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A SURVEY OF THE HOMOLOGY COBORDISM GROUP

OĞUZ ŞAVK

Abstract. In this survey, we present the most recent highlights from the
study of the homology cobordism group, with particular emphasis on its long-
standing and rich history in the context of smooth manifolds. Further, we list
various results on its algebraic structure and discuss its crucial role in the devel-
opment of low-dimensional topology. Also, we share a series of open problems
about the behavior of homology 3-spheres and the structure of Θ3

Z
. Finally,

we briefly discuss the knot concordance group C and the rational homology
cobordism group Θ3

Q
, focusing on their algebraic structures, relating them to

Θ3
Z
, and highlighting several open problems. The appendix is a compilation of

several constructions and presentations of homology 3-spheres introduced by
Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.
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1. A promenade around smooth manifolds

All n-dimensional manifolds (n-manifolds for short) with or without boundaries
are chosen to be compact, connected, oriented, and smooth. Otherwise, the type
of the manifold is specified. The boundary of a manifold M is denoted by ∂M ,
and −M stands for M with the opposite orientation. The connected sum operation
between two manifolds is denoted by #. A diffeomorphism (resp., homeomorphism,
and piecewise linear homeomorphism) indicates a smooth (resp., continuous, and
continuous and piecewise linear) bijective map between manifolds with a smooth
(resp., continuous, and continuous and piecewise linear) inverse.
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1.1. The predecessor: Θn. An n-manifold M with ∂M = ∅ is called a homotopy
n-sphere if M has the same homotopy type as the unit n-dimensional sphere Sn,
i.e., M � Sn. The n-dimensional homotopy cobordism group Θn is defined as

Θn = {homotopy n-spheres up to diffeomorphism}/ ∼,

where the equivalence relation1 h-cobordism ∼ is given for two arbitrary homotopy
n-spheres M0 and M1 as

M0 ∼ M1 ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

there exists an (n+ 1)-manifold W such that

• ∂W = −(M0) ∪M1,

• the inclusions induce homotopy equivalences

M0 ↪� W �↩ M1 ⇒ M0 � W � M1.

WM0 M1

After Milnor detected exotic 7-spheres (7-manifolds homeomorphic but not dif-
feomorphic to S7) in his groundbreaking work [Mil56], he also introduced the notion
Θn to study homotopy n-spheres in an unpublished note [Mil59] and obtained some
partial results on the orders of Θn. It forms an abelian group under the addition
induced by a connected sum. The zero element of Θn is the homotopy cobordism
class of Sn, and the inverse elements come with opposite orientation. Later, Ker-
vaire and Milnor elaborated the structure of Θn systematically in their celebrated
article “Groups of homotopy spheres: I” [KM63].

Kervaire and Milnor were able to prove the powerful statement in Theorem A,
independent of the seminal articles of Connell [Con67], Newman [New66], Smale
[Sma61], Stallings [Sta60], and Zeeman [Zee61] about the topological Poincaré con-
jecture and the piecewise linear Poincaré conjecture in higher dimensions.2 Fur-
thermore, they created the famous table with a single unknown value, depicted in
Table 1.

Theorem A ([KM63, Theorem 1.2]). For n �= 3, the group Θn is finite.

Table 1. The orders of Θn for 1 ≤ n ≤ 18.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

|Θn| 1 1 ? 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16

The classical results of Moise [Moi52a,Moi52b] showed that every topological 3-
manifold has a unique smooth structure. After the confirmation of the last topolog-
ical Poincaré conjecture, the missing point in Table 1 was clarified as an immediate
consequence of Perelman’s breakthrough.

Theorem B ([Per02,Per03a,Per03b]). The group Θ3 is trivial, hence |Θ3| = 1.

1The terms “h-cobordism” and “J-equivalence” were used interchangeably in these references.
2The topological (resp., piecewise linear, and smooth) Poincaré conjecture asserts that ev-

ery topological (resp., piecewise linear, and smooth) homotopy n-sphere is homeomorphic (resp.,
piecewise linear homeomorphic, and diffeomorphic) to Sn. The topological and piecewise linear
Poincaré conjectures were both proved for n ≥ 5 in the aforementioned articles. The particular
case of n = 4 for the topological Poincaré conjecture was shown in the seminal article of Freedman
[Fre82], also see the book of Behrens, Kalmár, Kim, Powell, and Ray [BKK+21]. The piecewise
linear Poincaré conjecture in dimension 4 is still an open problem and is equivalent to the smooth
Poincaré conjecture in dimension 4 as a result of the articles of Cerf [Cer68] and Hirsch and
Mazur [HM74]; see Rudyak’s books [Rud98, IV.4.27(iv)] and [Rud16, 6.7 Remark] for a detailed
explanation.
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Kervaire and Milnor never published “Groups of homotopy spheres: II”; however,
Levine’s lecture notes [Lev85] can be considered as its sequel paper.3 Finding the
order of Θn for each value of n is a very challenging problem in algebraic and
geometric topology. Moreover, it is closely tied to the smooth Poincaré conjecture
in higher dimensions.4 For the state of the art regarding the order of Θn, the reader
can refer to [IWX20b, Table 1].

Further discussions and results about homotopy theoretical approaches to study-
ing Θn can be seen in excellent papers of Hill, Hopkins, and Ranevel [HHR16], Wang
and Xu [WX17], and Behrens, Hill, Hopkins, and Mahowald [BHHM20].

1.2. The successor: Θn
Z. In a similar vein, a homology n-sphere is an n-manifold

M with ∂M = ∅ such that M has the same homology groups of Sn in integer
coefficients, i.e., H∗(M ;Z) = H∗(S

n;Z). The n-dimensional homology cobordism
group Θn is formed as

Θn
Z = {homology n-spheres up to diffeomorphism}/ ∼Z,

where the equivalence relation homology cobordism ∼Z is depicted for two arbitrary
homology n-spheres M0 and M1 by

M0 ∼Z M1 ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

there exists an (n+1)-manifold W such that

• ∂W = −(M0) ∪M1,

• the inclusions induce isomorphisms on all homology groups

M0 ↪�W �↩ M1 ⇒ H∗(M0;Z) ∼= H∗(W ;Z) ∼= H∗(M1;Z).

Inspired by the novel work of Kervaire and Milnor, González-Acuña defined the
object Θn

Z to decipher the homology n-spheres in his PhD thesis “On homology
spheres” [GAn70b]. Similarly, Θn

Z admits an abelian group structure with the sum-
mation induced by connected sum. The homology cobordism class of Sn serves as
the identity element of Θn

Z. Besides, inverse elements can be obtained by reversing
the orientation.

Using surgery theory and Milnor’s π-manifolds,5 González-Acuña was able to
construct a group isomorphism between Θn and Θn

Z unless n = 3. Hence, they are
algebraically identical except for the single case of n = 3.

