A SURVEY OF THE HOMOLOGY COBORDISM GROUP

OĞUZ ŞAVK

Abstract

In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its longstanding and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology 3 -spheres and the structure of $\Theta_{\mathbb{Z}}^{3}$. Finally, we briefly discuss the knot concordance group \mathcal{C} and the rational homology cobordism group $\Theta_{\mathbb{Q}}^{3}$, focusing on their algebraic structures, relating them to $\Theta_{\mathbb{Z}}^{3}$, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology 3 -spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.

Contents

1. A promenade around smooth manifolds 119
2. The structure of $\Theta_{\mathbb{Z}}^{3}$ 123
3. Two relatives of $\Theta_{\mathbb{Z}}^{3}$ 135
4. Appendix: Examples of homology 3-spheres 139

Afterword 144
Acknowledgments 144
About the author 144
References 145

1. A promenade around smooth manifolds

All n-dimensional manifolds (n-manifolds for short) with or without boundaries are chosen to be compact, connected, oriented, and smooth. Otherwise, the type of the manifold is specified. The boundary of a manifold M is denoted by ∂M, and $-M$ stands for M with the opposite orientation. The connected sum operation between two manifolds is denoted by \#. A diffeomorphism (resp., homeomorphism, and piecewise linear homeomorphism) indicates a smooth (resp., continuous, and continuous and piecewise linear) bijective map between manifolds with a smooth (resp., continuous, and continuous and piecewise linear) inverse.

2020 Mathematics Subject Classification. Primary 57K31, 57K41, 57R57, 57R58, 57R90.
1.1. The predecessor: Θ^{n}. An n-manifold M with $\partial M=\emptyset$ is called a homotopy n-sphere if M has the same homotopy type as the unit n-dimensional sphere S^{n}, i.e., $M \simeq S^{n}$. The n-dimensional homotopy cobordism group Θ^{n} is defined as

$$
\Theta^{n}=\{\text { homotopy } n \text {-spheres up to diffeomorphism }\} / \sim,
$$

where the equivalence relation h-cobordism \sim is given for two arbitrary homotopy n-spheres M_{0} and M_{1} as

$$
M_{0} \sim M_{1} \Longleftrightarrow\left\{\begin{array}{l}
\text { there exists an }(n+1) \text {-manifold } W \text { such that } \\
\bullet \partial W=-\left(M_{0}\right) \cup M_{1}, \\
\bullet \text { the inclusions induce homotopy equivalences } \\
M_{0} \hookrightarrow W \hookleftarrow M_{1} \Rightarrow M_{0} \simeq W \simeq M_{1} .
\end{array}\right.
$$

After Milnor detected exotic 7-spheres (7-manifolds homeomorphic but not diffeomorphic to S^{7}) in his groundbreaking work Mil56, he also introduced the notion Θ^{n} to study homotopy n-spheres in an unpublished note Mil59 and obtained some partial results on the orders of Θ^{n}. It forms an abelian group under the addition induced by a connected sum. The zero element of Θ^{n} is the homotopy cobordism class of S^{n}, and the inverse elements come with opposite orientation. Later, Kervaire and Milnor elaborated the structure of Θ^{n} systematically in their celebrated article "Groups of homotopy spheres: I" KM63.

Kervaire and Milnor were able to prove the powerful statement in Theorem A. independent of the seminal articles of Connell Con67, Newman New66, Smale [Sma61, Stallings [Sta60], and Zeeman [Zee61] about the topological Poincaré conjecture and the piecewise linear Poincaré conjecture in higher dimensions ${ }^{2}$ Furthermore, they created the famous table with a single unknown value, depicted in Table 1

Theorem A ([KM63, Theorem 1.2]). For $n \neq 3$, the group Θ^{n} is finite.
Table 1. The orders of Θ^{n} for $1 \leq n \leq 18$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\left\|\Theta^{n}\right\|$	1	1	$?$	1	1	1	28	2	8	6	992	1	3	2	16256	2	16	16

The classical results of Moise Moi52a, Moi52b showed that every topological 3manifold has a unique smooth structure. After the confirmation of the last topological Poincaré conjecture, the missing point in Table $\mathbb{1}$ was clarified as an immediate consequence of Perelman's breakthrough.
Theorem B (Per02, Per03a, Per03b). The group Θ^{3} is trivial, hence $\left|\Theta^{3}\right|=1$.

[^0]Kervaire and Milnor never published "Groups of homotopy spheres: II"; however, Levine's lecture notes Lev85] can be considered as its sequel paper 3 Finding the order of Θ^{n} for each value of n is a very challenging problem in algebraic and geometric topology. Moreover, it is closely tied to the smooth Poincaré conjecture in higher dimensions $\sqrt[4]{4}$ For the state of the art regarding the order of Θ^{n}, the reader can refer to [IWX20b, Table 1].

Further discussions and results about homotopy theoretical approaches to studying Θ^{n} can be seen in excellent papers of Hill, Hopkins, and Ranevel HHR16, Wang and Xu WX17, and Behrens, Hill, Hopkins, and Mahowald BHHM20.
1.2. The successor: $\Theta_{\mathbb{Z}}^{n}$. In a similar vein, a homology n-sphere is an n-manifold M with $\partial M=\emptyset$ such that M has the same homology groups of S^{n} in integer coefficients, i.e., $H_{*}(M ; \mathbb{Z})=H_{*}\left(S^{n} ; \mathbb{Z}\right)$. The n-dimensional homology cobordism group Θ^{n} is formed as

$$
\Theta_{\mathbb{Z}}^{n}=\{\text { homology } n \text {-spheres up to diffeomorphism }\} / \sim_{\mathbb{Z}}
$$

where the equivalence relation homology cobordism $\sim_{\mathbb{Z}}$ is depicted for two arbitrary homology n-spheres M_{0} and M_{1} by

$$
M_{0} \sim_{\mathbb{Z}} M_{1} \Longleftrightarrow\left\{\begin{array}{l}
\text { there exists an }(n+1) \text {-manifold } W \text { such that } \\
\bullet \partial W=-\left(M_{0}\right) \cup M_{1}, \\
\bullet \text { the inclusions induce isomorphisms on all homology groups } \\
M_{0} \hookrightarrow W \hookleftarrow M_{1} \Rightarrow H_{*}\left(M_{0} ; \mathbb{Z}\right) \cong H_{*}(W ; \mathbb{Z}) \cong H_{*}\left(M_{1} ; \mathbb{Z}\right) .
\end{array}\right.
$$

Inspired by the novel work of Kervaire and Milnor, González-Acuña defined the object $\Theta_{\mathbb{Z}}^{n}$ to decipher the homology n-spheres in his PhD thesis "On homology spheres" GAn70b. Similarly, $\Theta_{\mathbb{Z}}^{n}$ admits an abelian group structure with the summation induced by connected sum. The homology cobordism class of S^{n} serves as the identity element of $\Theta_{\mathbb{Z}}^{n}$. Besides, inverse elements can be obtained by reversing the orientation.

Using surgery theory and Milnor's π-manifolds. 5 González-Acuña was able to construct a group isomorphism between Θ^{n} and $\Theta_{\mathbb{Z}}^{n}$ unless $n=3$. Hence, they are algebraically identical except for the single case of $n=3$.

Theorem C (GAn70b, Theorem I.2]). For $n \neq 3, \Theta_{\mathbb{Z}}^{n}$ is isomorphic to Θ^{n}. Therefore, $\Theta_{\mathbb{Z}}^{n}$ is finite unless $n=3$.

It should be very interesting to compare González-Acuña's elegant theorem with the following achievement of Kervaire which was published around the same time.

Theorem D (Ker69, Theorem 3]). For $n \geq 5$, let M be a homology n-sphere. Then there exists a unique homotopy sphere Σ_{M} such that $M \# \Sigma_{M}$ bounds a contractible $(n+1)$-manifold.

[^1]1.3. The aberrant: $\Theta_{\mathbb{Z}}^{3}$. The isomorphism of González-Acuña cannot be valid for the last case $n=3$ due to the famous invariant of Rokhlin Rok52. There is a surjective group homomorphism from the three-dimensional homology cobordism group (the homology cobordism group for short) to the cyclic group of order 2
$$
\mu: \Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}_{2}, \quad \mu(Y)=\sigma(W) / 8 \quad \bmod 2,
$$
where W is any 4-manifold with a \mathbb{Z}_{2}-valued even intersection form $\partial W=Y$, and $\sigma(W)$ denotes the signature of W.

The homology cobordism invariance of the Rokhlin invariant μ was first observed in [GAn70b, Section I.5]; see also GAn70a, Section 2] and [FK20, Section 3.8]. Since the Poincaré homology sphere $\Sigma(2,3,5)$ (see Section 4 for its several descriptions) uniquely bounds the negative-definite plumbing $-E_{8}$ of signature -8 , we have $\mu(\Sigma(2,3,5))=1$. Therefore, it is not homology cobordant to S^{3}, and we conclude:

Theorem E ([Rok52], GAn70b, Section I.5]). The group $\Theta_{\mathbb{Z}}^{3}$ is nontrivial. $]^{7}$

The nontriviality of $\Theta_{\mathbb{Z}}^{3}$ is sensitive to both homology and smoothness conditions on the cobordism 4-manifold. The group would be trivial if at least one of these conditions were removed. See the articles by Rokhlin Rok51 and Freedman [Fre82], respectively. Also, $\Theta_{\mathbb{Z}}^{3}$ is countable by the classical results of Moise Moi52a, Moi52b.

Until the 1980s, the only known invariant of $\Theta_{\mathbb{Z}}^{3}$ was the Rokhlin invariant μ, and there was a belief that it might be an isomorphism. However, it later turned out that $\Theta_{\mathbb{Z}}^{3}$ is far from being finite. The understanding of the infinitude of $\Theta_{\mathbb{Z}}^{3}$ has led to the construction of numerous invariants of homology 3 -spheres.

The seminal work of Matumoto Mat78 and Galewski and Stern GS80] yielded a rich connection between the Rokhlin invariant μ, the group $\Theta_{\mathbb{Z}}^{3}$, and the triangulation conjecture. Manolescu revolutionized low-dimensional topology by introducing the Seiberg-Witten (monopole) Pin(2)-equivariant Floer homology, constructing the β-invariant, and disproving the triangulation conjecture Man16b. His β-invariant is an integer lift of the Rohklin invariant μ, and its existence rejects the triangulation conjecture by relying on the articles Mat78, GS80. Consult Section 2.4 for more details. The several variations of Manolescu's Floer homotopic approach have led to the invention of new powerful theories and sensitive invariants of knots and manifolds. Recently, there has also been increased activity in studying $\Theta_{\mathbb{Z}}^{3}$ using techniques from $\operatorname{SU}(2)$-gauge theory, following the work of Daemi Dae20.

[^2]Homology cobordism is closely related to the concepts of knot concordance and rational homology cobordism, and both give rise to abelian groups \mathcal{C} and $\Theta_{\mathbb{Q}}^{3}$, similar to $\Theta_{\mathbb{Z}}^{3}$. By the classical work of GonzálezAcuña GAn70a, Gordon Gor75, and Casson and Gordon CG78, there are natural mappings between these three abelian groups given by $(1 / n)$-surgery on knots in the 3 -sphere $S_{1 / n}^{3}(K)$ for any integer n, p^{r} fold cyclic branched coverings of the 3 -sphere along
 knots $\Sigma_{p^{r}}(K)$ for any prime p and $r \geq 1$, and inclusion ψ. Consult Sections 3.2, 3.1, and 4 for further details.

In a nutshell, we create this table to reflect the sharp contrast between the homology cobordism group $\Theta_{\mathbb{Z}}^{3}$ and all other homotopy and homology cobordism groups. One can access the most recent information about the orders of Θ^{n}

	Order	
Dimension	Θ^{n}	$\Theta_{\mathbb{Z}}^{n}$
$n \neq 3$	$<\infty$	$<\infty$
$n=3$	$=1$	$=\infty$

From now on, we will aim to approach all results that arise around the homology cobordism group $\Theta_{\mathbb{Z}}^{3}$ from a broad, comprehensive, and historical perspective. Our additional purpose is to present various open problems of homology 3 -spheres in the context of the homology cobordism. Finally, we will discuss the knot concordance group \mathcal{C} and the rational homology cobordism group $\Theta_{\mathbb{Q}}^{3}$ by eleborating their most recent algebraic structure, relating them to $\Theta_{\mathbb{Z}}^{3}$, and posing several open problems. Most of the problems raised in this survey are well known in the field in general. We hope that our efforts will have a positive impact and will motivate readers to investigate and study the homology cobordism group $\Theta_{\mathbb{Z}}^{3}$ in the future.

2. The structure of $\Theta_{\mathbb{Z}}^{3}$

2.1. Subgroups and summands of $\Theta_{\mathbb{Z}}^{3}$. The celebrated work of Donaldson was a cornerstone in the history of low-dimensional topology [Don83]. Motivated by his article, Fintushel and Stern studied the gauge theory of orbifolds, produced the gauge theoretical R-invariant for Seifert fibered homology spheres, and provided the first existence of an infinite subgroup in the homology cobordism group.

Theorem \mathbf{F} ([FS85, Theorem 1.2]). The group $\Theta_{\mathbb{Z}}^{3}$ has a \mathbb{Z} subgroup generated by the Poincaré homology sphere $\Sigma(2,3,5)$.

The extended version of Donaldson's diagonalization theorem Don87 recovers Theorem E as follows: One can use $\Sigma(2,3,5)$ to construct a closed 4 -manifold whose nondiagonalizable intersection form is $n E_{8}$ for arbitrary value of n. This obstructs the existence of any homology cobordism between S^{3} and a finite number of self-connected sums of $\Sigma(2,3,5)$.

Converting the ideas on end-periodic 4 -manifolds in the work of Taubes Tau87, to cylindrical end 4 -manifolds and using the Fintushel-Stern R-invariant, Furuta showed the first existence of an infinitely generated subgroup Fur90.

Theorem G ([Fur90, Theorem 2.1]). The group $\Theta_{\mathbb{Z}}^{3}$ has a \mathbb{Z}^{∞} subgrour ${ }^{8}$ in $\Theta_{\mathbb{Z}}^{3}$ generated by the family of Brieskorn spheres $\{\Sigma(2,3,6 n-1)\}_{n=1}^{\infty}$.

The eminent article of Floer Flo88 changed the flow of the history of lowdimensional topology dramatically. Given a homology 3 -sphere Y, his theory of instanton homology can be defined over the Yang-Mills equations on $Y \times \mathbb{R}$. This novel invariant is an infinite-dimensional analogue of Morse homology.

The next achievement about the algebraic structure of $\Theta_{\mathbb{Z}}^{3}$ was owed to Frøyshov Frø02. His approach relied on the equivariant structure on Floer's instanton (Yang-Mills) homology, and he constructed the h-invariant, a surjective group homomorphism $h: \Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}$.
Theorem H (Frø02, Theorem 3]). The group $\Theta_{\mathbb{Z}}^{3}$ has a \mathbb{Z} summand generated by the Poincaré homology sphere $\Sigma(2,3,5)$.

Ozsváth and Szabó developed the theory of Heegaard Floer homology in a series of prominent articles OS03a, OS04c OS04d. Since then it has been used to answer various problems in low-dimensional topology and several new versions emerged successively; see the comprehensive surveys of Ozsváth and Szabó OS04a and Juhász Juh15. Later, Hendricks and Manolescu introduced involutive Heegaard Floer homology HM17, and this new theory exploits the conjugation symmetry on a Heegaard Floer complex of the Heegaard Floer homology. Also, it is conjecturally a \mathbb{Z}_{4}-equivariant version of Seiberg-Witten $\operatorname{Pin}(2)$-equivariant Floer homology established by Manolescu Man16b.

The most recent impressive progress about deciphering the algebraic complexity of the group $\Theta_{\mathbb{Z}}^{3}$ was achieved by Dai, Hom, Stoffregen, and Truong [DHST18. Using the machinery of involutive Heegaard Floer homology, they defined a new family of powerful and sensitive sets of invariants $\vec{f}=\left\{f_{k}\right\}_{k \in \mathbb{N}}$: a surjective group homomorphism $\vec{f}: \Theta_{\mathbb{Z}}^{3} \rightarrow \mathbb{Z}^{\infty}$ Q

Theorem I (DHST18, Theorem 1.1]). The group $\Theta_{\mathbb{Z}}^{3}$ has a \mathbb{Z}^{∞} summand generated by the family of Brieskorn spheres $\{\Sigma(2 n+1,4 n+1,4 n+3)\}_{n=1}^{\infty}$.

Their proof subsumes several approaches and techniques that consecutively appeared in the literature of involutive Heegaard Floer homology [HMZ18, DM19, [DS19], and HHL21. Moreover, involutive Floer theoretic invariants have provided a major change for the understanding of the structure of $\Theta_{\mathbb{Z}}^{3}$ and its subgroups. For details of constructions and ideas, one can consult the survey of Hom [Hom21].

Relying on all these previous results, one may expect that there is no torsion part in the decomposition of $\Theta_{\mathbb{Z}}^{3}$; see Section 2.4 for details. In particular, Problem A and Problem \square are complementary, and Problem C is a special case of Problem A The author believes that the following problem will have a negative answer.
Problem A. Is $\Theta_{\mathbb{Z}}^{3}$ is isomorphic to \mathbb{Z}^{∞} ?
Most instanton, Seiberg-Witten, and Floer theoretical invariants of homology 3spheres are sensitive to a preorder given by the negative-definite cobordisms. Thus, further understanding of the structure of the homology cobordism group will be

[^3]possible by realizing $\Theta_{\mathbb{Z}}^{3}$ as a partially ordered group, rather than just a group; see, for instance, the recent work of Nozaki, Sato, and Taniguchi [NST19, Section 1.3].

Problem B. Study the structure of $\Theta_{\mathbb{Z}}^{3}$ as an ordered group by forming filtrations, and completely describe subgroups and quotients.
2.1.1. A recovery: More about subgroups of $\Theta_{\mathbb{Z}}^{3}$. A 4-manifold with boundary is called a homology 4-ball if it shares the same homology groups of the 4 -ball in integer coefficients. An easy algebraic topology argument indicates that a homology 3 -sphere is homology cobordant to S^{3} if and only if it bounds a homology 4-ball.

