires a candidate for such a map: the multiplication by a power of an element in
B1(M). We then immediately face the difficulty that B•(M) usually cannot satisfy
Poincaré duality (PD) or the hard Lefschetz property (HL), since the sequence
(W0, . . . ,Wr) of the dimensions of graded pieces is usually not symmetric.

The intersection cohomology IH•(M), introduced in [BHM+], is a graded vector
space containing B•(M) that most efficiently amends the failure of (PD) and (HL).
We give a broad outline of their construction and their properties. The following
remark explains some geometric motivation.

Remark 5.2. Recall from Section 3.3 the matroid Schubert variety YL of a real-
ization L ⊆ CE of a matroid M. One deduces from Theorem 3.9 that the algebra
B•(M) is the cohomology ring (in even degrees) of the matroid Schubert variety
YL (see [HW17, Theorem 14]). The variety YL is usually quite singular, which
witnesses the failure of (PD) and (HL) for B•(M). Motivated by the proof of The-
orem 3.8, one seeks to understand the intersection cohomology IH•(YL), which
contains B•(M) as a subalgebra.

To do so, let f : X → YL be a resolution of singularities of YL. The decomposition
theorem of Beilinson, Bernstein, Deligne, and Gabber [BBD82] implies that H•(X)
can be decomposed into a direct sum of B•(M)-modules, and that IH•(YL) is
a direct summand. In general, computing these decompositions to get a handle

on IH•(YL) can be intractible, but for YL there is a resolution f : ỸL → YL by

the augmented wonderful variety ỸL of L [BHM+22] (see also [EHL]), such that

its cohomology ring H•(ỸL) and the injection B•(M) ↪→ H•(ỸL) have explicit
combinatorial descriptions in terms of the matroid M.

We first find a bigger graded R-algebra containing B•(M) that satisfies the
Kähler package. The augmented Bergman fan [BHM+22, Definition 2.4] of
a matroid M of rank r is an r-dimensional fan in RE closely related to the Bergman
fan ΣM. Its Chow ring has the following explicit description.

Definition 5.3. The augmented Chow ring (with real coefficients) of a matroid
M is the graded R-algebra

CH•(M) =
R[yi, xF : i ∈ E, F a (possibly empty) proper flat of M]

ĨM + J̃M
,

where ĨM and J̃M are the ideals

ĨM =
〈
xFxF ′ : F �⊆ F ′ and F �⊇ F ′

〉
+
〈
yixF : i /∈ F

〉
and

J̃M =
〈
yi −

∑
F �	i

xF : i ∈ E
〉
.
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The augmented Chow ring has the following useful features:

• The assignment yF 	→
∏

i∈F yi defines an injection B•(M) ↪→ CH•(M) of
graded R-algebras [BHM+22, Proposition 2.28].

• Theorem 4.15 combined with Theorem 4.16 implies that the augmented
Bergman fan is Lefschetz, because the support of the augmented Bergman
fan of M can be identified with the support of the usual Bergman fan of the
free co-extension matroid of M (see [EHL, Section 5.3]). Thus, the Chow
ring CH•(M) satisfies the Kähler package.

Thus, we have found a bigger algebra containing B•(M) that satisfies the Kähler
package. However, we are not done because CH•(M) is too big : To conclude injec-
tivity properties for B•(M), we need the graded linear operators K satisfying (HL)
on CH•(M) to come from B1(M), but this is almost never the case—a positive linear
combination of the yi’s usually does not satisfy (HL) on CH•(M). One instead must
consider the following B•(M)-submodule of CH•(M) that most efficiently repairs
the the failure of (HL) on B•(M).

Theorem 5.4. Up to isomorphism there is a unique indecomposable B•(M)-module
direct summand of CH•(M) containing B•(M). This direct summand is the inter-
section cohomology IH•(M) of M.

In fact, the authors of [BHM+] establish a canonical decomposition of CH•(M)
as a B•(M)-module, and they identify the direct summand IH•(M). This de-
composition along with the Kähler package for CH•(M) is then fed into a highly
intricate version of the general strategy for establishing the Kähler package outlined
in Section 4.2, resulting in the following main theorem.

Theorem 5.5 ([BHM+, Theorem 1.6]). The intersection cohomology IH•(M) of
a matroid M satisfies the Kähler package with K = {

∑
e∈E ceye : ce > 0}.

As a corollary, for any positive linear combination � =
∑

e∈E ceye and 0 ≤ i ≤
j ≤ r − i, we have a commuting diagram

Bi(M) IHi(M)

Bj(M) IHj(M)

·�j−i ·�j−i

where the right vertical map is injective by the hard Lefschetz property of IH•(M).
The left vertical map is thus injective, and the desired top-heaviness of the sequence
(e) follows.

6. Conclusion

Matroids are combinatorial structures that capture the essence of independence.
There were several conjectures about the behavior of sequences of invariants of a
matroid, involving log-concavity or top-heaviness. June Huh and his collaborators
made fundamental contribution to matroid theory [AHK18, ADH22, BHM+], re-
solving many of these conjectures. They began by answering the conjectures for
realizable matroids using algebraic geometry, a significant step on its own. Then,
with considerable effort, they were able to extract the combinatorial heart, and
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establish Hodge-theoretic properties for arbitrary, not necessarily realizable, ma-
troids. This development of the Hodge theory of matroids forms an integral part
of the foundation for studying matroids from an algebro-geometric perspective.
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