Theorem C ([GAn70b, Theorem I.2]). For n �= 3, Θn
Z is isomorphic to Θn. There-

fore, Θn
Z is finite unless n = 3.

It should be very interesting to compare González-Acuña’s elegant theorem with
the following achievement of Kervaire which was published around the same time.

Theorem D ([Ker69, Theorem 3]). For n ≥ 5, let M be a homology n-sphere. Then
there exists a unique homotopy sphere ΣM such that M#ΣM bounds a contractible
(n+ 1)-manifold.

3See the introduction of [Lev85]. Also consult Milnor’s survey [Mil11, p. 805], and the com-
mentary of Ranicki and Webber on the correspondence of Kervaire and Milnor during the 1960s
[RW15].

4The smooth Poincaré conjecture is false in general. For precise expositions, consult the
introduction of [WX17] and also see the papers of Isaksen [Isa19] and Isaksen, Wang, and Xu
[IWX20a].

5Similarly, “π-manifold” and “s-parallelizable” as well as “surgery” and “spherical modifica-
tion” were different names for the same notion. An n-manifold M ⊂ Rn+q is called a π-manifold
if its normal bundle ν(M) is trivial, i.e., ν(M) is diffeomorphic to M × Rq .
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1.3. The aberrant: Θ3
Z. The isomorphism of González-Acuña cannot be valid for

the last case n = 3 due to the famous invariant of Rokhlin [Rok52]. There is a
surjective group homomorphism from the three-dimensional homology cobordism
group (the homology cobordism group for short) to the cyclic group of order 2

μ : Θ3
Z � Z2, μ(Y ) = σ(W )/8 mod 2,

where W is any 4-manifold with a Z2-valued even intersection form,6 ∂W = Y , and
σ(W ) denotes the signature of W .

The homology cobordism invariance of the Rokhlin invariant μ was first observed
in [GAn70b, Section I.5]; see also [GAn70a, Section 2] and [FK20, Section 3.8].
Since the Poincaré homology sphere Σ(2, 3, 5) (see Section 4 for its several descrip-
tions) uniquely bounds the negative-definite plumbing −E8 of signature −8, we
have μ(Σ(2, 3, 5)) = 1. Therefore, it is not homology cobordant to S3, and we
conclude:

Theorem E ([Rok52], [GAn70b, Section I.5]). The group Θ3
Z is nontrivial.7

The nontriviality of Θ3
Z is sensitive to both homology and smoothness condi-

tions on the cobordism 4-manifold. The group would be trivial if at least one of
these conditions were removed. See the articles by Rokhlin [Rok51] and Freed-
man [Fre82], respectively. Also, Θ3

Z is countable by the classical results of Moise
[Moi52a,Moi52b].

Until the 1980s, the only known invariant of Θ3
Z was the Rokhlin invariant μ,

and there was a belief that it might be an isomorphism. However, it later turned
out that Θ3

Z is far from being finite. The understanding of the infinitude of Θ3
Z has

led to the construction of numerous invariants of homology 3-spheres.
The seminal work of Matumoto [Mat78] and Galewski and Stern [GS80] yielded

a rich connection between the Rokhlin invariant μ, the group Θ3
Z, and the triangu-

lation conjecture. Manolescu revolutionized low-dimensional topology by introduc-
ing the Seiberg–Witten (monopole) Pin(2)-equivariant Floer homology, construct-
ing the β-invariant, and disproving the triangulation conjecture [Man16b]. His
β-invariant is an integer lift of the Rohklin invariant μ, and its existence rejects
the triangulation conjecture by relying on the articles [Mat78,GS80]. Consult Sec-
tion 2.4 for more details. The several variations of Manolescu’s Floer homotopic
approach have led to the invention of new powerful theories and sensitive invariants
of knots and manifolds. Recently, there has also been increased activity in studying
Θ3

Z using techniques from SU(2)-gauge theory, following the work of Daemi [Dae20].

6For the other reformulations of the Rokhlin invariant μ in terms of the characterization of a
4-manifold, see the recent ICM 2022 paper of Finashin, Kharlamov, and Viro [FKV20].

7Note that the homology cobordism group also appeared with notations ΘH
3 or H 3 in the

literature of the 1970s and 1980s.
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Homology cobordism is closely related to the
concepts of knot concordance and rational homology
cobordism, and both give rise to abelian groups C and
Θ3

Q, similar to Θ3
Z. By the classical work of González-

Acuña [GAn70a], Gordon [Gor75], and Casson and
Gordon [CG78], there are natural mappings between
these three abelian groups given by (1/n)-surgery on
knots in the 3-sphere S3

1/n(K) for any integer n, pr-

fold cyclic branched coverings of the 3-sphere along
knots Σpr(K) for any prime p and r ≥ 1, and inclu-
sion ψ. Consult Sections 3.2, 3.1, and 4 for further
details.

Θ3
Z

C

Θ3
Q

ψ

S3
1/n

Σpr

In a nutshell, we create this table
to reflect the sharp contrast between the
homology cobordism group Θ3

Z and all
other homotopy and homology cobordism
groups. One can access the most re-
cent information about the orders of Θn

from the article of Isaksen, Wang, and Xu
[IWX20b].

Order
Dimension Θn Θn

Z

n �= 3 < ∞ < ∞
n = 3 = 1 = ∞

From now on, we will aim to approach all results that arise around the homology
cobordism group Θ3

Z from a broad, comprehensive, and historical perspective. Our
additional purpose is to present various open problems of homology 3-spheres in the
context of the homology cobordism. Finally, we will discuss the knot concordance
group C and the rational homology cobordism group Θ3

Q by eleborating their most

recent algebraic structure, relating them to Θ3
Z, and posing several open problems.

Most of the problems raised in this survey are well known in the field in general.
We hope that our efforts will have a positive impact and will motivate readers to
investigate and study the homology cobordism group Θ3

Z in the future.

2. The structure of Θ3
Z

2.1. Subgroups and summands of Θ3
Z. The celebrated work of Donaldson was

a cornerstone in the history of low-dimensional topology [Don83]. Motivated by
his article, Fintushel and Stern studied the gauge theory of orbifolds, produced the
gauge theoretical R-invariant for Seifert fibered homology spheres, and provided
the first existence of an infinite subgroup in the homology cobordism group.

Theorem F ([FS85, Theorem 1.2]). The group Θ3
Z has a Z subgroup generated by

the Poincaré homology sphere Σ(2, 3, 5).