The Fintushel-Stern R-invariant leads to a powerful obstruction for homology 3 -spheres to bound homology 4 -balls and, hence, contractible 4 -manifolds. It is easily computable due to the short-cut of Neumann and Zagier [NZ85]. The nonzero values of the R-invariant provide the proofs of items (1) and (3) in Theorem Further, these claims can be deduced by using the Ozsváth-Szabó d-invariant OS03a. See the papers of Tweedy [Twe13] and of Karakurt and the author KŞ20 for sample computations, which both depended on Floer homology of plumbings OS03c, Némethi's lattice homology Ném05, and the lattice point counting technique of Can and Karakurt CK14 10

However, item (2) in Theorem J is a consequence of the nonvanishing of the Neumann-Siebenmann invariant $\bar{\mu}$ Neu80,Sie80. The homology cobordism invariance of $\bar{\mu}$ for Seifert-fibered homology spheres was first proved by Saveliev Sav98b; see also the paper of Dai and Stoffregen DS19 for a generalization of this result. Saveliev provided another proof for the item (2) in [Sav98a by using Furuta's $10 / 8+2$ theorem Fur01. Note that Furuta's result was a partial solution for Matsumoto's $11 / 8$ conjecture [Mar82]. In his article, he also introduced a homology cobordism invariant called the bounding genus. All other homology cobordism invariants that behaved differently than $\bar{\mu}$ seem to vanish or not be arbitrarily large for this family, so they do not give further information about their homology cobordism classes.

By the work of Nozaki, Sato and Taniguchi NST19 and Baldwin and Sivek [BS22], the proofs of items (4) and (5) in Theorem J can be deduced respectively. Moreover, the items (6) and (7) in Theorem (J are owed to the recent article of Daemi, Imori, Sato, Scaduto, and Taniguchi [DIS ${ }^{+22}$. Note that the arguments of the latter two articles essentially require the result of the first one. Here, τ^{\sharp} - and \tilde{s}-invariants are new instanton Floer theoeric invariants of knots [BS22, DIS ${ }^{+} 22$], and h denotes the classical Frøyshov invariant (which appeared in Theorem [${ }^{(1)} \Gamma$ stands for the new invariant of knots, and both invariants are again derived from instanton Floer homology.

Theorem J. The following homology 3 -spheres individually generate \mathbb{Z} subgroups in $\Theta_{\mathbb{Z}}^{3}$:
(1) $\Sigma(p, q, p q n-1)$ for each $n \geq 1$;
(2) $\Sigma(p, q, p q n+1)$ for each odd $n \geq 1{ }^{11}$
(3) $\Sigma\left(p_{n}, q_{n}, r_{n}\right)$ for each $n \geq 1$, where $p_{n} q_{n}+p_{n} r_{n}-q_{n} r_{n}=1$;

[^4](4) For each $n \geq 1, S_{1 / n}^{3}(K)$, where K is any kno in S^{3} with $h\left(S_{1}^{3}(K)\right)<0$;
(5) For each $n \geq 1, S_{1 / n}^{3}(K)$, where K is any kno in S^{3} with $\tau^{\sharp}(K)>0$;
(6) For each $n \geq 1, S_{1 / n}^{3}(K)$, where K is any kno in S^{3} with $\tilde{s}(K)>0$;
(7) For each $n \geq 1, S_{1 / n}^{3}(K)$, where K is any kno ${ }^{15}$ in S^{3} with $\sigma(K) \leq 0$ and $\frac{1}{8}<\Gamma_{K}\left(-\frac{1}{2} \sigma(K)\right)$.

Manolescu's invariants α, β, γ Man16b and the Hendricks-Manolescu involutive d-invariants $\underline{d}, \bar{d}\left[\right.$ HM17 ${ }^{16}$ can be read off from the values of the Ozsváth-Szabó d-invariant and the Neumann-Siebenmann $\bar{\mu}$-invariant; see the articles by Dai and Manolescu DM19] and by Stoffregen [Sto20] for more details. In particular, the R-invariant of Fintushel and Stern FS85 is directly determined from a plumbing graph due to the shortcut of Neumann and Zagier NZ85. Moreover, the $\bar{\mu}$-invariant of Seifert fibered homology spheres is same as the w-invariant of Fukumoto and Furuta FF00; see the work of Fukumoto, Furuta, and Ue [FFU01 and Saveliev Sav02a for details. Therefore, we have the following several identities between homology cobordism invariants for a single Seifert fibered space $\Sigma=\Sigma\left(a_{1}, \ldots, a_{n}\right)$:

- $R(\Sigma)=-2 e-3$;
- $d(\Sigma)=\bar{d}(\Sigma)$;
- $\bar{\mu}(\Sigma)=w(\Sigma)=-\frac{1}{2} \underline{d}(\Sigma)=-\beta(\Sigma)=-\gamma(\Sigma)$;
- $\alpha(\Sigma)= \begin{cases}\frac{1}{2} d(\Sigma), & \text { if } \frac{1}{2} d(\Sigma)=-\bar{\mu}(\Sigma) \bmod 2, \\ \frac{1}{2} d(\Sigma)+1, & \text { otherwise; }\end{cases}$
- $\mu(\Sigma)=\bar{\mu}(\Sigma)=\alpha(\Sigma)=\beta(\Sigma)=\gamma(\Sigma) \bmod 2$.

After Furuta's work, the first recovery of the existence of \mathbb{Z}^{∞} subgroups of $\Theta_{\mathbb{Z}}^{3}$ was provided by Fintushel and Stern [FS90, Theorem 5.1] for item (1) in Theorem K, Their approach can be applied to item (2) in Theorem K as well. These two results can be reproved successfully by using new gauge and instanton theoretic invariants of Daemi Dae20, Nozaki, Sato, and Taniguchi NST19, and Baldwin and Sivek [BS21, BS22. However, the classical and involutive Heegaard Floer theoretical invariants cannot identify the linear independence of item (1) in $\Theta_{\mathbb{Z}}^{3}$.

The Seiberg-Witten and/or Heegaaard Floer originated invariants may detect the linear independence of subfamilies of item (2) in Theorem K. In this regard, see the work of Stoffregen Sto17] and Dai and Manolescu DM19. However, it is not easily doable in general; see the discussion in KŞ20 and KŞ22 and compare with Sto17 and DM19.

[^5]For proofs of items (3), (4) (5) and (6) in Theorem K] one can see the articles of Nozaki, Sato, and Taniguchi [NST19], Baldwin and Sivek [BS22, and Daemi, Imori, Sato, Scaduto, and Taniguchi [DIS ${ }^{+} 22$. The methodology of [NST19] and [DIS ${ }^{+} 22$ b both refer to the equivariant instanton Floer theory with Chern-Simons filtration, while BS21,BS22 uses framed instanton homology. Notice that these articles all provide new invariants for homology 3 -spheres and knots.

Theorem K. The following infinite families of homology 3 -spheres generate \mathbb{Z}^{∞} subgroups in $\Theta_{\mathbb{Z}}^{3}$:
(1) $\{\Sigma(p, q, p q n-1)\}_{n=1}^{\infty}$;
(2) $\left\{\Sigma\left(p_{n}, q_{n}, r_{n}\right)\right\}_{n=1}^{\infty}$, where $p_{n} q_{n}+p_{n} r_{n}-q_{n} r_{n}=1$;
(3) $\left\{S_{1 / n}^{3}(K)\right\}_{n=1}^{\infty}$ for any knot K in S^{3} with $h\left(S_{1}^{3}(K)\right)<0$;
(4) $\left\{S_{1 / n}^{3}(K)\right\}_{n=1}^{\infty}$ for any knot K in S^{3} with $\tau^{\sharp}(K)>017$
(5) $\left\{S_{1 / n}^{3}(K)\right\}_{n=1}^{\infty}$ for any knot K in S^{3} with $\tilde{s}(K)>0$;
(6) $\left\{S_{1 / n}^{3}(K)\right\}_{n=1}^{\infty}$ for any knot K in S^{3} with $\sigma(K) \leq 0$ and $\frac{1}{8}<\Gamma_{K}\left(-\frac{1}{2} \sigma(K)\right)$.

Since all current homology cobordism invariants are blind to detecting the linear independence of $\{\Sigma(p, q, p q n+1)\}_{n=1, \text { odd }}^{\infty}$ in $\Theta_{\mathbb{Z}}^{3}$, with curiousity we pose Problem C. On the other hand, these manifolds might be homology cobordant to each other in $\Theta_{\mathbb{Z}}^{3}$. If so, this will also be a very interesting result.

Problem C. Does the family $\{\Sigma(p, q, p q n+1)\}_{n=1, \text { odd }}^{\infty}$ generate a \mathbb{Z}^{∞} subgroup or a \mathbb{Z}^{∞} summand in $\Theta_{\mathbb{Z}}^{3}$?

The R - and w-invariants were successfully generalized in the articles of Fintushel and Lawson [FL86 and Fukumoto Fuk11, respectively. Given a Seifert fibered sphere $Y=\Sigma\left(a_{1}, \ldots, a_{n}\right)$, we denote these invariants by $R(Y, e)$ and $w(Y, m)$, respectively, and call the generalized R-invariant and the generalized w-invariant, where e is an integer depending on the Euler number and some other constraints, and m is a tuple of integers. The generalized R - and w-invariants are strictly more powerful than the classical R - and w-invariants, and they provide more sensitive obstructions for the existence of homology cobordisms between homology 3 -spheres. In particular, a combinotorial formula for the generalized R-invariant was found by Lawson Law87 so that $R(\Sigma, 1)=R(\Sigma)$. For sample computations, see Fukumoto's article [Fuk11, Section 6]. Fukumoto also gave estimates for Matsumoto's bounding genera for homology 3 -spheres using w-invariants Fuk09.

Using Pin(2)-equivariant Seiberg-Witten Floer K-theory, Manolescu constructed the integer-valued homology cobordism invariant κ Man14. Recently, Ue proved that the behaviors of the κ invariant and the minus version of the $\bar{\mu}$ invariant for Seifert fibered spheres are very similar Ue22: $\kappa(Y)+\bar{\mu}(Y)=0$ or 2. Relying on the Seiberg-Witten Floer spectrum and $\operatorname{Pin}(2)$-equivariant KO-theory and inspiring the construction of the Manolescu κ-invariant, J. Lin extracted new invariants κo_{k} of $\Theta_{\mathbb{Z}}^{3}$ where $k \in \mathbb{Z}_{8}$ Lin15.

We list the following presumably difficult problem for understanding behaviors of invariants more for Seifert fibered spheres by taking the risk of having negative answers.

[^6]Problem D. For Seifert fibered spheres $Y=\Sigma\left(a_{1}, \ldots, a_{n}\right)$, what are the possible relations between the following homology cobordism invariants:

- $\bar{\mu}(Y), w(Y ; m)$, and $\kappa o_{k}(Y)$?
- $d(Y)$ and $R(Y ; e)$?
2.1.2. A diversification: More about summands of $\Theta_{\mathbb{Z}}^{3}$. Around the 2000s, two more epimorphisms of $\Theta_{\mathbb{Z}}^{3}$ were found: the Ozsváth-Szabó d-invariant OS03a, and the Frøyshov δ-invariant ${ }^{18}$ Frø10. The latter invariant is also owed to Kronheimer and Mrowka KM07. The seminal articles of Kutluhan, Lee, and Taubes KLT20d, KLT20, KLT20c, KLT20a, KLT20b yield that $\delta=-d / 2$.

Given any relatively coprime positive integers p, q, and r, the Brieskorn sphere $\Sigma(p, q, r+p q)$ can be obtained by the Brieskorn sphere $\Sigma(p, q, r)$ by applying (-1)surgery along the singular fiber of degree r. This topological operation is called Seifert fiber surgery; see the paper of Lidman and Tweedy [LT18] for a detailed exposition.

Performing the above type of Seifert fibered surgeries, items (2) and (4) in Theorem L can be constructed from items (1) and (3) in Theorem L respectively. We know that the d-invariant remains the same under this special Seifert fiber surgery; consult the articles of Lidman and Tweedy [LT18, Karakurt, Lidman, and Tweedy KLT21, and Seetharaman, Yue, and Zhu SYZ21] for this result. Relying on the computations in Twe13 and K\$20 again, we have the following result.

Theorem L. The following homology 3 -spheres individually generate \mathbb{Z} summands in $\Theta_{\mathbb{Z}}^{3}$:
(1) $\Sigma(p, q, p q n-1)$ for each $n \geq 1$;
(2) $\Sigma(p, q,+p q n-1+p q m)$ for each $n, m \geq 1$;
(3) $\Sigma\left(p_{n}, q_{n}, r_{n}\right)$ for each $n \geq 1$, where $p_{n} q_{n}+p_{n} r_{n}-q_{n} r_{n}=1$;
(4) $\Sigma\left(p_{n}, q_{n}, r_{n}+p_{n} q_{n} m\right)$ for each $n, m \geq 1$, where $p_{n} q_{n}+p_{n} r_{n}-q_{n} r_{n}=1$.

In a similar fashion, we can pass to the Brieskorn sphere $\Sigma(p, q, r+2 p q)$ from the Brieskorn sphere $\Sigma(p, q, r)$ by twice applying (-1)-surgery along the singular fiber of degree r. In [SYZ21], Seetharaman, Yue, and Zhu also observed that the maximal monotone subroots carrying the Floer theoretic invariants do not change after performing the above type of Seifert fiber surgeries consecutively. Recently, in KŞ22, Karakurt and the author presented more families of homology 3 -spheres generating infinite rank summands in $\Theta_{\mathbb{Z}}^{3}$ by computing their connected Heegaard Floer homologies HHL21 effectively and using the invariants of Dai, Hom, Stoffregen, and Truong. Notice that connected Heegaard Floer homology was introduced by Hendricks, Hom, and Lidman. Further, they proved that it is a homology cobordism invariant itself HHL21 unlike classical or involutive Heegaard Floer homology.

Together with the above observation, we can conclude the following theorem. In particular, two collections of families in items (1) and (2) in Theorem M, and the family of Dai, Hom, Stoffregen, and Truong in Theorem \square are not homology cobordant to each other for any equal value of n, with a single exception; see the discussion in KŞ22. However, their spans in $\Theta_{\mathbb{Z}}^{3}$ are not distinct; see DS19, Section 6].

[^7]Theorem M ([DHST18, KŞ22). The following infinite families of homology 3spheres generate \mathbb{Z}^{∞} summands in $\Theta_{\mathbb{Z}}^{3}$:
(1) $\{\Sigma(2 n+1,3 n+2,6 n+1)\}_{n=1}^{\infty}$;
(2) $\{\Sigma(2 n+1,3 n+1,6 n+5)\}_{n=1}^{\infty}$;
(3) $\{\Sigma(2 n+1,4 n+1,4 n+3+2 m(2 n+1)(4 n+1))\}_{n, m=1}^{\infty}$;
(4) $\{\Sigma(2 n+1,3 n+2,6 n+1+2 m(2 n+1)(3 n+2))\}_{n, m=1}^{\infty}$;
(5) $\{\Sigma(2 n+1,3 n+1,6 n+5+2 m(2 n+1)(3 n+1))\}_{n, m=1}^{\infty}$.
2.2. The trivial element of $\Theta_{\mathbb{Z}}^{3}$. A central problem in low-dimensional topology is to investigate the following interaction between 3 - and 4-manifolds as an algebrotopological analogue of the relation between S^{3} and B^{4}.

Problem E ([Kir78b, Problem 4.2]). Which homology 3-spheres bound contractible 4-manifolds or homology 4-balls?

There are plenty of examples of Brieskorn spheres that bound Mazur type contractible 4-manifolds built with a single 0-, 1-, and 2-handle Maz61. Following Kirby's celebrated work Kir78a, some classical articles appeared subsequently: Akbulut and Kirby AK79], Casson and Harer CH81, Stern [Ste78, Fintushel and Stern [FS81, Maruyama Mar81,Mar82, and Fickle Fic84]. In addition, some of these results were found independently of Kirby calculus; see Fukuhara Fuk78 and Martin Mar79. Some of these families also bound Poénaru manifolds, contractible 4-manifolds built with a 0-handle, many 1- and 2-handles; see Poé60, Şav20b, AŞ22.
Theorem N. The following homology 3-spheres bound Mazur manifolds with one 0 -handle, one 1-handle, and one 2 -handle. Further, $\Sigma(2,7,47)$ and $\Sigma(3,5,49)$ bound homology 4-balls.

- $\Sigma(2,3,13), \Sigma(2,3,25), \Sigma(2,7,19), \Sigma(3,5,19)$;
- $\Sigma(p, p s-1, p s+1)$ for p even and s odd;
- $\Sigma(p, p s \pm 1, p s \pm 2)$ for p odd and s arbitrary;
- $\Sigma(2,2 s \pm 1,2 \cdot 2 \cdot(2 s \pm 1)+2 s \mp 1)$ for s odd;
- $\Sigma(3,3 s \pm 1,2 \cdot 3 \cdot(3 s \pm 1)+3 s \mp 2)$ for s arbitrary;
- $\Sigma(3,3 s \pm 2,2 \cdot 3 \cdot(3 s \pm 2)+3 s \mp 1)$ for s arbitrary.

It would be interesting to compare the existence of homology 3 -spheres bounding contractible 4-manifolds and homology 4-balls, so we may address the following problem. The possible candidates for Seifert fibered spheres are two examples of Fickle: $\Sigma(2,7,47)$ and $\Sigma(3,5,49)$. They are known to bound only homology 4-balls.
Problem F. Is there any Seifert fibered sphere $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ which bounds a homology 4-ball but not a contractible 4-manifold?

Note that Problem F is known for $\Sigma(2,3,5) \#-\Sigma(2,3,5) 19$ It cannot bound a contractible 4-manifold; see Taubes's article Tau87, Proposition 1.7]. However, the isomorphism of González-Acuña in Theorem C guarantees that every homology 3sphere bounding a homology n-ball automatically bounds a contractible n-manifold unless $n=3$.

When the number of fibers increases, there is a bold conjecture, which was first indicated by Fintushel-Stern, explicitly stated by Lawson Law88, and later highlighted by Kollár [Kol08, Conjecture 20]. This problem is closely related to the

[^8]Montgomery-Yang problem motivated by the previous results in both algebraic geometry and gauge theory. The problem expects that every pseudo-free circle action on the five-dimensional sphere has at most three nonfree orbits Kol08, Conjecture 6]. Note that some computational verifications of this conjecture were provided in the paper of Lawson Law88.

Problem G (Three fibers conjecture). Is there any Seifert fibered sphere $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ with $n>3$ which bounds a homology 4 -ball?

Problem \mathbb{G} cannot be generalized for plumbed homology 3-spheres that are not Seifert fibered ${ }^{20}$ The first examples were given by Maruyama Mar82 and were independently obtained by Akbulut and Karakurt [AK14, Theorem 1.4]. In [Şav20b, we presented two more families of plumbed homology 3 -spheres bounding contractible 4-manifolds.

Theorem O ([Mar82, Theorem 1], SSav20b, Theorem 1.4-5]). Let $X(n), X^{\prime}(n)$, and $W(n)$ be Maruyama, the companion of Maruyama, and Ramanujam plumbed 4-manifold, shown in Figure 1. Then for each $n \geq 1$, boundaries $\partial X(n)$ and $\partial X^{\prime}(n)$ bound Mazur manifolds with one 0 -handle, one 1-handle, and one 2-handle. Further, the boundary of $\partial W(n)$ bounds a Poénaru manifold with one 0 -handle, two 1 -handles, and two 2-handles for $n \geq 1$.

Figure 1. The plumbing graphs of $X(n), X^{\prime}(n)$, and $W(n)$.
Note that $W(1)$ is known as the Ramanujam surface, the famous homology plane constructed by Ramanujam Ram71. It is the first example of an algebraic complex smooth surface sharing the same homology of the complex plane \mathbb{C}^{2} but not analytically isomorphic to \mathbb{C}^{2}. We call a nontrivial homology 3 -sphere a KirbyRamanujam sphere if it bounds both a homology plane and a Mazur/Poénaru type contractible 4-manifold. In AŞ22, Aguilar and the author found several infinite families of Kirby-Ramanujam spheres in the light of Problem E

[^9]In Akb91, Akbulut introduced very crucial geometric objects called corks. These are defined to be contractible smooth 4-manifolds together with involutions on the boundary 3 -manifolds, which extend to self-homeomorphisms but not to self-diffeomorphisms of the ambient manifolds. As they generate all exotic phenomena for simply connected 4-manifolds via cork twists CFHS96, Mat96, they draw special interest in low-dimensional topology. Corks have recently been studied extensively using Heegaard Floer homology by Dai, Hedden and Mallick DMM20, and they introduced an algebraic object called the homology bordism group of involutions $\Theta_{\mathbb{Z}}^{\tau}$ as a modification of the homology cobordism group $\Theta_{\mathbb{Z}}^{3}$. However, the following question remains a very interesting open problem.

Problem H. Is there any Seifert fibered space $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ bounding a cork?
Seifert fibered spaces cannot appear as the boundaries of homology planes due to Orevkov Ore97. However, the splice of Seifert manifolds along their singular fibers are shown to bound homology planes AŞ22. Since they also bound contractible 4 -manifolds, we can pose Problem If such a homology 3 -sphere exists, then after possibly applying cork twists, we can glue these contractible 4 -manifolds along their common boundary. This gives a homotopy 4 -sphere so that it is homeomorphic to the 4 -sphere S^{4} by Freedman Fre82. Therefore, this 4 -manifold would be a new potential candidate counterexample to the smooth Poincaré conjecture in dimension 4.

Problem I. Is there any homology 3 -sphere bounding both a cork and a contractible homology plane?

Using the surgery descriptions of $\Sigma(p, q, p q \mp 1)$ in terms of torus knots, one can prove Theorem P as an immediate corollary of the main results of Gordon Gor75] and Karakurt, Lidman, and Tweedy KLT21. For the constructive part, an alternative direct proof can be given by finding the plumbing graphs of splices explicitly [N85 and by doing Kirby calculus. The obstruction of knots bounding smooth disks requires the result of Lidman and Tweedy LT18.

Theorem P. Let $K(p q \mp 1)$ denote the singular fiber in $\Sigma(p, q, p q \mp 1)$. Then $K(p q \mp 1)$ is not smoothly slice in $\Sigma(p, q, p q \mp 1)$, and $\Sigma(p, q, p q \mp 1)$ does not bound a contractible 4-manifold. However, the following splicing homology 3 -spheres bound Poénaru manifolds with one 0-handle, p 1-handles, and p 2-handles:

$$
\Sigma(p, q, p q-1)_{K(p q-1)} \bowtie_{K(p q+1)} \Sigma(p, q, p q+1) .
$$

Independent results of Hirsch, Rokhlin, and Wall around the 1960s indicate that every homology 3 -sphere is smoothly embedded in S^{5}; see Hir61, Rok65, and Wal65. Making the target space smaller, we may ask which homology 3 -spheres can be embedded in S^{4}. In the topological category, the problem has a complete answer thanks to Freedman's celebrated article [Fre82]: every homology 3-sphere is topologically embedded in S^{4}. Adding an extra smoothness condition, we can state another wide open problem in low-dimensional topology.

Problem J (Kir78b, Problem 3.20]). Which homology 3-spheres can be smoothly embedded in S^{4} ?

Another simple algebraic topology observation indicates that a homology 3sphere smoothly embedded in S^{4} splits S^{4} into two homology 4-balls. Therefore,
homology cobordism invariants provide obstructions for the smooth embeddings of homology 3 -spheres in S^{4}.

One can wonder about the reverse direction of the above observation. Studying branched coverings of cross-sectional slices of knotted 2 -spheres S^{2} in S^{4}, McDonald provided the first examples of homology 3 -spheres which are smoothly embedded in a homology 4 -ball but not any homotopy 4 -sphere [McD22]. His examples are certain double cyclic branched coverings of spuns of torus knots. We may address this implication to Seifert fibered manifolds and ask

Problem K. Is there any Seifert fibered sphere which bounds a homology 4-ball but cannot be smoothly embedded in S^{4} ?
2.3. Generators of $\Theta_{\mathbb{Z}}^{3}$. The first result concerning the generators of $\Theta_{\mathbb{Z}}^{3}$ was owed to Freedman and Taylor.

Theorem Q ([FT77, Corollary 1B]). The group $\Theta_{\mathbb{Z}}^{3}$ is generated by homology 3spheres which are boundaries of 4-manifolds having the homology of $S^{2} \times S^{2}$.

A homology 3-sphere Y is called irreducibl ${ }^{21}$ if every embedded 2-sphere S^{2} in Y is the boundary of an embedded B^{3}. Livingston showed that irreducible homology 3 -spheres are generic enough to generate the homology cobordism group.

Theorem R (【Liv81, Theorem 3.2]). Every class in $\Theta_{\mathbb{Z}}^{3}$ admits an irreducible representative.

We call a homology 3 -sphere Y hyperbolic if Y is a geodesically complete Riemannian 3 -manifold of constant sectional curvature -1 . The geodesically completeness requires that at any point $p \in Y$, the geodesic exponential map $\exp _{p}$ on $T_{p} Y$ is the entire tangent space at p. Myers proved that every homology cobordism class admits a hyperbolic representative.

Theorem S (Mye83, Theorem 5.1]). Every class in $\Theta_{\mathbb{Z}}^{3}$ admits a hyperbolic representative.

A pair (Y, ξ) is called Stein fillable if there is a Stein domain (X, J, ϕ) where ϕ is bounded below, Y is an inverse image of an regular value of ϕ, and $\xi=\operatorname{ker}(-d \phi \circ J)$ is an induced contact structure. Mukherjee showed that the generator set of $\Theta_{\mathbb{Z}}^{3}$ can be chosen as Stein fillable homology 3-spheres Muk20.

Theorem T (Muk20, Theorem 1.5]). The group $\Theta_{\mathbb{Z}}^{3}$ is generated by Stein fillable homology 3 -spheres.

In contrast to the above positive directional results, various computations of homology cobordism invariants of homology 3 -spheres lead to the following observation of Frøyshov Frø16, Stoffregen [Sto17, Lin Lin17, and Nozaki, Sato, and Taniguchi (NST19.

Theorem U. There exist several infinite families of homology 3-spheres that are not homology cobordant to any Seifert fibered homology sphere.

[^10]In HHSZ20, Hendricks, Hom, Stoffregen, and Zemke established a surgery exact triangle formula for the involutive Heegaard Floer homology. As an application, they provided a homology 3 -sphere not homology cobordant to any linear combination of Seifert fibered spheres; see HHSZ20, Theorem 1.1]. This manifold is obtained by integral Dehn surgery on a combination of torus knots and a cable of a torus knot: $S_{+1}^{3}\left(-T_{6,7} \# T_{6,13} \#-T_{2,3 ; 2,5}\right)$. Hence, Seifert fibered manifolds are not generic enough to generate $\Theta_{\mathbb{Z}}^{3}$:

Theorem V ([HHSZ20, Theorem 1.1]). The Seifert fibered spheres cannot generate the group $\Theta_{\mathbb{Z}}^{3}$. Therefore, $\Theta_{S F}^{3}$ is a proper subgroup of $\Theta_{\mathbb{Z}}^{3}$. Further, $\Theta_{\mathbb{Z}}^{3} / \Theta_{S F}^{3}$ has $a \mathbb{Z}$ subgroup.

Here, $\Theta_{S F}^{3}$ denotes the subgroup of $\Theta_{\mathbb{Z}}^{3}$ generated by Seifert fibered spheres. Note that $S^{3}=\Sigma(1, q, r)$. By using Kirby calculus, Nozaki, Sato, and Taniguchi proved that the example of Hendricks, Hom, Stoffregen, and Zemke is a graph homology 3 -sphere, see NST19, Appendix A]. Therefore, we can ask the following question as to the next step of obstructions.

Problem L. Do graph homology 3-spheres generate the group $\Theta_{\mathbb{Z}}^{3}$?
Let Θ_{G}^{3} denote the subgroup of $\Theta_{\mathbb{Z}}^{3}$ generated by graph homology 3-spheres. The previous problem is equivalent to asking whether $\Theta_{G}^{3}=\Theta_{\mathbb{Z}}^{3}$ or not. Nozaki, Sato, and Taniguchi proposed a strategy in [NST19, Conjecture 1.19] so that likely $\Theta_{G}^{3} \leq \Theta_{\mathbb{Z}}^{3}$.

Hendricks, Hom, Stoffregen, and Zemke compared the subgroup $\Theta_{S F}^{3}$ with the whole group $\Theta_{\mathbb{Z}}^{3}$ in another work, and they were able to provide the existence of an infinitely generated subgroup in the quotient $\Theta_{\mathbb{Z}}^{3} / \Theta_{S F}^{3}$ spanned by the family of homology 3 -spheres $S_{+1}^{3}\left(-T_{2,3} \#-2 T_{2 n, 2 n+1} \#-T_{2 n, 4 n+1}\right)$ for odd $n \geq 3$:

Theorem W ([HHSZ22, Theorem 1.1]). The quotient $\Theta_{\mathbb{Z}}^{3} / \Theta_{S F}^{3}$ has a \mathbb{Z}^{∞} subgroup.
The new immediate challenge would be to ask:
Problem M. Does the quotient $\Theta_{\mathbb{Z}}^{3} / \Theta_{S F}^{3}$ contain a \mathbb{Z}^{∞} summand?
Another curiosity about the possible generators of $\Theta_{\mathbb{Z}}^{3}$ is of course surgeries on knots in the 3 -sphere. One can expect that these manifolds are not sufficient to provide a generating set for $\Theta_{\mathbb{Z}}^{3}$; see [NST19, Corollary 1.7]. However, the following problem still remains open.

Problem N. Do surgeries on knots in S^{3} generate $\Theta_{\mathbb{Z}}^{3}$?
2.4. Torsion of $\Theta_{\mathbb{Z}}^{3}$. In their seminal articles, Matumoto Mat78 and Galewski and Stern [GS80 reduced the triangulation conjecture to a problem about the interplay between 3- and 4-manifolds up to homology cobordism. Since then $\Theta_{\mathbb{Z}}^{3}$ has been a very attractive object in low-dimensional topology. A splitting would provide a homology 3 -sphere Y such that $\mu(Y)=1$ and Y is 2-torsion in the homology cobordism group.

Theorem X (Mat78, GS80]). For $n \geq 5$, there exist nontriangulable topological n-manifolds if and only if the following exact sequence does not split:

$$
0 \longrightarrow \operatorname{ker}(\mu) \longrightarrow \Theta_{\mathbb{Z}}^{3} \xrightarrow{\mu} \mathbb{Z}_{2} \longrightarrow 0 .
$$

Prior to the work of Mat78 and GS80, Casson asked whether every homology 3 -sphere Y with an orientation reversing diffeomorphism satisfies $\mu(Y)=0$; see KKir78b, Problem 3.43]. If it were false, then $Y \# Y=Y \#-Y$ would bound the homology 4-ball $\left(Y \backslash \dot{B}^{3}\right) \times[0,1]$, giving an element of order 2 in $\Theta_{\mathbb{Z}}^{3}$. Independently, Birman (in an unpublished note), Galewski and Stern GS79, and Hsiang and Pao [HP79] partially answered this question affirmatively for homology 3 -spheres with orientation-reversing involutions. Finally, Casson showed that the μ-invariant must be zero for such a homology 3 -sphere Y in general [AM90].

Next, Saveliev Sav02a proved that \mathbb{Z}_{2} torsion in the homology cobordism group cannot be generated by Seifert fibered spaces (plumbing homology 3 -spheres in general) with nontrivial Rokhlin invariants. He showed that such a Seifert manifold must be of infinite order by extending the previous work of Fukumoto, Furuta, and Ue FFU01.

Finally, Manolescu Man16b constructed Pin(2)-equivariant Seiberg-Witten Floer homology and provided three sensitive invariants of homology 3 -spheres. They are called α, β, and γ invariants of $\Theta_{\mathbb{Z}}^{3}$. Specifically, the Manolescu β-invariant has the following three crucial properties:
(1) $\beta(-Y)=-\beta(Y)$,
(2) $-\beta(Y)=\mu(Y) \bmod 2$, where μ is the Rokhlin invariant,
(3) β is an invariant of $\Theta_{\mathbb{Z}}^{3}$.

The existence of the Manolescu β-invariant guaranteed that the exact sequence $($ (因) does not split and leads to the disproof of the triangulation conjecture; see [Kir78b, Problem 4.4] and Man16a, Man16b, Man18]. For this achievement, the homology cobordism invariance of the Manolescu β-invariant is particularly critical because beforehand there exist invariants satisfying properties both (1) and (2) but not (3) for instance, the Casson invariant λ. Therefore, it cannot be used for the rejection of the triangulation conjecture for high-dimensional manifolds; however, it is sufficient for disproval of the conjecture for the particular case of $n=4$. See the book of Akbulut and McCarthy [AM90] for details. For an alternative disproof of the triangulation conjecture for high-dimensional manifolds using a similar strategy, see F. Lin's monograph Lin18.

Since the Manolescu β invariant provides an integral lift of the Rokhlin invariant μ, he also ruled out the existence of \mathbb{Z}_{2} torsion in $\Theta_{\mathbb{Z}}^{3}$ for the following type of homology 3 -spheres.
Theorem Y (Man16b, Corollary 1.2]). Let Y be a homology 3 -sphere such that $\mu(Y)=1$. Then Y cannot represent \mathbb{Z}_{2} torsion in $\Theta_{\mathbb{Z}}^{3}$. In other words, $Y \# Y$ cannot bound a homology 4-ball.

Currently, we do not know whether there exists a nontrivial homology 3 -sphere Y with a vanishing μ-invariant so that $Y \# Y$ bounds a contractible 4 -manifold or a homology 4-ball. Also, we have no further obstructions for other types of torsion in $\Theta_{\mathbb{Z}}^{3}$. Hence we curiously state the following problem.
Problem O. Does the group $\Theta_{\mathbb{Z}}^{3}$ contain any torsion \mathbb{Z}_{n} for $n \geq 2$? Modulo torsion, is $\Theta_{\mathbb{Z}}^{3}$ free abelian?

Only for the \mathbb{Z}_{2} type torsion, there are some new candidates found in the recent work of Boyle and Chen BC22. These examples originate from cyclic double branched coverings of S^{3} along certain nonslice strongly negative amphichiral knots of determinant 1 .

3. Two Relatives of $\Theta_{\mathbb{Z}}^{3}$

Finally, we discuss the close and crucial relationship between the knot concordance group \mathcal{C}, the homology cobordism group $\Theta_{\mathbb{Z}}^{3}$, and the rational homology cobordism group $\Theta_{\mathbb{Q}}^{3}$.
3.1. The elder: The knot concordance group \mathcal{C}. A knot K is a smooth embedding of a circle S^{1} into S^{3}. The knot concordance group \mathcal{C} is defined as

$$
\mathcal{C}=\{\text { oriented knots up to isotopy }\} / \sim
$$

where the equivalence relation concordance \sim is given for two arbitrary knots K_{0} and K_{1} as

$$
K_{0} \sim K_{1} \Longleftrightarrow\left\{\begin{array}{l}
\text { there exists a cylinder } C \text { such that } \\
\bullet C \subset S^{3} \times[0,1] \\
\bullet \partial C=-\left(K_{0}\right) \cup K_{1}
\end{array}\right.
$$

Fox and Milnor introduced the group \mathcal{C} in their celebrated article [FM66]. The summation is induced by connected sums of knots. The concordance class of the unknot gives the zero element. Inverse elements are found by mirroring knots and reversing their orientations.

Knots concordant with the unknot are said to be slice knots. Equivalently, slice knots are the knots that bound smoothly embedded disks in B^{4}. Ribbon knots can be defined by restricting the handle decomposition of the smooth disks; they are the ones that bound such disks without 2-handles. Clearly, every ribbon knot is a slice. However, the opposite is one of the most famous long-standing problems in knot theory proposed by Fox Fox62:
Problem P (Slice-ribbon conjecture). Is every slice knot a ribbon?
There are candidates for a counterexample to the slice-ribbon conjecture, provided by Gompf, Scharlemann, and Thompson GST10 and Abe and Tagami AT16. On the other hand, this conjecture was confirmed for 2 -bridge knots by Lisca Lis07a, Lis07b and for most pretzel and Montesinos knots by Greene and Jabuka GJ11] and Lecuona Lec12, Lec15, Lec18, Lec19].