The extended version of Donaldson’s diagonalization theorem [Don87] recovers
Theorem F as follows: One can use Σ(2, 3, 5) to construct a closed 4-manifold
whose nondiagonalizable intersection form is nE8 for arbitrary value of n. This
obstructs the existence of any homology cobordism between S3 and a finite number
of self-connected sums of Σ(2, 3, 5).

Converting the ideas on end-periodic 4-manifolds in the work of Taubes [Tau87]
to cylindrical end 4-manifolds and using the Fintushel–Stern R-invariant, Furuta
showed the first existence of an infinitely generated subgroup [Fur90].
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Theorem G ([Fur90, Theorem 2.1]). The group Θ3
Z has a Z∞ subgroup8 in Θ3

Z

generated by the family of Brieskorn spheres {Σ(2, 3, 6n− 1)}∞n=1.

The eminent article of Floer [Flo88] changed the flow of the history of low-
dimensional topology dramatically. Given a homology 3-sphere Y , his theory of
instanton homology can be defined over the Yang–Mills equations on Y × R. This
novel invariant is an infinite-dimensional analogue of Morse homology.

The next achievement about the algebraic structure of Θ3
Z was owed to Frøyshov

[Frø02]. His approach relied on the equivariant structure on Floer’s instanton
(Yang–Mills) homology, and he constructed the h-invariant, a surjective group ho-
momorphism h : Θ3

Z � Z.

Theorem H ([Frø02, Theorem 3]). The group Θ3
Z has a Z summand generated by

the Poincaré homology sphere Σ(2, 3, 5).

Ozsváth and Szabó developed the theory of Heegaard Floer homology in a series
of prominent articles [OS03a,OS04c,OS04d]. Since then it has been used to answer
various problems in low-dimensional topology and several new versions emerged
successively; see the comprehensive surveys of Ozsváth and Szabó [OS04a] and
Juhász [Juh15]. Later, Hendricks and Manolescu introduced involutive Heegaard
Floer homology [HM17], and this new theory exploits the conjugation symmetry on
a Heegaard Floer complex of the Heegaard Floer homology. Also, it is conjecturally
a Z4-equivariant version of Seiberg–Witten Pin(2)-equivariant Floer homology es-
tablished by Manolescu [Man16b].

The most recent impressive progress about deciphering the algebraic complexity
of the group Θ3

Z was achieved by Dai, Hom, Stoffregen, and Truong [DHST18].
Using the machinery of involutive Heegaard Floer homology, they defined a new

family of powerful and sensitive sets of invariants �f = {fk}k∈N: a surjective group

homomorphism �f : Θ3
Z � Z∞.9

Theorem I ([DHST18, Theorem 1.1]). The group Θ3
Z has a Z∞ summand gener-

ated by the family of Brieskorn spheres {Σ(2n+ 1, 4n+ 1, 4n+ 3)}∞n=1.

Their proof subsumes several approaches and techniques that consecutively ap-
peared in the literature of involutive Heegaard Floer homology [HMZ18], [DM19],
[DS19], and [HHL21]. Moreover, involutive Floer theoretic invariants have provided
a major change for the understanding of the structure of Θ3

Z and its subgroups. For
details of constructions and ideas, one can consult the survey of Hom [Hom21].

Relying on all these previous results, one may expect that there is no torsion part
in the decomposition of Θ3

Z; see Section 2.4 for details. In particular, Problem A
and Problem O are complementary, and Problem C is a special case of Problem A.
The author believes that the following problem will have a negative answer.

Problem A. Is Θ3
Z is isomorphic to Z∞?

Most instanton, Seiberg–Witten, and Floer theoretical invariants of homology 3-
spheres are sensitive to a preorder given by the negative-definite cobordisms. Thus,
further understanding of the structure of the homology cobordism group will be

8In our convention, Z∞ always stands for
⊕∞

n=1 Z.
9In [Ros20], Rostovtsev reinterpreted the homomorphisms of Dai, Hom, Stoffregen, and Truong

by using the immersed curve machinery of Kotelskiy, Watson, and Zibrowius [KWZ19]. In par-
ticular, he found a new epimorphism of Θ3

Z
independent of {fk}k∈N.
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possible by realizing Θ3
Z as a partially ordered group, rather than just a group; see,

for instance, the recent work of Nozaki, Sato, and Taniguchi [NST19, Section 1.3].

Problem B. Study the structure of Θ3
Z as an ordered group by forming filtrations,

and completely describe subgroups and quotients.

2.1.1. A recovery: More about subgroups of Θ3
Z. A 4-manifold with boundary is

called a homology 4-ball if it shares the same homology groups of the 4-ball in
integer coefficients. An easy algebraic topology argument indicates that a homology
3-sphere is homology cobordant to S3 if and only if it bounds a homology 4-ball.

The Fintushel–Stern R-invariant leads to a powerful obstruction for homology
3-spheres to bound homology 4-balls and, hence, contractible 4-manifolds. It is eas-
ily computable due to the short-cut of Neumann and Zagier [NZ85]. The nonzero
values of the R-invariant provide the proofs of items (1) and (3) in Theorem J. Fur-
ther, these claims can be deduced by using the Ozsváth–Szabó d-invariant [OS03a].
See the papers of Tweedy [Twe13] and of Karakurt and the author [KŞ20] for sam-
ple computations, which both depended on Floer homology of plumbings [OS03c],
Némethi’s lattice homology [Ném05], and the lattice point counting technique of
Can and Karakurt [CK14].10

However, item (2) in Theorem J is a consequence of the nonvanishing of the
Neumann–Siebenmann invariant μ̄ [Neu80,Sie80]. The homology cobordism invari-
ance of μ̄ for Seifert-fibered homology spheres was first proved by Saveliev [Sav98b];
see also the paper of Dai and Stoffregen [DS19] for a generalization of this result.
Saveliev provided another proof for the item (2) in [Sav98a] by using Furuta’s
10/8 + 2 theorem [Fur01]. Note that Furuta’s result was a partial solution for
Matsumoto’s 11/8 conjecture [Mar82]. In his article, he also introduced a homol-
ogy cobordism invariant called the bounding genus. All other homology cobordism
invariants that behaved differently than μ̄ seem to vanish or not be arbitrarily
large for this family, so they do not give further information about their homology
cobordism classes.

By the work of Nozaki, Sato and Taniguchi [NST19] and Baldwin and Sivek
[BS22], the proofs of items (4) and (5) in Theorem J can be deduced respectively.
Moreover, the items (6) and (7) in Theorem J are owed to the recent article of
Daemi, Imori, Sato, Scaduto, and Taniguchi [DIS+22]. Note that the arguments of
the latter two articles essentially require the result of the first one. Here, τ �- and
s̃-invariants are new instanton Floer theoeric invariants of knots [BS22, DIS+22],
and h denotes the classical Frøyshov invariant (which appeared in Theorem H), Γ
stands for the new invariant of knots, and both invariants are again derived from
instanton Floer homology.