In his celebrated work Gor81, Gordon defined the notion of ribbon concordance as an analogue of ribbon knots so that the Morse function induced by the concordance $S^{3} \times[0,1] \rightarrow[0,1]$ has no critical points of index 2. Furthermore, Gordon conjectured that the ribbon concordance is a partial order; this was recently proved by Agol Ago22. Zemke Zem19 initiated an approach to the study of ribbon concordance using knot Floer homology, which was generalized to 3 -manifolds by Daemi, Lidman, Vela-Vick, and Wong DLVVW22. Their formalism also provides important links to Thurston geometries.

A careful analysis of the classical articles of Fox and Milnor [Fox62, FM66, Murasugi Mur65, Robertello [Rob65], Levine [Lev69b], and Tristam Tri69] ensured the existence of infinitely generated \mathbb{Z}^{∞} and \mathbb{Z}_{2}^{∞} summands of the knot concordance group so that we pose the following first question regarding the algebraic structure of \mathcal{C} :

Problem Q. Is the group \mathcal{C} isomorphic to $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$?

Levine's eminent articles provide a surjective homomorphism $\phi: \mathcal{C} \rightarrow \mathbb{Z}^{\infty} \oplus$ $\mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty}$ Lev69b, Lev69a. First, Casson and Gordon CG78] proved that ϕ is not an isomorphism. Next, Jiang Jia81 improved their result by showing that $\operatorname{Ker}(\phi)$ has a \mathbb{Z}^{∞} subgroup. Finally, Livingston exhibited that $\operatorname{Ker}(\phi)$ has a \mathbb{Z}_{2}^{∞} subgroup [Liv01. The following question remains open:

Problem R. Does Levine's homomorphism ϕ split?
An affirmative answer to Problem \mathbb{R} will provide elements of order 4 in \mathcal{C}. Furthermore, it will guarantee that elements of order 2 do not arise only from negative amphichiral knots; see Lee05 for more details. Furthermore, obstructions to elements of order 4 were found by Livingston and Naik [LN99]. Therefore, Problem R is closely related to the remaining finite part of the knot concordance group.

Problem S. Does the group $\Theta_{\mathbb{Z}}^{3}$ contain any torsion \mathbb{Z}_{n} for $n>2$?
In COT03, COT04, Cochran, Orr, and Teichner introduced and studied the deep structure of \mathcal{C} by forming a filtration of the group via an infinite sequence of subgroups

$$
\cdots \subset \mathcal{F}_{n+1} \subset \mathcal{F}_{n .5} \subset \mathcal{F}_{n} \subset \cdots \subset \mathcal{F}_{1.5} \subset \mathcal{F}_{1} \subset \mathcal{F}_{0.5} \subset \mathcal{F}_{0} \subset \mathcal{C}
$$

where $\mathcal{F}_{0}, \mathcal{F}_{0.5}$, and $\mathcal{F}_{1.5}$, respectively, correspond to knots with trivial Arf invariant, knots in the kernel of ϕ, and knots having vanishing Casson-Gordon invariants. This filtration structure is highly nontrivial; in particular, Cochran, Harvey, and Leidy proved that each quotient $\mathcal{F}_{n} / \mathcal{F}_{n .5}$ contains a $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$ subgroup CHL09, CHL11.

The group \mathcal{C} and $\Theta_{\mathbb{Z}}^{3}$ are related by the maps

$$
S_{1 / n}^{3}: \mathcal{C} \rightarrow \Theta_{\mathbb{Z}}^{3}, \quad[K] \mapsto\left[S_{1 / n}^{3}(K)\right] .
$$

These maps are not homomorphisms but they send identity to identity; see classical work of González-Acuña GAn70a and Gordon Gor75.

The set of maps $S_{1 / n}^{3}$ was used by Peters to study the knot concordance with the help of the Heegaard Floer theoretic d-invariant Pet10. The same technique was adapted in the work of Hendricks and Manolescu HM17 in the setup of involutive Heegaard Floer homology. This approach can be applied a priori to the other homology cobordism invariants.

Finally, we briefly mention key obstructive techniques originating from several theories of knots, 3- and 4-manifolds. Akbulut and Matveyev AM97] and Rudolph Rud95] used contact geometry in the spirit of Eliashberg's work Eli90. The gauge theoretic methods of Donalson and Taubes [Don83, Tau87] were adapted by Cochran and Gompf CG86, Fintushel and Stern [FS85. Casson-Gordon invariants CG78, CG86 were applied successfully by Litherland Lit84, Kirk and Livingston KL99, Friedl [Fri04, Kim Kim05, and Aceto, Golla, and Lecuona AGL18. The knot Floer homology independently defined Ozsváth and Szabó OS04b and Rasmussen Ras03 has been used extensively; see for example Ozsváth and Szabó OS03b and Ozsváth, Szabó, and Stipsicz OSS17. Furthermore, Khovanov homology and Lee's refinement Kho00 Lee05 provided powerful invariants and techniques through the work of Rasmussen Ras10b, Kronheimer and Mrowka KM13, Lipshitz and Sarkar [LS14], and Piccirillo Pic20. Recently, Dai, Hom, Stoffregen, and Truong produced involutive Floer theoretic invariants DHST21, building on the work of Hendricks and Manolescu [HM17. Moreover, Khovanov-Rozansky homology KR08 was used
by Lobb Lob09] and Lewark Lew14 to provide quantum obstructions. Finally, instanton knot Floer homology Flo90 has yielded crucial results led by Kronheimer and Mrowka KM10, KM11, Hedden and Kirk HK12, and Baldwin and Sivek BS21, BS22].

For more details and further advancements, see the surveys of Gordon Gor78, Livingston Lee05, Hom Hom17 Hom21, and the problem lists Pr111, DFK^{+}16 HPR19.

3.2. The younger: The rational homology cobordism group $\Theta_{\mathbb{Q}}^{3}$. Changing

 the role of integer coefficients with rational ones in the definition of $\Theta_{\mathbb{Z}}^{3}$, we obtain the rational homology cobordism group $\Theta_{\mathbb{Q}}^{3}$. Deciphering the trivial class of this group has been of special interest in low-dimensional topology, constituting the following problem attributed to Casson.Problem T (Kir78b, Problem 4.5]). Which rational homology 3 -spheres bound rational homology 4-balls?

From both constructive and obstructive perspectives, Problem Thas been studied extensively with the help of the techniques introduced by Casson and Gordon CG78. For each prime p and $r \geq 1$, we have a group homomorphism

$$
\Sigma_{p^{r}}: \mathcal{C} \rightarrow \Theta_{\mathbb{Q}}^{3}, \quad[K] \mapsto\left[\Sigma_{p^{r}}(K)\right]
$$

The homomorphism of Casson and Gordon was used for the construction of concordance invariants. See the work of Manolescu and Owens MO07, Jabuka [Jab12, Alfieri, Kang, and Stipsicz AKS20, and Baraglia Bar22].

The work of Lisca Lis07a, Lis07b] on the slice-ribbon conjecture for 2-bridge knots led to the classification of lens spaces and sums of lens spaces bounding rational homology 4-balls. Similarly, the articles of Greene and Jabuka [GJ11 and Lecuona Lec12, Lec15, Lec18, Lec19 provided Seifert fibered rational homology 3spheres bounding rational homology 4-balls. Recently, Aceto and Golla AG17 and Aceto, Golla, Larson, and Lecuona AGLL20 classified surgeries on torus knots that bound rational balls. Also, Lokteva Lok20 extended their results to cables of torus knots. Furthermore, Maruyama Mar80, Fintushel and Stern [FS80], Casson and Harer CH81, Etnyre and Tosun [ET20, Simone [Sim21,Sim20, and Lokteva Lok22] constructed various rational homology 3 -spheres bounding rational homology 4-balls by using Kirby calculus and knot theory; see also Lis07a, Lis07b, Lec12, AGLL20 for the construction of certain spaces.

Several theories extended to rational homology 3 -spheres and their invariants can be extensively used for powerful obstructions. Consult the articles by Owens and Strle OS06, Simone Sim20, Choe and Park CP21, and Greene and Owens GO22] using Donaldson's diagonalization theorem and Heegaard Floer homology; Casson and Gordon CG86, Fintushel and Stern [FS87, Matić (Mat88, Ruberman Rub88, Yu Yu91, and Mukawa Muk02 using Casson-Gordon invariants and gauge theory; Wahl [Wah81, Wah11, Stipsicz, Szabó, and Wahl SSW08, and Bhupal and Stipsicz BS11 using singularity theory; Baraglia and Hekmati using Seiberg-Witten-Floer theory BH21, BH22].

A combination of the classical work of Casson and Harer [CH81] and Litherland Lit79 indicate that $\operatorname{Ker}\left(\Sigma_{p}\right)$ contains a \mathbb{Z}^{∞} subgroup for any prime p. In particular, Aceto and Larson showed that $\operatorname{Ker}\left(\Sigma_{2}\right)$ has a \mathbb{Z}^{∞} summand. Further, Aceto,

Celoria, and Park ACP20] proved that Coker $\left(\Sigma_{p^{r}}\right)$ contains a subgroup isomorphic to \mathbb{Z}^{∞} if $p \equiv 3(\bmod 4)$ and $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$ otherwise.

Problem U. Describe other types of subgroups or summands of $\operatorname{Ker}\left(\Sigma_{p^{r}}\right)$ and $\operatorname{Coker}\left(\Sigma_{p^{r}}\right)$.

In particular, the linear independence of collections of rational homology 3spheres in $\Theta_{\mathbb{Q}}^{3}$ has been studied by Hedden, Livingston, and Ruberman HLR12 and Golla and Larson GL21 using Heegaard Floer homology. See also the work of Mukawa Muk02] in the machinery of gauge theory. Nevertheless, the detection of summands in the rational homology cobordism group is an open problem.

Problem V. Does the group $\Theta_{\mathbb{Q}}^{3}$ contain a \mathbb{Q}^{n} summand for $n \geq 1$?
When Lisca classified connected sums of lens spaces bounding rational homology 4 -balls Lis07b, and he found 2-torsion elements in $\Theta_{\mathbb{Q}}^{3}$. However, the existence of other types of torsion is currently unknown.

Problem W. Does the group $\Theta_{\mathbb{Q}}^{3}$ contain any n-torsion for $n>2$?
We have a natural group homomorphism

$$
\psi: \Theta_{\mathbb{Z}}^{3} \rightarrow \Theta_{\mathbb{Q}}^{3}
$$

induced by inclusion. It is known that the map ψ is not injective. There exists homology 3 -spheres listed in Theorem Z that represent nontrivial elements in $\operatorname{Ker}(\psi)$ by the work of Fintushel and Stern [FS84, Akbulut and Larson AL18, the author [Sav20b, and Simone [Sim21] ${ }^{22}$

Theorem Z. The following homology 3-spheres bound rational homology 4-balls but do not bound homology 4-balls. Therefore, they nontrivially lie in $\operatorname{Ker}(\psi)$ since they all have nonvanishing Rokhlin invariant:
(1) $\Sigma(2,3,7), \Sigma(2,3,19)$,
(2) $\Sigma(2,4 n+1,12 n+5), \Sigma(3,3 n+1,12 n+5)$ for odd $n \geq 1$,
(3) $\Sigma(2,4 n+3,12 n+7), \Sigma(3,3 n+2,12 n+7)$ for even $n \geq 2$,
(4) $S_{-1}^{3}\left(K_{n}\right)$, where K_{n} is the twist knot for odd $n \geq 1$.

Furthermore, $\operatorname{Ker}(\psi)$ has a \mathbb{Z} subgroup generated by any single homology 3sphere listed above except those in (4) because they have nonzero $\bar{\mu}$-invariants. In particular, μ-invariants of Simone's examples in item (4) are nontrivial. One can expect that $\operatorname{Ker}(\psi)$ might be larger than \mathbb{Z}, including some linearly independent infinite subset of these homology 3 -spheres. Thus, we ask the following problem, first posed by Akbulut and Larson AL18:

Problem X. Does $\operatorname{Ker}(\psi)$ contain a \mathbb{Z}^{∞} subgroup or a \mathbb{Z}^{∞} summand?
It is worthwhile to note that all current homology cobordism invariants cannot detect the linear independence of Brieskorn spheres listed in TheoremZ in $\Theta_{\mathbb{Z}}^{3}$; see the discussion in Subsection 2.1.1. This is also true for Simone's family; see surgery formulae of the relevant homology cobordism invariants.

[^11]The existence of these homology 3 -spheres has a nice application in symplectic geometry. Let (X, ω) be a symplectic 4-manifold. A Stein domain is a triple (X, J, ϕ) such that J is complex structure on X and $\phi: X \rightarrow \mathbb{R}$ is a proper plurisubharmonic function. Here, ϕ provides compact level sets and a symplectic form: ϕ is smooth such that $\phi^{-1}((-\infty, c])$ is compact for all $c \in \mathbb{R}$ and $\omega_{\phi}(v, w)=-d(d \phi \circ J)(v, w)$ gives a symplectic form. The handle decompositions of Stein domains are completely characterized in the celebrated articles of Eliashberg Eli90 and Gompf Gom98: A 4-manifold is a Stein domain if and only if it has a handle decomposition with 0 -handles, 1 -handles, and 2 -handles; and the 2 -handles are attached along Legendrian knots with framing tb -1 , where tb denotes the Thurston-Bennequin number.

If we choose any homology 3-sphere listed in Theorem Z then the handle decomposition of the corresponding rational ball must contain 3-handles by an algebraic topology argument ${ }^{23}$ Then, the above characterization indicates that such a rational homology 4-ball cannot be a Stein domain. Mazur manifolds are potential candidates of Stein domains, but this is not the case for all Mazur manifolds; see the impressive work of Mark and Tosun MT18.

In addition to the noninjectivity of ψ, we know that it is not surjective. In particular, Kim and Livingston proved that $\operatorname{Coker}(\psi)$ has a $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$ subgroup KL14. This was reproved by Aceto and Larson AL17] as a consequence of a more general fact. They proved that $\psi\left(\Theta_{\mathbb{Z}}^{3}\right)$ and \mathcal{L} intersect trivially where \mathcal{L} denotes the subgroup of Θ_{Φ}^{3} generated by lens spaces. In particular, the structure of \mathcal{L} has been studied in AL17, ACP20. Finally, we can ask:

Problem Y. Does Coker (ψ) contain a $\mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty}$ summand? Does it have other types of subgroups or summands?

In light of the results therein and in Section 2.2, we can also address the following explicit problem:

Problem Z. Do the Brieskorn spheres $\Sigma(2,3,6 n+1)$ bound rational homology 4 -balls (resp., homology 4-balls) for odd $n \geq 5$ (resp., even $n \geq 6$)?

The notion of a rational homology cobordism can be generalized among all closed connected oriented 3 -manifolds. Such a homology cobordism is said to be ribbon if the cobordism 4 -manifold is built by attaching only 1 - and 2 -handles. This gives rise to a preorder on the set of homeomorphism classes of closed connected oriented 3 -manifolds. Daemi, Lidman, Vela-Vick, and Wong conjectured that this preorder is in fact a partial order. Independently, Friedl, Misev, and Zentner [FMZ22] and Huber [Hub22] proved this conjecture affirmatively, relying on the result of Agol Ago22.

4. Appendix: Examples of homology 3-spheres

In the wide world of closed connected oriented 3-manifolds, there is a simple characterization of homology 3 -spheres Y thanks to Poincaré duality and the universal coefficient theorem: $H_{1}(Y ; \mathbb{Z})=0$. Since the abelianization of $\pi_{1}(Y)$ gives $H_{1}(Y ; \mathbb{Z})$ due to the Hurewicz theorem, they are even easily recognized. In this

[^12]appendix, we discuss several constructions of homology 3-spheres, our main references are Neumann and Raymond NR78, Eisenbud and Neumann EN85, Gompf and Stipsicz [GS99], Saveliev [Sav02b], and Akbulut Akb16].

The first example of homology 3 -spheres was given by Poincaré Poi04 as a counterexample to the first version of the Poincaré conjecture. This 3 -manifold is known as the Poincare homology sphere, and the exposition of Kirby and Scharlemann can be seen for the eight equivalent descriptions of the Poincaré homology sphere KS79.

The next source for homology 3 -spheres was found by Dehn Deh38] by providing a passage from 1-manifolds-knots and links-to 3-manifolds via the topological operation called surgery. Consider the tubular neighborhood of K in S^{3}, which is a solid torus $\nu(K) \approx S^{1} \times D^{2}$. On the boundary torus $\partial \nu(K)$, there is a preferred longitude λ, i.e., a simple closed curve with $\operatorname{lk}(\lambda, K)=0$, and there is a canonical meridian μ with $\operatorname{lk}(\mu, K)=1$.

A Dehn (p / q)-surgery along K in S^{3} is constructed by the following two steps. We first drill out the interior of $\nu(K)$ from S^{3} and consider the knot exterior $S^{3} \backslash \nu(K)$. Next, we glue another solid torus $D^{2} \times S^{1}$ to the knot exterior by a homeomorphism φ. The resulting closed 3-manifold $S_{p / q}^{3}(K)$ is given by

$$
S_{p / q}^{3}(K)=\left(S^{3} \backslash \nu(K)\right) \cup_{\varphi}\left(D^{2} \times S^{1}\right), \quad \varphi\left(\partial D^{2} \times\{*\}\right)=p \mu+q \lambda
$$

Since $H_{1}\left(S_{p / q}^{3}(K) ; \mathbb{Z}\right)=\mathbb{Z}_{p}$, the manifolds of the form $S_{1 / n}^{3}(K)$ are automatically homology 3 -spheres. In particular, Dehn showed that the Poincaré homology sphere can be obtained by (-1)-surgery along the left-handed trefoil knot $T(2,3)$ in S^{3}.

A framed knot in S^{3} is a knot equipped with a smooth nowhere vanishing vector field normal to the knot. Thus a framing of a knot is naturally characterized by its Seifert surface (Sei35] and [FP30]) so that the specified longitude is given by 0-framing ${ }^{24}$ The set of framings of a knot is identified with a fixed set of rationals using a Seifert surface, so each knot has a preferred well-defined framing. This process can be naturally generalized to framed links in S^{3}, which are disjoint collections of knots in S^{3}.

By the eminent results of Lickorish Lic62, Wallace Wal60, and Kirby Kir78a: the map D provided by integral n-surgery

$$
D:\left\{\text { framed links in } S^{3}\right\} \rightarrow\{\text { closed 3-manifolds }\}, \quad L \mapsto D(L)=S_{n}^{3}(L)
$$

is many-to-one. In particular, Kirby completely described when two elements can represent the same element in the kernel using Cerf theory Cer70; i.e., $S_{n}^{3}\left(L_{1}\right)$ is homeomorphic to $S_{n}^{3}\left(L_{2}\right)$ if and only if the framed links are related by sequences of two Kirby moves - blow-up and handle-slide. His notable contribution was generalized, ramified, and reproved by Fenn and Rourke [FR79, César de Sá [CdS79, Kaplan Kap79, Rolfsen Rol84, Lu Lu92, Matveev and Polyak (MP94, and Martelli Mar12.

The next construction of homology 3 -spheres was provided by Seifert Sei33. Let e be an integer and let $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ be pairs of relatively prime integers. The Seifert fibered space with base orbifold S^{2} is a closed 3 -manifold

$$
M\left(S^{2} ; e,\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)
$$

[^13]constructed by starting with an S^{1}-bundle over an n-punctured S^{2} of Euler number e and filling the k th boundary component with an $\left(a_{k} / b_{k}\right)$-framed solid torus for $k=1, \ldots, n$. The core circle of the $\left(a_{k} / b_{k}\right)$ Dehn filling is called a singular fiber; all other fibers are said to be regular fibers. The resulting manifold is a homology 3 -sphere if and only if
\[

$$
\begin{equation*}
a_{1} \cdots a_{n}\left(-e+\sum_{k=1}^{n} \frac{b_{k}}{a_{k}}\right)=\mp 1 . \tag{1}
\end{equation*}
$$

\]

This equation results from the fundamental group [ST80, p. 398], and hence the first homology group calculations of Seifert fibered spaces; see [ST80, p. 410]. ${ }^{25}$ In particular, the Poincaré homology sphere corresponds to the Seifert fibered space $M\left(S^{2} ;-2,(2,-1),(3,-2),(5,-4)\right)$.

Due to Brieskorn [Bri66a, Bri66b], homology 3-spheres also originate from algebraic geometry as seen in the variety of certain complex analytical polynomials. Let p, q, and r be relatively coprime positive integers. Let $f: \mathbb{C}^{3} \rightarrow \mathbb{C}$ be a complex analytical polynomial defined by $f(x, y, z)=x^{p}+y^{q}+z^{r}$. Then the zero set of f is the complex surface $V(f)=\left\{(x, y, z) \in \mathbb{C}^{3} \mid f(x, y, z)=0\right\}$ singular at the origin. If we transversally intersect this variety with the five-sphere S_{ϵ}^{5} of arbitrarily small radius ϵ, then the resulting closed 3 -manifold is the Brieskorn sphere given by

$$
\Sigma(p, q, r)=V(f) \pitchfork S_{\epsilon}^{5} \subset \mathbb{C}^{3} .
$$

The Poincaré homology sphere matches with the Brieskorn sphere $\Sigma(2,3,5)$. For explicit descriptions of fundamental groups of Brieskorn spheres, see Milnor's paper Mil75. In particular, there is an orientation-preserving homemorphism between $M\left(S^{2} ; a_{1}, a_{2}, a_{3}\right)$ and $\Sigma\left(a_{1}, a_{2}, a_{3}\right)$ NR78, Theorem 4.1]. In general, it is possible to realize Seifert fibered homology 3 -spheres as the links of the complex surface singularities of Brieskorn complete intersections

$$
V_{B}\left(a_{1}, \ldots, a_{n}\right)=\left\{b_{i 1} z_{1}^{a_{1}}+\cdots+b_{i n} z_{n}^{a_{n}}=0, i=1, \ldots, n-2\right\} \subset \mathbb{C}^{n}
$$

where $B=\left(b_{i j}\right)$ is an $(n-2) \times n$-matrix of complex numbers such that each of the maximal minors of B is nonzero; see NR78, Theorem 2.1].

Let \mathcal{J} be an index set. A plumbing graph G is a connected and weighted tree with vertices v_{j} and weights e_{j} for $j \in \mathcal{J}$. We can construct a 4 -manifold $X(G)$ with a boundary $Y(G)$ by using the plumbing graph. First, for each v_{j}, we assign a D^{2}-bundle over S^{2} whose Euler number is e_{j}. Next, we plumb two of these D^{2}-bundles if there is an edge connecting the vertices; see [NR78, Theorem 5.1].

The fundamental classes of the zero-sections of D^{2}-bundles generate the second homology group $H_{2}(X(G) ; \mathbb{Z})$. Thus, for each vertex of G, we have a generator of $H_{2}(X(G) ; \mathbb{Z})$. Hence, the intersection form on $H_{2}(X(G) ; \mathbb{Z})$ is naturally characterized by the corresponding intersection matrix $I=\left(a_{i j}\right)$ whose data is given in the following way:

$$
a_{i j}= \begin{cases}e_{i} & \text { if } v_{i}=v_{j} \\ 1 & \text { if } v_{i} \text { and } v_{j} \text { is connected by one edge } \\ 0 & \text { otherwise }\end{cases}
$$

[^14]A plumbing graph G is called unimodular if $\operatorname{det}(I)= \pm 1$. The unimodularity of the plumbing graph implies that $Y(G)$ is a homology 3 -sphere, so it is called a plumbed homology 3-sphere. We may characterize the negative definiteness of G, it requires that I is negative-definite, i.e., signature $(I)=-|G|$, where $|G|$ denotes the number of vertices of G.

A Seifert fibered homology sphere $M\left(S^{2} ; e,\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$ can be realized as the boundary of a star-shaped plumbing graph. This graph is unique when it is negative-definite Sav02b, Section 1.1]. The integer weights $t_{i j}$ in the graph are found by solving equation (1) and expanding the continued fractions $\left[t_{i 1}, \ldots, t_{i m_{i}}\right]$ as follows: for each $i \in\{1, \ldots, n\}$, we have

In this survey, we focus on the following three families of Brieskorn spheres. Assume that p and q are pairwise coprime, positive, and ordered integers such that $2 \leq p<q$:
(1) $\{\Sigma(p, q, p q n-1)\}_{n=1}^{\infty}$;
(2) $\{\Sigma(p, q, p q n+1)\}_{n=1}^{\infty}$;
(3) $\left\{\Sigma\left(p_{n}, q_{n}, r_{n}\right)\right\}_{n=1}^{\infty}$, where $p_{n} q_{n}+p_{n} r_{n}-q_{n} r_{n}=1$;
(a) $\{\Sigma(2 n, 4 n-1,4 n+1)\}_{n=1}^{\infty}$,
(b) $\{\Sigma(2 n+1,4 n+1,4 n+3)\}_{n=1}^{\infty}$,
(c) $\{\Sigma(2 n+1,3 n+2,6 n+1)\}_{n=1}^{\infty}$,
(d) $\{\Sigma(2 n+1,3 n+1,6 n+5)\}_{n=1}^{\infty}$.

Due to the classical result of Moser Mos71, the first two families can be obtained by $(-1 / n)$ surgeries along the left-handed torus knots $T(p, q)$ and their mirror-image right-handed torus knots $\overline{T(p, q)}$ in S^{3} :

$$
\Sigma(p, q, p q n-1)=S_{-1 / n}^{3}(T(p, q)) \quad \text { and } \quad \Sigma(p, q, p q n+1)=S_{-1 / n}^{3}(\overline{T(p, q)})
$$

The third family is called almost simple linear graphs and is extensively studied in [FS85], End95, and KŞ20. The families (1) and (3) are vast generalizations of the Poincaré homology sphere $\Sigma(2,3,5)$ while the the family (2) is of $\Sigma(2,3,7)$.

Note that there is a family of Brieskorn spheres realized as the boundaries of almost simple graphs which cannot be obtained by surgeries along any knots in S^{3}. This surgery obstruction was due to Hom, Karakurt, and Lidman HKL16]. In particular, they showed that $\Sigma(2 n, 4 n-1,4 n+1)$ cannot be realized as knot surgeries for $n \geq 4$.

Another classical way to produce homology 3 -spheres is the method of cyclic branched coverings of S^{3} branched over knots K, which dates back to work of Alexander [Ale20] and Seifert [Sei33]. Let $X_{n}(K)$ be the n-fold regular covering of the knot exterior $X(K)=S^{3} \backslash \nu(K)$. Then the n-fold cyclic branched covering of
S^{3} over K is a closed 3-manifold

$$
\Sigma_{n}(K)=X_{n}(K) \cup_{\varphi}\left(D^{2} \times S^{1}\right), \quad \varphi(\tilde{\mu})=\mu
$$

where $\mu \subset \partial X(K)$ is the meridian of K and $\tilde{\mu}$ is the lift of μ to $\partial X_{n}(K)$. Note that $\Sigma_{n}(K)$ is a homology 3 -sphere when

$$
\prod_{k=1}^{n} \Delta_{K}\left(e^{\frac{2 \pi i k}{n}}\right)=1
$$

where $\Delta_{K}(t)$ is the Alexander polynomial of K normalized so that there are no negative powers of t and the constant term is positive. The Brieskorn sphere $\Sigma(p, q, r)$ is an r-fold cyclic branched coverings of S^{3} branched over the torus knots $T(p, q)$; see Mil75, Lemma 1.1] and compare with ST80, p. 405]. In general, a Seifert fibered sphere $\Sigma\left(a_{1}, \ldots, a_{n}\right)$ is a 2-fold cyclic branched covering of an S^{3} branched over Montesinos knots $K\left(a_{1}, \ldots, a_{n}\right)$; see Mon73, Mon75].

Given two homology 3-spheres together with knots inside them, we can produce a new closed 3 -manifold by following the agenda of Gordon Gor75.

Let K_{1} and K_{2} be knots in homology 3 -spheres Y_{1} and Y_{2} with the knot exteriors $Y_{1} \backslash \nu\left(\AA_{1}\right)$ and $Y_{2} \backslash \nu\left(\stackrel{\circ}{K}_{2}\right)$, and the longitude-meridian pairs $\left(\lambda_{1}, \mu_{1}\right)$ and $\left(\lambda_{2}, \mu_{2}\right)$, respectively. Consider the following integral 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $\operatorname{det}(A)=-1$. Gordon constructed closed 3 -manifolds obtained by gluing knot exteriors of homology 3 -spheres along their boundary tori by matching longitudemeridian pairs with respect to the matrix A :

$$
Y\left(K_{1}, K_{2}, A\right)=\left(Y_{1} \backslash \nu\left(\stackrel{\circ}{K_{1}}\right)\right) \cup_{A}\left(Y_{2} \backslash \nu\left(\stackrel{\circ}{K}_{2}\right)\right)
$$

Clearly, the resulting manifold is a homology 3-sphere whenever $A=\left(\begin{array}{cc}a & a b+1 \\ 1 & b\end{array}\right)$. Gordon studied the problem in which $Y\left(K_{1}, K_{2}, A\right)$ bounds contractible 4-manifolds, and he provided several characterizations in terms of sliceness of knots.

The case $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ corresponds to switching longitude-meridian pairs of knots inside homology 3 -spheres. This construction is of special interest and is known as the splice operation first introduced by Siebenmann Sie80. Given the pairs $\left(Y_{1}, K_{1}\right)$ and $\left(Y_{2}, K_{2}\right)$, we will denote the splice of these manifolds along the given knots by $Y_{1 K_{1}} \bowtie_{K_{2}} Y_{2}$.

The concept of the splice became popular after the novel book of Eisenbud and Neumann EN85 because the splice can be realized as a generalization of several other topological operations including cabling, connected sum, and disjoint union. The splice also has a very crucial role in singularity theory due to Neumann and Wahl NW90. For details, one can consult the recent survey of Cueto, PopescuPampu, and Stepanov CPPS22.

We finally consider the graph 3-manifolds introduced by Waldhausen Wal67. A graph 3-manifold is a closed 3 -manifold such that it can be cut along a set of disjoint embedded tori T_{i} and has a decomposition with each piece is $\Sigma_{i} \times S^{1}$, where Σ_{i} is a surface with boundary. In light of the JSJ (torus) decomposition theorem (Jaco and Shalen [JS79] and Johannson Joh79]), a graph homology 3-sphere is a prime homology 3-sphere whose JSJ decomposition contains only Seifert fibered pieces. See Neumann's paper [Neu07] and its appendix, and Saveliev's book Sav02b] for further discussions.

Afterword

The recorded history of the n-dimensional homology cobordism group $\Theta_{\mathbb{Z}}^{n}$ first appeared in the PhD thesis of González-Acuña GAn70b under the supervision of Ralph H. Fox at Princeton University in 1970. He introduced the notion of studying homology n-spheres by building on the work of Kervaire and Milnor KM63] about the n-dimensional homotopy cobordism group Θ^{n} of homotopy n-spheres. González-Acuña proved that these groups Θ^{n} and $\Theta_{\mathbb{Z}}^{n}$ are isomorphic unless $n=3$. Therefore, they are both finite except in the case of $n=3$. This result was not published as an article but was referred to in GAn70a, Section 2]. Note that the only unknown value of the order of Θ^{n} in KM63 was the case of $n=3$. This has not been clarified until the work of Perelman Per02, Per03a, Per03b.

The isomorphism argument of González-Acuña broke down when $n=3$, if the order of Θ^{3} was known at that time; see GAn70b, p. 17, Remark and Section I.5]. In particular, the homology cobordism group $\Theta_{\mathbb{Z}}^{3}$ was introduced to him by Denis Sullivan as noted in [GAn70b, p. VII]. Also, the first known proof of the homology cobordism invariance of the Rokhlin invariant μ was given [GAn70b, pp. 33-34]. Further, the relation between the Arf invariant of knots and the Rokhlin invariant in terms of knot surgery was found GAn70b, Theorem III.2]. Unfortunately, his results were only mentioned in Gordon's article Gor75 and they have remained mysteries.

The main references for our survey are the great book of Saveliev Sav02b and the eminent ICM 2018 article of Manolescu Man18. To extend their coherent frameworks, we list recent results not included in these resources. Further, we catalog all natural sources of homology 3 -spheres in the appendix.

Acknowledgments

The author would like to thank Selman Akbulut, Ronald Fintushel, Yoshihiro Fukumoto, Kristen Hendricks, Jennifer Hom, Çağrı Karakurt, Nikolai Saveliev, Steven Sivek, Ronald Stern, András Stipsicz, and Zhouli Xu for their valuable comments and feedback on earlier drafts of this article. Special thanks go to Tye Lidman, Ciprian Manolescu, and Masaki Taniguchi for sharing their expertise on the subject and for providing insightful suggestions. Otherwise, the survey would have been incomplete from several perspectives. Also, we are grateful to Francisco Javier González-Acuña for sharing a scanned copy of his article GAn70a.

This survey has been conducted at Max-Planck-Institut für Mathematik in Bonn, Boğaziçi University in Istanbul, and Stanford University in California. We are indebted to all these institutions for their generous hospitality and support. The author is currently supported by the Turkish Fulbright Commission "PhD dissertation research grant".

Finally, the author would like to thank the anonymous referee for the invaluable feedback that improved both the content and the exposition of the survey.

About the author

Oğuz Şavk received his PhD from Boğaziçi University in Turkey in the spring of 2023. His research interest primarily lies in low-dimensional topology with a particular emphasis on 3- and 4-manifolds. In the fall of 2023, he joined Nantes University in France as a CNRS postdoctoral researcher.