Theorem J. The following homology 3-spheres individually generate Z subgroups
in Θ3

Z:

(1) Σ(p, q, pqn− 1) for each n ≥ 1;
(2) Σ(p, q, pqn+ 1) for each odd n ≥ 1;11

(3) Σ(pn, qn, rn) for each n ≥ 1, where pnqn + pnrn − qnrn = 1;

10These three articles all provide equivalent but different descriptions of Heegaard Floer ho-
mology groups of Seifert-fibered homology spheres.

11This result cannot be generalized to even values of n since Σ(2, 3, 13) and Σ(2, 3, 25) are
known to bound contractible 4-manifolds.
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(4) For each n ≥ 1, S3
1/n(K), where K is any knot12 in S3 with h(S3

1(K)) < 0;

(5) For each n ≥ 1, S3
1/n(K), where K is any knot13 in S3 with τ �(K) > 0;

(6) For each n ≥ 1, S3
1/n(K), where K is any knot14 in S3 with s̃(K) > 0;

(7) For each n ≥ 1, S3
1/n(K), where K is any knot15 in S3 with σ(K) ≤ 0 and

1
8 < ΓK

(
− 1

2σ(K)
)
.

Manolescu’s invariants α, β, γ [Man16b] and the Hendricks–Manolescu involutive
d-invariants d, d [HM17]16 can be read off from the values of the Ozsváth–Szabó
d-invariant and the Neumann–Siebenmann μ̄-invariant; see the articles by Dai and
Manolescu [DM19] and by Stoffregen [Sto20] for more details. In particular, the
R-invariant of Fintushel and Stern [FS85] is directly determined from a plumbing
graph due to the shortcut of Neumann and Zagier [NZ85]. Moreover, the μ̄-invariant
of Seifert fibered homology spheres is same as the w-invariant of Fukumoto and
Furuta [FF00]; see the work of Fukumoto, Furuta, and Ue [FFU01] and Saveliev
[Sav02a] for details. Therefore, we have the following several identities between
homology cobordism invariants for a single Seifert fibered space Σ = Σ(a1, . . . , an):

• R (Σ) = −2e− 3;
• d (Σ) = d (Σ);
• μ̄ (Σ) = w (Σ) = − 1

2d (Σ) = −β (Σ) = −γ (Σ);

• α (Σ) =

{
1
2d (Σ) , if 1

2d (Σ) = −μ̄ (Σ) mod 2,
1
2d (Σ) + 1, otherwise;

• μ (Σ) = μ̄ (Σ) = α (Σ) = β (Σ) = γ (Σ) mod 2.

After Furuta’s work, the first recovery of the existence of Z∞ subgroups of Θ3
Z was

provided by Fintushel and Stern [FS90, Theorem 5.1] for item (1) in Theorem K.
Their approach can be applied to item (2) in Theorem K as well. These two results
can be reproved successfully by using new gauge and instanton theoretic invariants
of Daemi [Dae20], Nozaki, Sato, and Taniguchi [NST19], and Baldwin and Sivek
[BS21, BS22]. However, the classical and involutive Heegaard Floer theoretical
invariants cannot identify the linear independence of item (1) in Θ3

Z.
The Seiberg–Witten and/or Heegaaard Floer originated invariants may detect

the linear independence of subfamilies of item (2) in Theorem K. In this regard,
see the work of Stoffregen [Sto17] and Dai and Manolescu [DM19]. However, it is
not easily doable in general; see the discussion in [KŞ20] and [KŞ22] and compare
with [Sto17] and [DM19].

12Explicitly, the knot K can be taken as the mirrorsK∗
n of the 2-bridge knots Kn corresponding

to the rational number 2
4n−1

as hyperbolic examples. For the satellite type of examples, one can

pick the (2, q)-cable of any knot K with odd q ≥ 3; see [NST19].
13The knot K can be chosen as either a knot having a transverse representative with positive

self-linking number, or quasi-positive knot which is not smoothly slice, or an alternating knot with
negative signature σ, under the convention σ(T (2, 3)) = −2; see [BS21] and [BS22].

14The knot K can be chosen as either a quasi-positive knot which is not smoothly slice or an
alternating knot with negative signature.

15Under these conditions, Daemi, Imori, Sato, Scaduto, and Taniguchi provided a two-
parameter family of bridge knots Km,n = K(212mn−68n+53,106m−34) (m and n are fixed) such
that (1/k)-surgery on the mirrors of Km,n are linearly independent in the homology cobordism

group yet Km,n are torsion in the algebraic concordance group of knots.
16Note that the involutive correction terms d and d in [HM17] and Manolescu invariants α, β,

and γ in [Man16b] are not homomorphisms.
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For proofs of items (3), (4), (5), and (6) in Theorem K, one can see the articles
of Nozaki, Sato, and Taniguchi [NST19], Baldwin and Sivek [BS22], and Daemi,
Imori, Sato, Scaduto, and Taniguchi [DIS+22]. The methodology of [NST19] and
[DIS+22] both refer to the equivariant instanton Floer theory with Chern–Simons
filtration, while [BS21, BS22] uses framed instanton homology. Notice that these
articles all provide new invariants for homology 3-spheres and knots.

Theorem K. The following infinite families of homology 3-spheres generate Z∞

subgroups in Θ3
Z:

(1) {Σ(p, q, pqn− 1)}∞n=1;
(2) {Σ(pn, qn, rn)}∞n=1, where pnqn + pnrn − qnrn = 1;
(3) {S3

1/n(K)}∞n=1 for any knot K in S3 with h(S3
1(K)) < 0;

(4) {S3
1/n(K)}∞n=1 for any knot K in S3 with τ �(K) > 0;17

(5) {S3
1/n(K)}∞n=1 for any knot K in S3 with s̃(K) > 0;

(6) {S3
1/n(K)}∞n=1 for any knot K in S3 with σ(K) ≤ 0 and 1

8 < ΓK

(
− 1

2σ(K)
)
.

Since all current homology cobordism invariants are blind to detecting the linear
independence of {Σ(p, q, pqn+ 1)}∞n=1,odd in Θ3

Z, with curiousity we pose Problem
C. On the other hand, these manifolds might be homology cobordant to each other
in Θ3

Z. If so, this will also be a very interesting result.

Problem C. Does the family {Σ(p, q, pqn+1)}∞n=1,odd generate a Z∞ subgroup or

a Z∞ summand in Θ3
Z?