References

[ACP20] P. Aceto, D. Celoria, and J. Park, Rational cobordisms and integral homology, Compos. Math. 156 (2020), no. 9, 1825-1845, DOI 10.1112/s0010437x20007320. MR4170573
[AG17] P. Aceto and M. Golla, Dehn surgeries and rational homology balls, Algebr. Geom. Topol. 17 (2017), no. 1, 487-527, DOI 10.2140/agt.2017.17.487. MR3604383
[AGL18] P. Aceto, M. Golla, and A. G. Lecuona, Handle decompositions of rational homology balls and Casson-Gordon invariants, Proc. Amer. Math. Soc. 146 (2018), no. 9, 4059-4072, DOI 10.1090/proc/14035. MR 3825859
[AGLL20] Paolo Aceto, Marco Golla, Kyle Larson, and Ana G. Lecuona, Surgeries on torus knots, rational balls, and cabling, arXiv:2008.06760, 2020.
[Ago22] Ian Agol, Ribbon concordance of knots is a partial order, arXiv:2201.03626, 2022.
[AK79] S. Akbulut and R. Kirby, Mazur manifolds, Michigan Math. J. 26 (1979), no. 3, 259-284. MR544597
[AK14] S. Akbulut and Ç. Karakurt, Heegaard Floer homology of some Mazur type manifolds, Proc. Amer. Math. Soc. 142 (2014), no. 11, 4001-4013, DOI 10.1090/S0002-9939-2014-12149-6. MR3251740
[Akb91] S. Akbulut, A fake compact contractible 4-manifold, J. Differential Geom. 33 (1991), no. 2, 335-356. MR 1094459
[Akb16] S. Akbulut, 4-manifolds, Oxford Graduate Texts in Mathematics, vol. 25, Oxford University Press, Oxford, 2016, DOI 10.1093/acprof:oso/9780198784869.001.0001. MR3559604
[AKS20] A. Alfieri, S. Kang, and A. I. Stipsicz, Connected Floer homology of covering involutions, Math. Ann. 377 (2020), no. 3-4, 1427-1452, DOI 10.1007/s00208-020-01992-9. MR4126897
[AL17] P. Aceto and K. Larson, Knot concordance and homology sphere groups, Int. Math. Res. Not. IMRN 23 (2018), 7318-7334, DOI 10.1093/imrn/rnx091. MR 3883134
[AL18] S. Akbulut and K. Larson, Brieskorn spheres bounding rational balls, Proc. Amer. Math. Soc. 146 (2018), no. 4, 1817-1824, DOI 10.1090/proc/13828. MR3754363
[Ale20] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), no. 8, 370-372, DOI 10.1090/S0002-9904-1920-03319-7. MR 1560318
[AM90] S. Akbulut and J. D. McCarthy, Casson's invariant for oriented homology 3-spheres: An exposition, Mathematical Notes, vol. 36, Princeton University Press, Princeton, NJ, 1990, DOI 10.1515/9781400860623. MR1030042
[AM97] S. Akbulut and R. Matveyev, Exotic structures and adjunction inequality, Turkish J. Math. 21 (1997), no. 1, 47-53. MR 1456158
[AŞ22] Rodolfo Aguilar Aguilar and Oğuz Şavk, On homology planes and contractible 4manifolds, arXiv:2210.11739, 2022.
[AT16] T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323, DOI 10.4310/MRL.2016.v23.n2.a1. MR3512887
[Bar22] David Baraglia, Knot concordance invariants from Seiberg-Witten theory and slice genus bounds in 4-manifolds, arXiv:2205.11670 2022.
[BC22] Keegan Boyle and Wenzhao Chen, Negative amphichiral knots and the half-Conway polynomial, arXiv:2206.03598, 2022.
[BH21] David Baraglia and Pedram Hekmati, Equivariant Seiberg-Witten-Floer cohomology, arXiv:2108.06855 2021. To appear in Algebr. Geom. Topol.
[BH22] David Baraglia and Pedram Hekmati, Brieskorn spheres, cyclic group actions and the Milnor conjecture, arXiv:2208.05143 2022.
[BHHM20] M. Behrens, M. Hill, M. J. Hopkins, and M. Mahowald, Detecting exotic spheres in low dimensions using coker J, J. Lond. Math. Soc. (2) 101 (2020), no. 3, 1173-1218, DOI 10.1112/jlms.12301. MR 4111938
$\left[\mathrm{BKK}^{+} 21\right]$ S. Behrens, B. Kalmár, M. H. Kim, M. Powell, and A. Ray (eds.), The disc embedding theorem, Oxford University Press, Oxford, 2021. MR4519498
[Bri66a] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten (German), Invent. Math. 2 (1966), 1-14, DOI 10.1007/BF01403388. MR206972
[Bri66b] E. V. Brieskorn, Examples of singular normal complex spaces which are topological manifolds, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 1395-1397, DOI 10.1073/pnas.55.6.1395. MR 198497
[BS11] M. Bhupal and A. I. Stipsicz, Weighted homogeneous singularities and rational homology disk smoothings, Amer. J. Math. 133 (2011), no. 5, 1259-1297, DOI 10.1353/ajm.2011.0036. MR2843099
[BS21] J. A. Baldwin and S. Sivek, Framed instanton homology and concordance, J. Topol. 14 (2021), no. 4, 1113-1175, DOI 10.1112/topo.12207. MR4332488
[BS22] John A. Baldwin and Steven Sivek, Framed instanton homology and concordance, $I I$, arXiv:2206.11531, 2022.
[CdS79] E. César de Sá, A link calculus for 4-manifolds, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 16-30. MR 547450
[Cer68] J. Cerf, Sur les difféomorphismes de la sphère de dimension trois $\left(\Gamma_{4}=0\right)$ (French), Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968. MR0229250
[Cer70] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie (French), Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5-173. MR292089
[CFHS96] C. L. Curtis, M. H. Freedman, W. C. Hsiang, and R. Stong, A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds, Invent. Math. 123 (1996), no. 2, 343-348, DOI 10.1007/s002220050031. MR 1374205
[CG78] A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 39-53. MR520521
[CG86] A. J. Casson and C. McA. Gordon, Cobordism of classical knots, À la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, 1986, pp. 181-199. With an appendix by P. M. Gilmer. MR 900252
[CG88] T. D. Cochran and R. E. Gompf, Applications of Donaldson's theorems to classical knot concordance, homology 3-spheres and property P, Topology 27 (1988), no. 4, 495-512, DOI 10.1016/0040-9383(88)90028-6. MR976591
[CH81] A. J. Casson and J. L. Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981), no. 1, 23-36. MR634760
[CHL09] T. D. Cochran, S. Harvey, and C. Leidy, Knot concordance and higherorder Blanchfield duality, Geom. Topol. 13 (2009), no. 3, 1419-1482, DOI 10.2140/gt.2009.13.1419. MR2496049
[CHL11] T. D. Cochran, S. Harvey, and C. Leidy, 2-torsion in the n-solvable filtration of the knot concordance group, Proc. Lond. Math. Soc. (3) 102 (2011), no. 2, 257-290, DOI 10.1112/plms/pdq020. MR 2769115
[CK14] M. B. Can and Ç. Karakurt, Calculating Heegaard-Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014), no. 1, 43-75, DOI 10.1007/s10474-014-0432-2. MR3267169
[Con67] E. H. Connell, A topological H-cobordism theorem for $n \geq 5$, Illinois J. Math. 11 (1967), 300-309. MR212808
[COT03] T. D. Cochran, K. E. Orr, and P. Teichner, Knot concordance, Whitney towers and L^{2}-signatures, Ann. of Math. (2) 157 (2003), no. 2, 433-519, DOI 10.4007/annals.2003.157.433. MR1973052
[COT04] T. D. Cochran, K. E. Orr, and P. Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004), no. 1, 105-123, DOI 10.1007/s00014-001-0793-6. MR2031301
[CP21] D. H. Choe and K. Park, Spherical 3-manifolds bounding rational homology balls, Michigan Math. J. 70 (2021), no. 2, 227-261, DOI 10.1307/mmj/1599789614. MR4278704
[CPPS22] Maria Angelica Cueto, Patrick Popescu-Pampu, and Dmitry Stepanov, The Milnor fiber conjecture of Neumann and Wahl, and an overview of its proof, arXiv:2205.12839 2022.
[Dae20] A. Daemi, Chern-Simons functional and the homology cobordism group, Duke Math. J. 169 (2020), no. 15, 2827-2886, DOI 10.1215/00127094-2020-0017. MR4158669
[Deh38] M. Dehn, Die Gruppe der Abbildungsklassen (German), Acta Math. 69 (1938), no. 1, 135-206, DOI 10.1007/BF02547712. Das arithmetische Feld auf Flächen. MR 1555438
$\left[\mathrm{DFK}^{+} 16\right]$ C. Davis, P. Feller, M.H. Kim, J. Meier, A. Miller, M. Powell, A. Ray, and P. Teichner, Problem list, conference on 4-manifolds and knot concordance, Max Planck Institute for Mathematics, 2016.
[DHST18] Irving Dai, Jennifer Hom, Matthew Stoffregen, and Linh Truong, An infinite-rank summand of the homology cobordism group, arXiv:1810.06145, 2018. To appear in Duke Math. J.
[DHST21] I. Dai, J. Hom, M. Stoffregen, and L. Truong, More concordance homomorphisms from knot Floer homology, Geom. Topol. 25 (2021), no. 1, 275-338, DOI 10.2140/gt.2021.25.275. MR4226231
[DIS ${ }^{+} 22$ Aliakbar Daemi, Hayato Imori, Kouki Sato, Christopher Scaduto, and Masaki Taniguchi, Instantons, special cycles, and knot concordance, arXiv:2209.05400, 2022.
[DLVVW22] A. Daemi, T. Lidman, D. S. Vela-Vick, and C.-M. M. Wong, Ribbon homology cobordisms. part B, Adv. Math. 408 (2022), no. part B, Paper No. 108580, 68, DOI 10.1016/j.aim.2022.108580. MR4467148
[DM19] I. Dai and C. Manolescu, Involutive Heegaard Floer homology and plumbed three-manifolds, J. Inst. Math. Jussieu 18 (2019), no. 6, 1115-1155, DOI 10.1017/s1474748017000329. MR4021102
[DMM20] I. Dai, M. Hedden, and A. Mallick, Corks, involutions, and Heegaard Floer homology, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 6, 2319-2389, DOI 10.4171/jems/1239. MR4592871
[Don83] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279-315. MR710056
[Don87] S. K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397-428. MR910015
[DS19] I. Dai and M. Stoffregen, On homology cobordism and local equivalence between plumbed manifolds, Geom. Topol. 23 (2019), no. 2, 865-924, DOI 10.2140/gt.2019.23.865. MR3939054
[Eli90] Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990), no. 1, 29-46, DOI 10.1142/S0129167X90000034. MR 1044658
[EN85] D. Eisenbud and W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. MR817982
[End95] H. Endo, Linear independence of topologically slice knots in the smooth cobordism group, Topology Appl. 63 (1995), no. 3, 257-262, DOI 10.1016/0166-8641(94)000628. MR1334309
[ET20] John B. Etnyre and Bülent Tosun, Homology spheres bounding acyclic smooth manifolds and symplectic fillings, arXiv:2004.07405 2020.
[FF00] Y. Fukumoto and M. Furuta, Homology 3-spheres bounding acyclic 4-manifolds, Math. Res. Lett. 7 (2000), no. 5-6, 757-766, DOI 10.4310/MRL.2000.v7.n6.a8. MR1809299
[FFU01] Y. Fukumoto, M. Furuta, and M. Ue, W-invariants and Neumann-Siebenmann invariants for Seifert homology 3-spheres, Topology Appl. 116 (2001), no. 3, 333-369, DOI 10.1016/S0166-8641(00)00103-6. MR1857670
[Fic84] H. C. Fickle, Knots, Z-homology 3-spheres and contractible 4-manifolds, Houston J. Math. 10 (1984), no. 4, 467-493. MR 774711
[FK20] Sergey Finashin and Viatcheslav Kharlamov, A glimpse into Rokhlin's Signature Divisibility Theorem, arXiv:2012.06389, 2020.
[FKV20] Sergey Finashin, Viatcheslav Kharlamov, and Oleg Viro, Rokhlin's signature theorems, arXiv:2012.02004 2020.
[FL86] R. Fintushel and T. Lawson, Compactness of moduli spaces for orbifold instantons, Topology Appl. 23 (1986), no. 3, 305-312, DOI 10.1016/0166-8641(85)90048-3. MR858339
[Flo88] A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), no. 2, 215-240. MR 956166
[Flo90] A. Floer, Instanton homology, surgery, and knots, Geometry of low-dimensional manifolds, 1 (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 150, Cambridge Univ. Press, Cambridge, 1990, pp. 97-114. MR1171893
[FM66] R. H. Fox and J. W. Milnor, Singularities of 2-spheres in 4-space and cobordism of knots, Osaka Math. J. 3 (1966), 257-267. MR211392
[FMZ22] Stefan Friedl, Filip Misev, and Raphael Zentner, Rational homology ribbon cobordism is a partial order, arXiv:2204.10730 2022.
[Fox62] R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120-167. MR0140099
[FP30] F. Frankl and L. Pontrjagin, Ein Knotensatz mit Anwendung auf die Dimensionstheorie (German), Math. Ann. 102 (1930), no. 1, 785-789, DOI 10.1007/BF01782377. MR1512608
[FR79] R. Fenn and C. Rourke, On Kirby's calculus of links, Topology 18 (1979), no. 1, 1-15, DOI 10.1016/0040-9383(79)90010-7. MR528232
[Fre82] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357-453. MR679066
[Fri04] S. Friedl, Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants, Algebr. Geom. Topol. 4 (2004), 893-934, DOI 10.2140/agt.2004.4.893. MR2100685
[Frø02] K. A. Frøyshov, Equivariant aspects of Yang-Mills Floer theory, Topology 41 (2002), no. 3, 525-552, DOI 10.1016/S0040-9383(01)00018-0. MR 1910040
[Frø10] K. A. Frøyshov, Monopole Floer homology for rational homology 3-spheres, Duke Math. J. 155 (2010), no. 3, 519-576, DOI 10.1215/00127094-2010-060. MR2738582
[Frø16] Kim A. Frøyshov, Mod 2 instanton Floer homology, Unpublished note, 2016.
[FS80] R. Fintushel and R. J. Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980), no. 1, 33-51, DOI 10.1007/BF01161380. MR595630
[FS81] R. Fintushel and R. J. Stern, An exotic free involution on S^{4}, Ann. of Math. (2) 113 (1981), no. 2, 357-365, DOI 10.2307/2006987. MR607896
[FS84] R. Fintushel and R. J. Stern, A μ-invariant one homology 3-sphere that bounds an orientable rational ball, Four-manifold theory (Durham, N.H., 1982), Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 265-268, DOI 10.1090/conm/035/780582. MR 780582
[FS85] R. Fintushel and R. J. Stern, Pseudofree orbifolds, Ann. of Math. (2) 122 (1985), no. 2, 335-364, DOI 10.2307/1971306. MR808222
[FS87] R. Fintushel and R. Stern, Rational homology cobordisms of spherical space forms, Topology 26 (1987), no. 3, 385-393, DOI 10.1016/0040-9383(87)90008-5. MR899056
[FS90] R. Fintushel and R. J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), no. 1, 109-137, DOI 10.1112/plms/s3-61.1.109. MR1051101
[FT77] M. H. Freedman and L. Taylor, Λ-splitting 4-manifolds, Topology 16 (1977), no. 2, 181-184, DOI 10.1016/0040-9383(77)90017-9. MR442954
[Fuk78] S. Fukuhara, On the invariant for a certain type of involutions of homology 3spheres and its application, J. Math. Soc. Japan 30 (1978), no. 4, 653-665, DOI $10.2969 / \mathrm{jmsj} / 03040653$. MR 513075
[Fuk09] Y. Fukumoto, The bounded genera and w-invariants, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1509-1517, DOI 10.1090/S0002-9939-08-09744-X. MR2465677
[Fuk11] Y.Fukumoto, w-invariants and the Fintushel-Stern invariants for plumbed homology 3-spheres, Exp. Math. 20 (2011), no. 1, 1-14, DOI 10.1080/10586458.2011.544556. MR2802720
[Fur90] M. Furuta, Homology cobordism group of homology 3-spheres, Invent. Math. 100 (1990), no. 2, 339-355, DOI 10.1007/BF01231190. MR 1047138
[Fur01] M. Furuta, Monopole equation and the $\frac{11}{8}$-conjecture, Math. Res. Lett. 8 (2001), no. 3, 279-291, DOI 10.4310/MRL.2001.v8.n3.a5. MR 1839478
[GAn70a] F. González-Acuña, Dehn's construction on knots, Bol. Soc. Mat. Mexicana (2) 15 (1970), 58-79. MR356022
[GAn70b] F. González-Acuña, On homology spheres, ProQuest LLC, Ann Arbor, MI, 1970, Thesis (Ph.D.)-Princeton University. MR2619599
[GJ11] J. Greene and S. Jabuka, The slice-ribbon conjecture for 3-stranded pretzel knots, Amer. J. Math. 133 (2011), no. 3, 555-580, DOI 10.1353/ajm.2011.0022. MR2808326
[GL21] M. Golla and K. Larson, Linear independence in the rational homology cobordism group, J. Inst. Math. Jussieu 20 (2021), no. 3, 989-1000, DOI 10.1017/S1474748019000434. MR4260647
[GO22] Joshua Evan Greene and Brendan Owens, Alternating links, rational balls, and cube tilings, arXiv:2212.06248 2022.
[Gom98] R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693, DOI 10.2307/121005. MR 1668563
[Gor75] C. McA. Gordon, Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151-172, DOI 10.1016/0040-9383(75)90024-5. MR402762
[Gor78] C. McA. Gordon, Some aspects of classical knot theory, Knot theory (Proc. Sem., Plans-sur-Bex, 1977), Lecture Notes in Math., vol. 685, Springer, Berlin, 1978, pp. 160. MR521730
[Gor81] C. McA. Gordon, Ribbon concordance of knots in the 3-sphere, Math. Ann. 257 (1981), no. 2, 157-170, DOI 10.1007/BF01458281. MR 634459
[GS79] D. E. Galewski and R. J. Stern, Orientation-reversing involutions on homology 3-spheres, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 3, 449-451, DOI 10.1017/S0305004100055900. MR520461
[GS80] D. E. Galewski and R. J. Stern, Classification of simplicial triangulations of topological manifolds, Ann. of Math. (2) 111 (1980), no. 1, 1-34, DOI 10.2307/1971215. MR558395
[GS99] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999, DOI 10.1090/gsm/020. MR 1707327
[GST10] R. E. Gompf, M. Scharlemann, and A. Thompson, Fibered knots and potential counterexamples to the property $2 R$ and slice-ribbon conjectures, Geom. Topol. 14 (2010), no. 4, 2305-2347, DOI 10.2140/gt.2010.14.2305. MR2740649
[HHL21] K. Hendricks, J. Hom, and T. Lidman, Applications of involutive Heegaard Floer homology, J. Inst. Math. Jussieu 20 (2021), no. 1, 187-224, DOI 10.1017/S147474801900015X. MR4205781
[HHR16] M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1-262, DOI 10.4007/annals.2016.184.1.1. MR3505179
[HHSZ20] Kristen Hendricks, Jennifer Hom, Matthew Stoffregen, and Ian Zemke, Surgery exact triangles in involutive Heegaard Floer homology, arXiv:2011.00113, 2020.
[HHSZ22] K. Hendricks, J. Hom, M. Stoffregen, and I. Zemke, On the quotient of the homology cobordism group by Seifert spaces, Trans. Amer. Math. Soc. Ser. B 9 (2022), 757-781, DOI 10.1090/btran/110. MR4480068
[Hir61] M. W. Hirsch, The imbedding of bounding manifolds in euclidean space, Ann. of Math. (2) 74 (1961), 494-497, DOI 10.2307/1970293. MR133136
[HK12] M. Hedden and P. Kirk, Instantons, concordance, and Whitehead doubling, J. Differential Geom. 91 (2012), no. 2, 281-319. MR2971290
[HKL16] J. Hom, Ç. Karakurt, and T. Lidman, Surgery obstructions and Heegaard Floer homology, Geom. Topol. 20 (2016), no. 4, 2219-2251, DOI 10.2140/gt.2016.20.2219. MR 3548466
[HLR12] M. Hedden, C. Livingston, and D. Ruberman, Topologically slice knots with nontrivial Alexander polynomial, Adv. Math. 231 (2012), no. 2, 913-939, DOI 10.1016/j.aim.2012.05.019. MR2955197
[HM74] M. W. Hirsch and B. Mazur, Smoothings of piecewise linear manifolds, Annals of Mathematics Studies, No. 80, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0415630
[HM17] K. Hendricks and C. Manolescu, Involutive Heegaard Floer homology, Duke Math. J. 166 (2017), no. 7, 1211-1299, DOI 10.1215/00127094-3793141. MR 3649355
[HMZ18] K. Hendricks, C. Manolescu, and I. Zemke, A connected sum formula for involutive Heegaard Floer homology, Selecta Math. (N.S.) 24 (2018), no. 2, 1183-1245, DOI 10.1007/s00029-017-0332-8. MR3782421
[Hom17] J. Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017), no. 2, 1740015, 24, DOI 10.1142/S0218216517400156. MR3604497
[Hom21] Jennifer Hom, Homology cobordism, knot concordance, and Heegaard Floer homology, arXiv:2108.10400 2021.
[HP79] W. C. Hsiang and P. S. Pao, The homology 3-spheres with involutions, Proc. Amer. Math. Soc. 75 (1979), no. 2, 308-310, DOI 10.2307/2042762. MR532156
[HPR19] Shelly Harvey, JungHwan Park, and Arunima Ray, Smooth concordance classes of topologically slice knots, AIM Problem Lists, 2019.
[Hub22] M. Huber, Ribbon Cobordisms, ProQuest LLC, Ann Arbor, MI, 2022. Thesis (Ph.D.)-Boston College. MR4479491
[Isa19] D. C. Isaksen, Stable stems, Mem. Amer. Math. Soc. 262 (2019), no. 1269, viii+159, DOI 10.1090/memo/1269. MR4046815
[IWX20a] D. C. Isaksen, G. Wang, and Z. Xu, Stable homotopy groups of spheres, Proc. Natl. Acad. Sci. USA 117 (2020), no. 40, 24757-24763, DOI 10.1073/pnas. 2012335117. MR4250190
[IWX20b] Daniel C. Isaksen, Guozhen Wang, and Zhouli Xu, Stable homotopy groups of spheres: From dimension 0 to 90 arXiv:2001.04511, 2020.
[Jab12] S. Jabuka, Concordance invariants from higher order covers, Topology Appl. 159 (2012), no. 10-11, 2694-2710, DOI 10.1016/j.topol.2012.03.014. MR2923439
[Jia81] B. J. Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981), no. 1, 189-192, DOI 10.2307/2043920. MR620010
[Joh79] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. MR 551744
[JS79] W. H. Jaco and P. B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192, DOI 10.1090/memo/0220. MR539411
[Juh15] A. Juhász, A survey of Heegaard Floer homology, New ideas in low dimensional topology, Ser. Knots Everything, vol. 56, World Sci. Publ., Hackensack, NJ, 2015, pp. 237-296, DOI 10.1142/9789814630627_0007. MR3381327
[Kap79] S. J. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979), 237-263, DOI 10.2307/1998268. MR539917
[Ker69] M. A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72, DOI 10.2307/1995269. MR253347
[Kho00] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359-426, DOI 10.1215/S0012-7094-00-10131-7. MR1740682
[Kim05] S.-G. Kim, Polynomial splittings of Casson-Gordon invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 59-78, DOI 10.1017/S0305004104008023. MR2127228
[Kir78a] R. Kirby, A calculus for framed links in S^{3}, Invent. Math. 45 (1978), no. 1, 35-56, DOI 10.1007/BF01406222. MR467753
[Kir78b] R. Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273-312. MR520548
[KL99] P. Kirk and C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), no. 3, 635-661, DOI 10.1016/S0040-9383(98)00039-1. MR1670420
[KL14] S.-G. Kim and C. Livingston, Nonsplittability of the rational homology cobordism group of 3-manifolds, Pacific J. Math. 271 (2014), no. 1, 183-211, DOI 10.2140/pjm.2014.271.183. MR3259765
[KLT20a] Ç. Kutluhan, Y.-J. Lee, and C. Taubes, HF=HM, IV: The Sieberg-Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020), no. 7, 3219-3469, DOI 10.2140/gt.2020.24.3219. MR4194308
[KLT20b] Ç. Kutluhan, Y.-J. Lee, and C. H. Taubes, HF=HM, V: Seiberg-Witten Floer homology and handle additions, Geom. Topol. 24 (2020), no. 7, 3471-3748, DOI 10.2140/gt.2020.24.3471. MR4194309
[KLT20c] Ç. Kutluhan, Y.-J. Lee, and C. H. Taubes, HF=HM, III: holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020), no. 6, 3013-3218, DOI 10.2140/gt.2020.24.3013. MR4194307
[KLT20d] Ç. Kutluhan, Y.-J. Lee, and C. H. Taubes, HF = HM, I: Heegaard Floer homology and Seiberg-Witten Floer homology, Geom. Topol. 24 (2020), no. 6, 2829-2854, DOI 10.2140/gt.2020.24.2829. MR4194305
[KLT20e] Ç. Kutluhan, Y.-J. Lee, and C. H. Taubes, HF = HM, II: Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020), no. 6, 2855-3012, DOI 10.2140/gt.2020.24.2855. MR4194306
[KLT21] Ç. Karakurt, T. Lidman, and E. Tweedy, Heegaard Floer homology and splicing homology spheres, Math. Res. Lett. 28 (2021), no. 1, 93-106, DOI 10.4310/MRL.2021.v28.n1.a4. MR4247996
[KM63] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537, DOI 10.2307/1970128. MR 148075
[KM07] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007, DOI 10.1017/CBO9780511543111. MR2388043
[KM10] P. Kronheimer and T. Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010), no. 2, 301-364. MR2652464
[KM11] P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector, Publ. Math. Inst. Hautes Études Sci. 113 (2011), 97-208, DOI 10.1007/s10240-010-0030-y. MR2805599
[KM13] P. B. Kronheimer and T. S. Mrowka, Gauge theory and Rasmussen's invariant, J. Topol. 6 (2013), no. 3, 659-674, DOI 10.1112/jtopol/jtt008. MR3100886
[Kol08] J. Kollár, Is there a topological Bogomolov-Miyaoka-Yau inequality?, Pure Appl. Math. Q. 4 (2008), no. 2, Special Issue: In honor of Fedor Bogomolov., 203-236, DOI 10.4310/PAMQ.2008.v4.n2.a1. MR 2400877
[KR08] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1-91, DOI 10.4064/fm199-1-1. MR 2391017
[KS79] R. C. Kirby and M. G. Scharlemann, Eight faces of the Poincaré homology 3-sphere, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 113-146. MR537730
[KŞ20] Ç. Karakurt and O. Şavk, Ozsváth-Szabó d-invariants of almost simple linear graphs, J. Knot Theory Ramifications 29 (2020), no. 5, 2050029, 17, DOI 10.1142/S0218216520500297. MR4118004
[KŞ22] Ç. Karakurt and O. Şavk, Almost simple linear graphs, homology cobordism and connected Heegaard Floer homology, Acta Math. Hungar. 168 (2022), no. 2, 454489, DOI 10.1007/s10474-022-01280-9. MR4527512
[KWZ19] Artem Kotelskiy, Liam Watson, and Claudius Zibrowius, Immersed curves in Khovanov homology, arXiv:1910.14584 2019.
[Law87] T. Lawson, Invariants for families of Brieskorn varieties, Proc. Amer. Math. Soc. 99 (1987), no. 1, 187-192, DOI 10.2307/2046293. MR866451
[Law88] T. Lawson, Compactness results for orbifold instantons, Math. Z. 200 (1988), no. 1, 123-140, DOI 10.1007/BF01161749. MR972399
[Lec12] A. G. Lecuona, On the slice-ribbon conjecture for Montesinos knots, Trans. Amer. Math. Soc. 364 (2012), no. 1, 233-285, DOI 10.1090/S0002-9947-2011-05385-7. MR2833583
[Lec15] A. G. Lecuona, On the slice-ribbon conjecture for pretzel knots, Algebr. Geom. Topol. 15 (2015), no. 4, 2133-2173, DOI 10.2140/agt.2015.15.2133. MR 3402337
[Lec18] A. G. Lecuona, A note on graphs and rational balls, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 (2018), no. 3, 705-716, DOI 10.1007/s13398-017-0464-x. MR3819726
[Lec19] A. G. Lecuona, Complementary legs and rational balls, Michigan Math. J. 68 (2019), no. 3, 637-649, DOI 10.1307/mmj/1561708817. MR3990174
[Lee05] E. S. Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005), no. 2, 554-586, DOI 10.1016/j.aim.2004.10.015. MR2173845
[Lev69a] J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110; addendum, ibid. 8 (1969), 355, DOI 10.1007/BF01404613. MR253348
[Lev69b] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244, DOI 10.1007/BF02564525. MR246314
[Lev85] J. P. Levine, Lectures on groups of homotopy spheres, Algebraic and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 62-95, DOI 10.1007/BFb0074439. MR802786
[Lew14] L. Lewark, Rasmussen's spectral sequences and the $\mathfrak{s l}_{N}$-concordance invariants, Adv. Math. 260 (2014), 59-83, DOI 10.1016/j.aim.2014.04.003. MR 3209349
[Lic62] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540, DOI 10.2307/1970373. MR 151948
[Lin15] J. Lin, Pin(2)-equivariant KO-theory and intersection forms of spin 4-manifolds, Algebr. Geom. Topol. 15 (2015), no. 2, 863-902, DOI 10.2140/agt.2015.15.863. MR3342679
[Lin17] F. Lin, The surgery exact triangle in $\operatorname{Pin}(2)$-monopole Floer homology, Algebr. Geom. Topol. 17 (2017), no. 5, 2915-2960, DOI 10.2140/agt.2017.17.2915. MR3704248
[Lin18] F. Lin, A Morse-Bott approach to monopole Floer homology and the triangulation conjecture, Mem. Amer. Math. Soc. 255 (2018), no. 1221, v+162, DOI 10.1090/memo/1221. MR 3827053
[Lis07a] P. Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429-472, DOI 10.2140/gt.2007.11.429. MR2302495
[Lis07b] P. Lisca, Sums of lens spaces bounding rational balls, Algebr. Geom. Topol. 7 (2007), 2141-2164, DOI 10.2140/agt.2007.7.2141. MR2366190
[Lit79] R. A. Litherland, Signatures of iterated torus knots, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 71-84. MR547456
[Lit84] R. A. Litherland, Cobordism of satellite knots, Four-manifold theory (Durham, N.H., 1982), Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 327362, DOI 10.1090/conm/035/780587. MR 780587
[Liv81] C. Livingston, Homology cobordisms of 3-manifolds, knot concordances, and prime knots, Pacific J. Math. 94 (1981), no. 1, 193-206. MR625818
[Liv01] C. Livingston, Infinite order amphicheiral knots, Algebr. Geom. Topol. 1 (2001), 231-241, DOI 10.2140/agt.2001.1.231. MR 1823500
[LN99] C. Livingston and S. Naik, Obstructing four-torsion in the classical knot concordance group, J. Differential Geom. 51 (1999), no. 1, 1-12. MR 1703602
[Lob09] A. Lobb, A slice genus lower bound from $\mathrm{sl}(n)$ Khovanov-Rozansky homology, Adv. Math. 222 (2009), no. 4, 1220-1276, DOI 10.1016/j.aim.2009.06.001. MR2554935
[Lok20] Lisa Lokteva, Surgeries on iterated torus knots bounding rational homology 4-balls, arXiv:2110.05459 2020.
[Lok22] Lisa Lokteva, Constructing rational homology 3-spheres that bound rational homology 4-balls, arXiv:2208.14850 2020.
[LS14] R. Lipshitz and S. Sarkar, A refinement of Rasmussen's S-invariant, Duke Math. J. 163 (2014), no. 5, 923-952, DOI 10.1215/00127094-2644466. MR3189434
[LT18] T. Lidman and E. Tweedy, A note on concordance properties of fibers in Seifert homology spheres, Canad. Math. Bull. 61 (2018), no. 4, 754-767, DOI 10.4153/CMB-2017-081-9. MR 3846745
[Lu92] N. Lu, A simple proof of the fundamental theorem of Kirby calculus on links, Trans. Amer. Math. Soc. 331 (1992), no. 1, 143-156, DOI 10.2307/2154000. MR1065603
[Man14] C. Manolescu, On the intersection forms of spin four-manifolds with boundary, Math. Ann. 359 (2014), no. 3-4, 695-728, DOI 10.1007/s00208-014-1010-1. MR3231012
[Man16a] Ciprian Manolescu, Lectures on the triangulation conjecture, Proceedings of the Gökova Geometry-Topology Conference 2015, Gökova Geometry/Topology Conference (GGT), Gökova, 2016, pp. 1-38. MR3526837
[Man16b] C. Manolescu, Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016), no. 1, 147-176, DOI 10.1090/jams829. MR3402697
[Man18] Ciprian Manolescu, Homology cobordism and triangulations, Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1175-1191.
[Man20] Ciprian Manolescu, Four-dimensional topology, Preprint (2020). To appear in CMSA Math Science Lecture Proceedings.
[Mar12] B. Martelli, A finite set of local moves for Kirby calculus, J. Knot Theory Ramifications 21 (2012), no. 14, 1250126, 5, DOI 10.1142/S021821651250126X. MR 3021764
[Mar79] N. Martin, Some homology 3-spheres which bound acyclic 4-manifolds, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 85-92. MR547457
[Mar80] N. Maruyama, Rational homology 3-spheres which bound rationally acyclic 4manifolds, J. Tsuda College 12 (1980), 11-30. MR623028
[Mar81] N. Maruyama, Notes on homology 3-spheres which bound contractible 4-manifolds. I, J. Tsuda College 13 (1981), 19-31. MR635711
[Mar82] N. Maruyama, Notes on homology 3-spheres which bound contractible 4-manifolds. II, J. Tsuda College 14 (1982), 7-24. MR0662274
[Mat88] G. Matić, $\mathrm{SO}(3)$-connections and rational homology cobordisms, J. Differential Geom. 28 (1988), no. 2, 277-307. MR 961516
[Mat78] T. Matumoto, Triangulation of manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3-6. MR 520517
[Mat96] R. Matveyev, A decomposition of smooth simply-connected h-cobordant 4-manifolds, J. Differential Geom. 44 (1996), no. 3, 571-582. MR 1431006
[Maz61] B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221-228, DOI 10.2307/1970288. MR 125574
[McD22] Clayton McDonald, Surface slices and homology spheres, arXiv:2202.02696 2022.
[Mil56] J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 399-405, DOI 10.2307/1969983. MR 82103
[Mil59] J. Milnor, Collected papers of John Milnor. III, American Mathematical Society, Providence, RI, 2007. Differential topology. MR 2307957
[Mil62] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7, DOI 10.2307/2372800. MR 142125
[Mil75] J. Milnor, On the 3-dimensional Brieskorn manifolds $M(p, q, r)$, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 175-225. MR0418127
[Mil11] J. Milnor, Differential topology forty-six years later, Notices Amer. Math. Soc. 58 (2011), no. 6, 804-809. MR2839925
[MO07] C. Manolescu and B. Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN 20 (2007), Art. ID rnm077, 21, DOI 10.1093/imrn/rnm077. MR2363303
[Moi52a] E. E. Moise, Affine structures in 3-manifolds. IV. Piecewise linear approximations of homeomorphisms, Ann. of Math. (2) 55 (1952), 215-222, DOI 10.2307/1969775. MR46644
[Moi52b] E. E. Moise, Affine structures in 3-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96-114, DOI 10.2307/1969769. MR48805
[Mon73] J. M. Montesinos, Seifert manifolds that are ramified two-sheeted cyclic coverings (Spanish), Bol. Soc. Mat. Mexicana (2) 18 (1973), 1-32. MR341467
[Mon75] J. M. Montesinos, Surgery on links and double branched covers of S^{3}, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 227-259. MR0380802
[Mos71] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737745. MR 383406
[MP94] S. Matveev and M. Polyak, A geometrical presentation of the surface mapping class group and surgery, Comm. Math. Phys. 160 (1994), no. 3, 537-550. MR 1266062
[MT18] T. E. Mark and B. Tosun, Obstructing pseudoconvex embeddings and contractible Stein fillings for Brieskorn spheres, Adv. Math. 335 (2018), 878-895, DOI 10.1016/j.aim.2018.07.023. MR3836681
[Muk02] T. Mukawa, Rational homology cobordisms of Seifert fibred rational homology three spheres, J. Math. Kyoto Univ. 42 (2002), no. 3, 551-577, DOI $10.1215 / \mathrm{kjm} / 1250283850$. MR 1967223
[Muk20] Anubhav Mukherjee, A note on embeddings of 3 -manifolds in symplectic 4manifolds, arXiv:2010.03681, 2020.
[Mur65] K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422, DOI 10.2307/1994215. MR171275
[Mye83] R. Myers, Homology cobordisms, link concordances, and hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 278 (1983), no. 1, 271-288, DOI 10.2307/1999315. MR697074
[Ném05] A. Némethi, On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, Geom. Topol. 9 (2005), 991-1042, DOI 10.2140/gt.2005.9.991. MR2140997
[Neu80] W. D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 125-144. MR585657
[Neu07] W. D. Neumann, Graph 3-manifolds, splice diagrams, singularities, Singularity theory, World Sci. Publ., Hackensack, NJ, 2007, pp. 787-817, DOI 10.1142/9789812707499_0034. MR2342940
[New66] M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555-571, DOI 10.2307/1970460. MR 203708
[NR78] W. D. Neumann and F. Raymond, Seifert manifolds, plumbing, μ-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163-196. MR518415
[NST19] Yuta Nozaki, Kouki Sato, and Masaki Taniguchi, Filtered instanton Floer homology and the homology cobordism group, arXiv:1905.04001 2019. To appear in J. Eur. Math. Soc.
[NW90] W. Neumann and J. Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990), no. 1, 58-78, DOI 10.1007/BF02566593. MR 1036128
[NZ85] W. D. Neumann and D. Zagier, A note on an invariant of Fintushel and Stern, Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math., vol. 1167, Springer, Berlin, 1985, pp. 241-244, DOI 10.1007/BFb0075227. MR827273
[Ore97] S. Yu. Orevkov, Acyclic algebraic surfaces bounded by Seifert spheres, Osaka J. Math. 34 (1997), no. 2, 457-480. MR1483860
[OS03a] P. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179-261, DOI 10.1016/S0001-8708(02)00030-0. MR1957829
[OS03b] P. Ozsváth and Z. Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615-639, DOI 10.2140/gt.2003.7.615. MR 2026543
[OS03c] P. Ozsváth and Z. Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185-224, DOI 10.2140/gt.2003.7.185. MR1988284
[OS04a] P. Ozsváth and Z. Szabó, Heegaard diagrams and holomorphic disks, Different faces of geometry, Int. Math. Ser. (N. Y.), vol. 3, Kluwer/Plenum, New York, 2004, pp. 301-348, DOI 10.1007/0-306-48658-X_7. MR2102999
[OS04b] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58-116, DOI 10.1016/j.aim.2003.05.001. MR2065507
[OS04c] P. Ozsváth and Z. Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159-1245, DOI 10.4007/annals.2004.159.1159. MR2113020
[OS04d] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027-1158, DOI 10.4007/annals.2004.159.1027. MR2113019
[OS06] B. Owens and S. Strle, Rational homology spheres and the four-ball genus of knots, Adv. Math. 200 (2006), no. 1, 196-216, DOI 10.1016/j.aim.2004.12.007. MR2199633
[OSS17] P. S. Ozsváth, A. I. Stipsicz, and Z. Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017), 366-426, DOI 10.1016/j.aim.2017.05.017. MR3667589
[Per02] Grisha Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:0211159, 2002.
[Per03a] Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:0307245, 2003.
[Per03b] Bing-Long Chen and Xi-Ping Zhu, Ricci flow with surgery on three-manifolds, arXiv:0303109 2003.
[Pet10] Thomas D. Peters, A concordance invariant from the Floer homology of ∓ 1 surgeries, arXiv:1003.3038, 2010.
[Pic20] L. Piccirillo, The Conway knot is not slice, Ann. of Math. (2) 191 (2020), no. 2, 581-591, DOI 10.4007/annals.2020.191.2.5. MR4076631
[Poé60] V. Poenaru, Les decompositions de l'hypercube en produit topologique (French), Bull. Soc. Math. France 88 (1960), 113-129. MR 125572
[Poi04] Henri Poincaré, Cinquième complément à l'analysis situs, Rendiconti del Circolo Matematico di Palermo (1884-1940) 18 (1904), no. 1, 45-110.
[Pr111] Open problems in geometric topology, Low-dimensional and symplectic topology, Proc. Sympos. Pure Math., vol. 82, Amer. Math. Soc., Providence, RI, 2011, pp. 215228, DOI 10.1090/pspum/082/2768661. MR 2768661
[Ram71] C. P. Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69-88, DOI 10.2307/1970735. MR286801
[Ras03] J. A. Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)-Harvard University. MR2704683
[Ras10a] J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419-447, DOI 10.1007/s00222-010-0275-6. MR2729272
[Ras10b] J. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182 (2010), no. 2, 419-447, DOI 10.1007/s00222-010-0275-6. MR2729272
[Rob65] R. A. Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965), 543-555, DOI 10.1002/cpa.3160180309. MR 182965
[Rok51] V. A. Rohlin, A three-dimensional manifold is the boundary of a four-dimensional one (Russian), Doklady Akad. Nauk SSSR (N.S.) 81 (1951), 355-357. MR0048808
[Rok52] V. A. Rohlin, New results in the theory of four-dimensional manifolds (Russian), Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 221-224. MR0052101
[Rok65] V. A. Rohlin, The embedding of non-orientable three-manifolds into five-dimensional Euclidean space (Russian), Dokl. Akad. Nauk SSSR 160 (1965), 549-551. MR0184246
[Rol76] D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR0515288
[Rol84] D. Rolfsen, Rational surgery calculus: extension of Kirby's theorem, Pacific J. Math. 110 (1984), no. 2, 377-386. MR726496
[Ros20] Daniel Rostovtsev, Almost ı-complexes as immersed curves, arXiv:2012.07189, 2020.
[Rub88] D. Ruberman, Rational homology cobordisms of rational space forms, Topology 27 (1988), no. 4, 401-414, DOI 10.1016/0040-9383(88)90020-1. MR 976583
[Rud95] L. Rudolph, An obstruction to sliceness via contact geometry and "classical" gauge theory, Invent. Math. 119 (1995), no. 1, 155-163, DOI 10.1007/BF01245177. MR1309974
[Rud98] Y. B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. With a foreword by Haynes Miller. MR1627486
[Rud16] Y. Rudyak, Piecewise linear structures on topological manifolds, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016, DOI 10.1142/9887. MR3467983
[RW15] A. Ranicki and C. Weber, Commentary on the Kervaire-Milnor correspondence 1958-1961, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 4, 603-609, DOI 10.1090/bull/1508. MR 3393348
[Sav98a] N. Saveliev, Dehn surgery along torus knots, Topology Appl. 83 (1998), no. 3, 193202, DOI 10.1016/S0166-8641(97)00109-0. MR1606386
[Sav98b] N. Saveliev, Notes on homology cobordisms of plumbed homology 3-spheres, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2819-2825, DOI 10.1090/S0002-9939-98-043597. MR1451828
[Sav02a] N. Saveliev, Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002), no. 2, 465-490, DOI 10.2140/pjm.2002.205.465. MR1922741
[Sav02b] N. Saveliev, Invariants for homology 3-spheres, Encyclopaedia of Mathematical Sciences. Low-dimensional topology, vol. 140, Springer-Verlag, Berlin, 2002, DOI 10.1007/978-3-662-04705-7. MR1941324
[Şav20a] Oğuz Şavk, Classical and new plumbed homology spheres bounding contractible manifolds, arXiv:2012.12587, 2020. To appear in Internat. J. Math.
[Şav20b] O. Şavk, More Brieskorn spheres bounding rational balls, Topology Appl. 286 (2020), 107400, 10, DOI 10.1016/j.topol.2020.107400. MR4179129
[Sei33] H. Seifert, Topologie Dreidimensionaler Gefaserter Räume (German), Acta Math. 60 (1933), no. 1, 147-238, DOI 10.1007/BF02398271. MR 1555366
[Sei35] H. Seifert, Über das Geschlecht von Knoten (German), Math. Ann. 110 (1935), no. 1, 571-592, DOI 10.1007/BF01448044. MR1512955
[Sie80] L. Siebenmann, On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 172-222. MR 585660
[Sim20] Jonathan Simone, Classification of torus bundles that bound rational homology circles, arXiv:2006.14986 2020. To appear in Algebr. Geom. Topol.
[Sim21] J. Simone, Using rational homology circles to construct rational homology balls, Topology Appl. 291 (2021), Paper No. 107626, 16, DOI 10.1016/j.topol.2021.107626. MR4215138
[Sma61] S. Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406, DOI 10.2307/1970239. MR 137124
[SSW08] A. I. Stipsicz, Z. Szabó, and J. Wahl, Rational blowdowns and smoothings of surface singularities, J. Topol. 1 (2008), no. 2, 477-517, DOI 10.1112/jtopol/jtn009. MR2399141
[ST80] H. Seifert and W. Threlfall, Seifert and Threlfall: a textbook of topology, Pure and Applied Mathematics, vol. 89, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Translated from the German edition of 1934 by Michael A. Goldman; With a preface by Joan S. Birman; With "Topology of 3-dimensional fibered spaces" by Seifert; Translated from the German by Wolfgang Heil. MR 575168
[Sta60] J. R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. 66 (1960), 485-488, DOI 10.1090/S0002-9904-1960-10511-3. MR124905
[Ste78] Ronald J. Stern, Some more Brieskorn spheres which bound contractible manifolds, Notices Amer. Math. Soc 25 (1978), Announcement, https://www.ams.org/ journals/notices/197806/197806FullIssue.pdf.
[Sto17] M. Stoffregen, Manolescu invariants of connected sums, Proc. Lond. Math. Soc. (3) 115 (2017), no. 5, 1072-1117, DOI 10.1112/plms.12060. MR 3733559
[Sto20] M. Stoffregen, Pin(2)-equivariant Seiberg-Witten Floer homology of Seifert fibrations, Compos. Math. 156 (2020), no. 2, 199-250, DOI 10.1112/s0010437x19007620. MR4044465
[SYZ21] Karthik Seetharaman, William Yue, and Isaac Zhu, Patterns in the lattice homology of Seifert homology spheres, arXiv:2110.13405 2021.
[Tau87] C. H. Taubes, Gauge theory on asymptotically periodic 4-manifolds, J. Differential Geom. 25 (1987), no. 3, 363-430. MR882829
[Tri69] A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251-264, DOI 10.1017/s0305004100044947. MR248854
[Twe13] E. Tweedy, Heegaard Floer homology and several families of Brieskorn spheres, Topology Appl. 160 (2013), no. 4, 620-632, DOI 10.1016/j.topol.2013.01.008. MR3018077
[Ue22] M. Ue, On the intersection forms of Spin 4-manifolds bounded by spherical 3manifolds, Algebr. Geom. Topol. 1 (2001), 549-578, DOI 10.2140/agt.2001.1.549. MR 1875607
[Wah81] J. Wahl, Smoothings of normal surface singularities, Topology 20 (1981), no. 3, 219-246, DOI 10.1016/0040-9383(81)90001-X. MR608599
[Wah11] J. Wahl, On rational homology disk smoothings of valency 4 surface singularities, Geom. Topol. 15 (2011), no. 2, 1125-1156, DOI 10.2140/gt.2011.15.1125. MR2821572
[Wal60] A. H. Wallace, Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503-528, DOI 10.4153/CJM-1960-045-7. MR 125588
[Wal65] C. T. C. Wall, All 3-manifolds imbed in 5-space, Bull. Amer. Math. Soc. 71 (1965), 564-567, DOI 10.1090/S0002-9904-1965-11332-5. MR175139
[Wal67] F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II (German), Invent. Math. 3 (1967), 308-333; ibid. 4 (1967), 87-117, DOI 10.1007/BF01402956. MR235576
[WX17] G. Wang and Z. Xu, The triviality of the 61-stem in the stable homotopy groups of spheres, Ann. of Math. (2) 186 (2017), no. 2, 501-580, DOI 10.4007/annals.2017.186.2.3. MR3702672
[Yu91] B. Z. Yu, A note on an invariant of Fintushel and Stern, Topology Appl. 38 (1991), no. 2, 137-145, DOI 10.1016/0166-8641(91)90080-6. MR1094546
[Zee61] E. C. Zeeman, The generalised Poincaré conjecture, Bull. Amer. Math. Soc. 67 (1961), 270, DOI 10.1090/S0002-9904-1961-10578-8. MR124906
[Zem19] I. Zemke, Knot Floer homology obstructs ribbon concordance, Ann. of Math. (2) 190 (2019), no. 3, 931-947, DOI 10.4007/annals.2019.190.3.5. MR4024565