The R- and w-invariants were successfully generalized in the articles of Fintushel
and Lawson [FL86] and Fukumoto [Fuk11], respectively. Given a Seifert fibered
sphere Y = Σ(a1, . . . , an), we denote these invariants by R(Y, e) and w(Y,m), re-
spectively, and call the generalized R-invariant and the generalized w-invariant,
where e is an integer depending on the Euler number and some other constraints,
and m is a tuple of integers. The generalized R- and w-invariants are strictly more
powerful than the classical R- and w-invariants, and they provide more sensitive
obstructions for the existence of homology cobordisms between homology 3-spheres.
In particular, a combinotorial formula for the generalized R-invariant was found by
Lawson [Law87] so that R (Σ, 1) = R (Σ). For sample computations, see Fuku-
moto’s article [Fuk11, Section 6]. Fukumoto also gave estimates for Matsumoto’s
bounding genera for homology 3-spheres using w-invariants [Fuk09].

Using Pin(2)-equivariant Seiberg–Witten Floer K-theory, Manolescu constructed
the integer-valued homology cobordism invariant κ [Man14]. Recently, Ue proved
that the behaviors of the κ invariant and the minus version of the μ̄ invariant for
Seifert fibered spheres are very similar [Ue22]: κ(Y ) + μ̄(Y ) = 0 or 2. Relying on
the Seiberg–Witten Floer spectrum and Pin(2)-equivariant KO-theory and inspiring
the construction of the Manolescu κ-invariant, J. Lin extracted new invariants κok
of Θ3

Z where k ∈ Z8 [Lin15].
We list the following presumably difficult problem for understanding behaviors

of invariants more for Seifert fibered spheres by taking the risk of having negative
answers.

17Since positive knots in S3 are quasi-positive and not smoothly slice due to Rasmussen
[Ras10a], the work of Baldwin and Sivek also generalizes a result of Gompf and Cochran [CG88]:
S3
1/n

(K) individually generates a Z subgroup in Θ3
Z
when K is a positive knot in S3.
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Problem D. For Seifert fibered spheres Y = Σ(a1, . . . , an), what are the possible
relations between the following homology cobordism invariants:

• μ̄(Y ), w(Y ;m), and κok(Y )?
• d(Y ) and R(Y ; e)?

2.1.2. A diversification: More about summands of Θ3
Z. Around the 2000s, two more

epimorphisms of Θ3
Z were found: the Ozsváth–Szabó d-invariant [OS03a], and the

Frøyshov δ-invariant18 [Frø10]. The latter invariant is also owed to Kronheimer
and Mrowka [KM07]. The seminal articles of Kutluhan, Lee, and Taubes [KLT20d,
KLT20e,KLT20c,KLT20a,KLT20b] yield that δ = −d/2.

Given any relatively coprime positive integers p, q, and r, the Brieskorn sphere
Σ(p, q, r+ pq) can be obtained by the Brieskorn sphere Σ(p, q, r) by applying (−1)-
surgery along the singular fiber of degree r. This topological operation is called
Seifert fiber surgery ; see the paper of Lidman and Tweedy [LT18] for a detailed
exposition.

Performing the above type of Seifert fibered surgeries, items (2) and (4) in The-
orem L can be constructed from items (1) and (3) in Theorem L, respectively. We
know that the d-invariant remains the same under this special Seifert fiber surgery;
consult the articles of Lidman and Tweedy [LT18], Karakurt, Lidman, and Tweedy
[KLT21], and Seetharaman, Yue, and Zhu [SYZ21] for this result. Relying on the
computations in [Twe13] and [KŞ20] again, we have the following result.

Theorem L. The following homology 3-spheres individually generate Z summands
in Θ3

Z:

(1) Σ(p, q, pqn− 1) for each n ≥ 1;
(2) Σ(p, q,+pqn− 1 + pqm) for each n,m ≥ 1;
(3) Σ(pn, qn, rn) for each n ≥ 1, where pnqn + pnrn − qnrn = 1;
(4) Σ(pn, qn, rn + pnqnm) for each n,m ≥ 1, where pnqn + pnrn − qnrn = 1.

In a similar fashion, we can pass to the Brieskorn sphere Σ(p, q, r+2pq) from the
Brieskorn sphere Σ(p, q, r) by twice applying (−1)-surgery along the singular fiber
of degree r. In [SYZ21], Seetharaman, Yue, and Zhu also observed that the maximal
monotone subroots carrying the Floer theoretic invariants do not change after per-
forming the above type of Seifert fiber surgeries consecutively. Recently, in [KŞ22],
Karakurt and the author presented more families of homology 3-spheres generating
infinite rank summands in Θ3

Z by computing their connected Heegaard Floer ho-
mologies [HHL21] effectively and using the invariants of Dai, Hom, Stoffregen, and
Truong. Notice that connected Heegaard Floer homology was introduced by Hen-
dricks, Hom, and Lidman. Further, they proved that it is a homology cobordism
invariant itself [HHL21] unlike classical or involutive Heegaard Floer homology.

Together with the above observation, we can conclude the following theorem.
In particular, two collections of families in items (1) and (2) in Theorem M, and
the family of Dai, Hom, Stoffregen, and Truong in Theorem I are not homology
cobordant to each other for any equal value of n, with a single exception; see
the discussion in [KŞ22]. However, their spans in Θ3

Z are not distinct; see [DS19,
Section 6].

18There are two h-invariants of Frøyshov: the “old” one [Frø02] and the “new” one [Frø10].
To avoid ambiguity, we follow the notation that appeared in Manolescu’s survey [Man20], called
the “new” h-invariant δ-invariant.
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Theorem M ([DHST18, KŞ22]). The following infinite families of homology 3-
spheres generate Z∞ summands in Θ3

Z:

(1) {Σ(2n+ 1, 3n+ 2, 6n+ 1)}∞n=1;
(2) {Σ(2n+ 1, 3n+ 1, 6n+ 5)}∞n=1;
(3) {Σ(2n+ 1, 4n+ 1, 4n+ 3 + 2m(2n+ 1)(4n+ 1))}∞n,m=1;
(4) {Σ(2n+ 1, 3n+ 2, 6n+ 1 + 2m(2n+ 1)(3n+ 2))}∞n,m=1;
(5) {Σ(2n+ 1, 3n+ 1, 6n+ 5 + 2m(2n+ 1)(3n+ 1))}∞n,m=1.

2.2. The trivial element of Θ3
Z. A central problem in low-dimensional topology

is to investigate the following interaction between 3- and 4-manifolds as an algebro-
topological analogue of the relation between S3 and B4.

Problem E ([Kir78b, Problem 4.2]). Which homology 3-spheres bound contracti-
ble 4-manifolds or homology 4-balls?