Department of Mathematics, Stanford University, Stanford, CA 94305, and Department of Mathematics, Boğaziçı University, Bebek, Istanbul 34342, Turkey

Email address: oguzsavk@stanford.edu
Email address: oguz.savk@boun.edu.tr
URL: https://sites.google.com/view/oguzsavk/

[^0]: ${ }^{1}$ The terms " h-cobordism" and " J-equivalence" were used interchangeably in these references.
 ${ }^{2}$ The topological (resp., piecewise linear, and smooth) Poincaré conjecture asserts that every topological (resp., piecewise linear, and smooth) homotopy n-sphere is homeomorphic (resp., piecewise linear homeomorphic, and diffeomorphic) to S^{n}. The topological and piecewise linear Poincaré conjectures were both proved for $n \geq 5$ in the aforementioned articles. The particular case of $n=4$ for the topological Poincaré conjecture was shown in the seminal article of Freedman Fre82, also see the book of Behrens, Kalmár, Kim, Powell, and Ray $\mathrm{BKK}^{+} 21$. The piecewise linear Poincaré conjecture in dimension 4 is still an open problem and is equivalent to the smooth Poincaré conjecture in dimension 4 as a result of the articles of Cerf Cer68 and Hirsch and Mazur [HM74]; see Rudyak's books Rud98 IV.4.27(iv)] and Rud16, 6.7 Remark] for a detailed explanation.

[^1]: ${ }^{3}$ See the introduction of Lev85]. Also consult Milnor's survey Mil11 p. 805], and the commentary of Ranicki and Webber on the correspondence of Kervaire and Milnor during the 1960s RW15].
 ${ }^{4}$ The smooth Poincaré conjecture is false in general. For precise expositions, consult the introduction of WX17 and also see the papers of Isaksen Isa19 and Isaksen, Wang, and Xu IWX20a.
 ${ }^{5}$ Similarly, " π-manifold" and " s-parallelizable" as well as "surgery" and "spherical modification" were different names for the same notion. An n-manifold $M \subset \mathbb{R}^{n+q}$ is called a π-manifold if its normal bundle $\nu(M)$ is trivial, i.e., $\nu(M)$ is diffeomorphic to $M \times \mathbb{R}^{q}$.

[^2]: ${ }^{6}$ For the other reformulations of the Rokhlin invariant μ in terms of the characterization of a 4 -manifold, see the recent ICM 2022 paper of Finashin, Kharlamov, and Viro [FKV20].
 ${ }^{7}$ Note that the homology cobordism group also appeared with notations Θ_{3}^{H} or \mathscr{H}^{3} in the literature of the 1970s and 1980s.

[^3]: ${ }^{8}$ In our convention, \mathbb{Z}^{∞} always stands for $\bigoplus_{n=1}^{\infty} \mathbb{Z}$.
 ${ }^{9}$ In Ros20, Rostovtsev reinterpreted the homomorphisms of Dai, Hom, Stoffregen, and Truong by using the immersed curve machinery of Kotelskiy, Watson, and Zibrowius KWZ19]. In particular, he found a new epimorphism of $\Theta_{\mathbb{Z}}^{3}$ independent of $\left\{f_{k}\right\}_{k \in \mathbb{N}}$.

[^4]: ${ }^{10}$ These three articles all provide equivalent but different descriptions of Heegaard Floer homology groups of Seifert-fibered homology spheres.
 ${ }^{11}$ This result cannot be generalized to even values of n since $\Sigma(2,3,13)$ and $\Sigma(2,3,25)$ are known to bound contractible 4-manifolds.

[^5]: ${ }^{12}$ Explicitly, the knot K can be taken as the mirrors K_{n}^{*} of the 2-bridge knots K_{n} corresponding to the rational number $\frac{2}{4 n-1}$ as hyperbolic examples. For the satellite type of examples, one can pick the $(2, q)$-cable of any knot K with odd $q \geq 3$; see NST19.
 ${ }^{13}$ The knot K can be chosen as either a knot having a transverse representative with positive self-linking number, or quasi-positive knot which is not smoothly slice, or an alternating knot with negative signature σ, under the convention $\sigma(T(2,3))=-2$; see [BS21] and BS22].
 ${ }^{14}$ The knot K can be chosen as either a quasi-positive knot which is not smoothly slice or an alternating knot with negative signature.
 ${ }^{15}$ Under these conditions, Daemi, Imori, Sato, Scaduto, and Taniguchi provided a twoparameter family of bridge knots $K_{m, n}=K(212 m n-68 n+53,106 m-34)$ (m and n are fixed) such that $(1 / k)$-surgery on the mirrors of $K_{m, n}$ are linearly independent in the homology cobordism group yet $K_{m, n}$ are torsion in the algebraic concordance group of knots.
 ${ }^{16}$ Note that the involutive correction terms \underline{d} and \bar{d} in HM17 and Manolescu invariants α, β, and γ in Man16b are not homomorphisms.

[^6]: ${ }^{17}$ Since positive knots in S^{3} are quasi-positive and not smoothly slice due to Rasmussen Ras10a, the work of Baldwin and Sivek also generalizes a result of Gompf and Cochran CG88: $S_{1 / n}^{3}(K)$ individually generates a \mathbb{Z} subgroup in $\Theta_{\mathbb{Z}}^{3}$ when K is a positive knot in S^{3}.

[^7]: ${ }^{18}$ There are two h-invariants of Frøyshov: the "old" one Frø02 and the "new" one Frø10. To avoid ambiguity, we follow the notation that appeared in Manolescu's survey [Man20], called the "new" h-invariant δ-invariant.

[^8]: ${ }^{19}$ In general, it is known for a homology 3 -sphere which bounds a simply connected 4 -manifold with nonstandard definite intersection form. Taubes attributed this result to Akbulut.

[^9]: ${ }^{20}$ Note that $\partial X(1)=\Sigma(2,5,7)$ and $\partial X^{\prime}(1)=\Sigma(3,4,5)$, and compare with AK79, CH81, and Shav20b. Therefore, they are not Seifert fibered unless $n=1$.

[^10]: ${ }^{21}$ A homology 3 -sphere Y is said to be prime if it cannot be written as a connected sum of two homology 3 -spheres nontrivially (i.e., either summand is not S^{3}). For homology 3 -spheres, sometimes the terms "prime" and "irreducible" can be used interchangeably unless $Y=S^{3}$; see Mil62, Lemma 1].

[^11]: ${ }^{22}$ Note that these families of Brieskorn spheres all bound rational homology 4-balls for all values of n. Simone's family can be generalized in the sense that $S_{-1}^{3}(K)$ (resp., $S_{+1}^{3}(K)$) bounds a rational homology 4 -ball when K is an unknotting number one knot with a positive (resp., negative) crossing that can be switched to unknot K.

[^12]: ${ }^{23}$ One can consult the paper of Akbulut and Larson AL18 for the handle diagram of a rational homology 4 -ball including a 3 -handle. This 4 -manifold has the boundary $\Sigma(2,3,7)$.

[^13]: ${ }^{24}$ The existence of Seifert surfaces of an oriented knot K in an oriented 3-manifold M would be possible if and only if K is null-homologous, i.e., $[K]=0 \in H_{1}(M ; \mathbb{Z})$, one can consult Rol76.

[^14]: ${ }^{25}$ Seifert called homology 3-spheres Poincaré spaces; see [ST80 p. 402]. Note that the book ST80 includes an English translation of Sei33 and our citations all lie in that part.