There are plenty of examples of Brieskorn spheres that bound Mazur type con-
tractible 4-manifolds built with a single 0-, 1-, and 2-handle [Maz61]. Following
Kirby’s celebrated work [Kir78a], some classical articles appeared subsequently:
Akbulut and Kirby [AK79], Casson and Harer [CH81], Stern [Ste78], Fintushel and
Stern [FS81], Maruyama [Mar81,Mar82], and Fickle [Fic84]. In addition, some of
these results were found independently of Kirby calculus; see Fukuhara [Fuk78] and
Martin [Mar79]. Some of these families also bound Poénaru manifolds, contractible
4-manifolds built with a 0-handle, many 1- and 2-handles; see [Poé60,Şav20b,AŞ22].

Theorem N. The following homology 3-spheres bound Mazur manifolds with one
0-handle, one 1-handle, and one 2-handle. Further, Σ(2, 7, 47) and Σ(3, 5, 49) bound
homology 4-balls.

• Σ(2, 3, 13), Σ(2, 3, 25),Σ(2, 7, 19), Σ(3, 5, 19);
• Σ(p, ps− 1, ps+ 1) for p even and s odd ;
• Σ(p, ps± 1, ps± 2) for p odd and s arbitrary ;
• Σ(2, 2s± 1, 2 · 2 · (2s± 1) + 2s∓ 1) for s odd ;
• Σ(3, 3s± 1, 2 · 3 · (3s± 1) + 3s∓ 2) for s arbitrary ;
• Σ(3, 3s± 2, 2 · 3 · (3s± 2) + 3s∓ 1) for s arbitrary.

It would be interesting to compare the existence of homology 3-spheres bounding
contractible 4-manifolds and homology 4-balls, so we may address the following
problem. The possible candidates for Seifert fibered spheres are two examples of
Fickle: Σ(2, 7, 47) and Σ(3, 5, 49). They are known to bound only homology 4-balls.

Problem F. Is there any Seifert fibered sphere Σ(a1, . . . , an) which bounds a
homology 4-ball but not a contractible 4-manifold?

Note that Problem F is known for Σ(2, 3, 5)#− Σ(2, 3, 5).19 It cannot bound a
contractible 4-manifold; see Taubes’s article [Tau87, Proposition 1.7]. However, the
isomorphism of González-Acuña in Theorem C guarantees that every homology 3-
sphere bounding a homology n-ball automatically bounds a contractible n-manifold
unless n = 3.

When the number of fibers increases, there is a bold conjecture, which was first
indicated by Fintushel–Stern, explicitly stated by Lawson [Law88], and later high-
lighted by Kollár [Kol08, Conjecture 20]. This problem is closely related to the

19In general, it is known for a homology 3-sphere which bounds a simply connected 4-manifold
with nonstandard definite intersection form. Taubes attributed this result to Akbulut.



130 OĞUZ ŞAVK

Montgomery–Yang problem motivated by the previous results in both algebraic ge-
ometry and gauge theory. The problem expects that every pseudo-free circle action
on the five-dimensional sphere has at most three nonfree orbits [Kol08, Conjec-
ture 6]. Note that some computational verifications of this conjecture were provided
in the paper of Lawson [Law88].

Problem G (Three fibers conjecture). Is there any Seifert fibered sphere
Σ(a1, . . . , an) with n > 3 which bounds a homology 4-ball?

Problem G cannot be generalized for plumbed homology 3-spheres that are not
Seifert fibered.20 The first examples were given by Maruyama [Mar82] and were in-
dependently obtained by Akbulut and Karakurt [AK14, Theorem 1.4]. In [Şav20b],
we presented two more families of plumbed homology 3-spheres bounding con-
tractible 4-manifolds.

Theorem O ([Mar82, Theorem 1], [Şav20b, Theorem 1.4-5]). Let X(n), X ′(n),
and W (n) be Maruyama, the companion of Maruyama, and Ramanujam plumbed
4-manifold, shown in Figure 1. Then for each n ≥ 1, boundaries ∂X(n) and
∂X ′(n) bound Mazur manifolds with one 0-handle, one 1-handle, and one 2-handle.
Further, the boundary of ∂W (n) bounds a Poénaru manifold with one 0-handle, two
1-handles, and two 2-handles for n ≥ 1.
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W (n)

Figure 1. The plumbing graphs of X(n), X ′(n), and W (n).

Note that W (1) is known as the Ramanujam surface, the famous homology plane
constructed by Ramanujam [Ram71]. It is the first example of an algebraic com-
plex smooth surface sharing the same homology of the complex plane C2 but not
analytically isomorphic to C2. We call a nontrivial homology 3-sphere a Kirby–
Ramanujam sphere if it bounds both a homology plane and a Mazur/Poénaru type
contractible 4-manifold. In [AŞ22], Aguilar and the author found several infinite
families of Kirby–Ramanujam spheres in the light of Problem E.

20 Note that ∂X(1) = Σ(2, 5, 7) and ∂X′(1) = Σ(3, 4, 5), and compare with [AK79], [CH81],
and [Şav20b]. Therefore, they are not Seifert fibered unless n = 1.
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In [Akb91], Akbulut introduced very crucial geometric objects called corks.
These are defined to be contractible smooth 4-manifolds together with involutions
on the boundary 3-manifolds, which extend to self-homeomorphisms but not to
self-diffeomorphisms of the ambient manifolds. As they generate all exotic phe-
nomena for simply connected 4-manifolds via cork twists [CFHS96,Mat96], they
draw special interest in low-dimensional topology. Corks have recently been studied
extensively using Heegaard Floer homology by Dai, Hedden and Mallick [DMM20],
and they introduced an algebraic object called the homology bordism group of in-
volutions Θτ

Z as a modification of the homology cobordism group Θ3
Z. However, the

following question remains a very interesting open problem.

Problem H. Is there any Seifert fibered space Σ(a1, . . . , an) bounding a cork?

Seifert fibered spaces cannot appear as the boundaries of homology planes due to
Orevkov [Ore97]. However, the splice of Seifert manifolds along their singular fibers
are shown to bound homology planes [AŞ22]. Since they also bound contractible
4-manifolds, we can pose Problem I. If such a homology 3-sphere exists, then after
possibly applying cork twists, we can glue these contractible 4-manifolds along their
common boundary. This gives a homotopy 4-sphere so that it is homeomorphic to
the 4-sphere S4 by Freedman [Fre82]. Therefore, this 4-manifold would be a new
potential candidate counterexample to the smooth Poincaré conjecture in dimension
4.

Problem I. Is there any homology 3-sphere bounding both a cork and a con-
tractible homology plane?

Using the surgery descriptions of Σ(p, q, pq ∓ 1) in terms of torus knots, one
can prove Theorem P as an immediate corollary of the main results of Gordon
[Gor75] and Karakurt, Lidman, and Tweedy [KLT21]. For the constructive part,
an alternative direct proof can be given by finding the plumbing graphs of splices
explicitly [EN85] and by doing Kirby calculus. The obstruction of knots bounding
smooth disks requires the result of Lidman and Tweedy [LT18].

Theorem P. Let K(pq ∓ 1) denote the singular fiber in Σ(p, q, pq ∓ 1). Then
K(pq∓ 1) is not smoothly slice in Σ(p, q, pq∓ 1), and Σ(p, q, pq∓ 1) does not bound
a contractible 4-manifold. However, the following splicing homology 3-spheres bound
Poénaru manifolds with one 0-handle, p 1-handles, and p 2-handles :

Σ(p, q, pq − 1) �K(pq−1) K(pq+1) Σ(p, q, pq + 1).

Independent results of Hirsch, Rokhlin, and Wall around the 1960s indicate that
every homology 3-sphere is smoothly embedded in S5; see [Hir61], [Rok65], and
[Wal65]. Making the target space smaller, we may ask which homology 3-spheres
can be embedded in S4. In the topological category, the problem has a complete
answer thanks to Freedman’s celebrated article [Fre82]: every homology 3-sphere
is topologically embedded in S4. Adding an extra smoothness condition, we can
state another wide open problem in low-dimensional topology.

Problem J ([Kir78b, Problem 3.20]). Which homology 3-spheres can be smoothly
embedded in S4?

Another simple algebraic topology observation indicates that a homology 3-
sphere smoothly embedded in S4 splits S4 into two homology 4-balls. Therefore,
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homology cobordism invariants provide obstructions for the smooth embeddings of
homology 3-spheres in S4.

One can wonder about the reverse direction of the above observation. Studying
branched coverings of cross-sectional slices of knotted 2-spheres S2 in S4, McDonald
provided the first examples of homology 3-spheres which are smoothly embedded
in a homology 4-ball but not any homotopy 4-sphere [McD22]. His examples are
certain double cyclic branched coverings of spuns of torus knots. We may address
this implication to Seifert fibered manifolds and ask

Problem K. Is there any Seifert fibered sphere which bounds a homology 4-ball
but cannot be smoothly embedded in S4?

2.3. Generators of Θ3
Z. The first result concerning the generators of Θ3

Z was owed
to Freedman and Taylor.

Theorem Q ([FT77, Corollary 1B]). The group Θ3
Z is generated by homology 3-

spheres which are boundaries of 4-manifolds having the homology of S2 × S2.

A homology 3-sphere Y is called irreducible21 if every embedded 2-sphere S2 in Y
is the boundary of an embedded B3. Livingston showed that irreducible homology
3-spheres are generic enough to generate the homology cobordism group.

Theorem R ([Liv81, Theorem 3.2]). Every class in Θ3
Z admits an irreducible rep-

resentative.

We call a homology 3-sphere Y hyperbolic if Y is a geodesically complete Rie-
mannian 3-manifold of constant sectional curvature −1. The geodesically complete-
ness requires that at any point p ∈ Y , the geodesic exponential map expp on TpY is
the entire tangent space at p. Myers proved that every homology cobordism class
admits a hyperbolic representative.

Theorem S ([Mye83, Theorem 5.1]). Every class in Θ3
Z admits a hyperbolic rep-

resentative.

A pair (Y, ξ) is called Stein fillable if there is a Stein domain (X, J, φ) where φ is
bounded below, Y is an inverse image of an regular value of φ, and ξ = ker(−dφ◦J)
is an induced contact structure. Mukherjee showed that the generator set of Θ3

Z

can be chosen as Stein fillable homology 3-spheres [Muk20].

Theorem T ([Muk20, Theorem 1.5]). The group Θ3
Z is generated by Stein fillable

homology 3-spheres.

In contrast to the above positive directional results, various computations of
homology cobordism invariants of homology 3-spheres lead to the following obser-
vation of Frøyshov [Frø16], Stoffregen [Sto17], Lin [Lin17], and Nozaki, Sato, and
Taniguchi [NST19].

Theorem U. There exist several infinite families of homology 3-spheres that are
not homology cobordant to any Seifert fibered homology sphere.

21A homology 3-sphere Y is said to be prime if it cannot be written as a connected sum of
two homology 3-spheres nontrivially (i.e., either summand is not S3). For homology 3-spheres,
sometimes the terms “prime” and “irreducible” can be used interchangeably unless Y = S3; see
[Mil62, Lemma 1].
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In [HHSZ20], Hendricks, Hom, Stoffregen, and Zemke established a surgery exact
triangle formula for the involutive Heegaard Floer homology. As an application,
they provided a homology 3-sphere not homology cobordant to any linear com-
bination of Seifert fibered spheres; see [HHSZ20, Theorem 1.1]. This manifold is
obtained by integral Dehn surgery on a combination of torus knots and a cable of a
torus knot: S3

+1(−T6,7#T6,13#− T2,3;2,5). Hence, Seifert fibered manifolds are not
generic enough to generate Θ3

Z:

Theorem V ([HHSZ20, Theorem 1.1]). The Seifert fibered spheres cannot generate
the group Θ3

Z. Therefore, Θ3
SF is a proper subgroup of Θ3

Z. Further, Θ3
Z/Θ

3
SF has

a Z subgroup.

Here, Θ3
SF denotes the subgroup of Θ3

Z generated by Seifert fibered spheres. Note
that S3 = Σ(1, q, r). By using Kirby calculus, Nozaki, Sato, and Taniguchi proved
that the example of Hendricks, Hom, Stoffregen, and Zemke is a graph homology
3-sphere, see [NST19, Appendix A]. Therefore, we can ask the following question
as to the next step of obstructions.

Problem L. Do graph homology 3-spheres generate the group Θ3
Z?

Let Θ3
G denote the subgroup of Θ3

Z generated by graph homology 3-spheres.
The previous problem is equivalent to asking whether Θ3

G = Θ3
Z or not. Nozaki,

Sato, and Taniguchi proposed a strategy in [NST19, Conjecture 1.19] so that likely
Θ3

G � Θ3
Z.

Hendricks, Hom, Stoffregen, and Zemke compared the subgroup Θ3
SF with the

whole group Θ3
Z in another work, and they were able to provide the existence of

an infinitely generated subgroup in the quotient Θ3
Z/Θ

3
SF spanned by the family of

homology 3-spheres S3
+1(−T2,3#− 2T2n,2n+1#− T2n,4n+1) for odd n ≥ 3:

Theorem W ([HHSZ22, Theorem 1.1]). The quotient Θ3
Z/Θ

3
SF has a Z∞ subgroup.

The new immediate challenge would be to ask:

Problem M. Does the quotient Θ3
Z/Θ

3
SF contain a Z∞ summand?

Another curiosity about the possible generators of Θ3
Z is of course surgeries on

knots in the 3-sphere. One can expect that these manifolds are not sufficient to
provide a generating set for Θ3

Z; see [NST19, Corollary 1.7]. However, the following
problem still remains open.

Problem N. Do surgeries on knots in S3 generate Θ3
Z?

2.4. Torsion of Θ3
Z. In their seminal articles, Matumoto [Mat78] and Galewski and

Stern [GS80] reduced the triangulation conjecture to a problem about the interplay
between 3- and 4-manifolds up to homology cobordism. Since then Θ3

Z has been
a very attractive object in low-dimensional topology. A splitting would provide
a homology 3-sphere Y such that μ(Y ) = 1 and Y is 2-torsion in the homology
cobordism group.

Theorem X ([Mat78,GS80]). For n ≥ 5, there exist nontriangulable topological
n-manifolds if and only if the following exact sequence does not split:

(�) 0 −� ker(μ) −� Θ3
Z

μ
−� Z2 −� 0.
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Prior to the work of [Mat78] and [GS80], Casson asked whether every homology
3-sphere Y with an orientation reversing diffeomorphism satisfies μ(Y ) = 0; see
[Kir78b, Problem 3.43]. If it were false, then Y#Y = Y# − Y would bound the
homology 4-ball (Y \B̊3)× [0, 1], giving an element of order 2 in Θ3

Z. Independently,
Birman (in an unpublished note), Galewski and Stern [GS79], and Hsiang and Pao
[HP79] partially answered this question affirmatively for homology 3-spheres with
orientation-reversing involutions. Finally, Casson showed that the μ-invariant must
be zero for such a homology 3-sphere Y in general [AM90].

Next, Saveliev [Sav02a] proved that Z2 torsion in the homology cobordism group
cannot be generated by Seifert fibered spaces (plumbing homology 3-spheres in
general) with nontrivial Rokhlin invariants. He showed that such a Seifert manifold
must be of infinite order by extending the previous work of Fukumoto, Furuta, and
Ue [FFU01].

Finally, Manolescu [Man16b] constructed Pin(2)-equivariant Seiberg–Witten
Floer homology and provided three sensitive invariants of homology 3-spheres. They
are called α, β, and γ invariants of Θ3

Z. Specifically, the Manolescu β-invariant has
the following three crucial properties:

(1) β(−Y ) = −β(Y ),
(2) −β(Y ) = μ(Y ) mod 2, where μ is the Rokhlin invariant,
(3) β is an invariant of Θ3

Z.

The existence of the Manolescu β-invariant guaranteed that the exact sequence
(�) does not split and leads to the disproof of the triangulation conjecture; see
[Kir78b, Problem 4.4] and [Man16a,Man16b,Man18]. For this achievement, the
homology cobordism invariance of the Manolescu β-invariant is particularly critical
because beforehand there exist invariants satisfying properties both (1) and (2) but
not (3); for instance, the Casson invariant λ. Therefore, it cannot be used for the
rejection of the triangulation conjecture for high-dimensional manifolds; however, it
is sufficient for disproval of the conjecture for the particular case of n = 4. See the
book of Akbulut and McCarthy [AM90] for details. For an alternative disproof of
the triangulation conjecture for high-dimensional manifolds using a similar strategy,
see F. Lin’s monograph [Lin18].

Since the Manolescu β invariant provides an integral lift of the Rokhlin invariant
μ, he also ruled out the existence of Z2 torsion in Θ3

Z for the following type of
homology 3-spheres.

Theorem Y ([Man16b, Corollary 1.2]). Let Y be a homology 3-sphere such that
μ(Y ) = 1. Then Y cannot represent Z2 torsion in Θ3

Z. In other words, Y#Y
cannot bound a homology 4-ball.

Currently, we do not know whether there exists a nontrivial homology 3-sphere
Y with a vanishing μ-invariant so that Y#Y bounds a contractible 4-manifold or
a homology 4-ball. Also, we have no further obstructions for other types of torsion
in Θ3

Z. Hence we curiously state the following problem.

Problem O. Does the group Θ3
Z contain any torsion Zn for n ≥ 2? Modulo torsion,

is Θ3
Z free abelian?

Only for the Z2 type torsion, there are some new candidates found in the recent
work of Boyle and Chen [BC22]. These examples originate from cyclic double
branched coverings of S3 along certain nonslice strongly negative amphichiral knots
of determinant 1.
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3. Two relatives of Θ3
Z

Finally, we discuss the close and crucial relationship between the knot concor-
dance group C, the homology cobordism group Θ3

Z, and the rational homology
cobordism group Θ3

Q.

3.1. The elder: The knot concordance group C. A knot K is a smooth em-
bedding of a circle S1 into S3. The knot concordance group C is defined as

C = {oriented knots up to isotopy}/ ∼

where the equivalence relation concordance ∼ is given for two arbitrary knots K0

and K1 as

K0 ∼ K1 ⇐⇒

⎧⎪⎨
⎪⎩

there exists a cylinder C such that

• C ⊂ S3 × [0, 1],

• ∂C = −(K0) ∪K1.

S3 × {0} S3 × {1}

C � S1 × [0, 1]

K0 K1

Fox and Milnor introduced the group C in their celebrated article [FM66]. The
summation is induced by connected sums of knots. The concordance class of the
unknot gives the zero element. Inverse elements are found by mirroring knots and
reversing their orientations.

Knots concordant with the unknot are said to be slice knots. Equivalently, slice
knots are the knots that bound smoothly embedded disks in B4. Ribbon knots can
be defined by restricting the handle decomposition of the smooth disks; they are
the ones that bound such disks without 2-handles. Clearly, every ribbon knot is a
slice. However, the opposite is one of the most famous long-standing problems in
knot theory proposed by Fox [Fox62]:

Problem P (Slice-ribbon conjecture). Is every slice knot a ribbon?

There are candidates for a counterexample to the slice-ribbon conjecture, pro-
vided by Gompf, Scharlemann, and Thompson [GST10] and Abe and Tagami
[AT16]. On the other hand, this conjecture was confirmed for 2-bridge knots by
Lisca [Lis07a, Lis07b] and for most pretzel and Montesinos knots by Greene and
Jabuka [GJ11] and Lecuona [Lec12,Lec15,Lec18,Lec19].

In his celebrated work [Gor81], Gordon defined the notion of ribbon concordance
as an analogue of ribbon knots so that the Morse function induced by the concor-
dance S3 × [0, 1] � [0, 1] has no critical points of index 2. Furthermore, Gordon
conjectured that the ribbon concordance is a partial order; this was recently proved
by Agol [Ago22]. Zemke [Zem19] initiated an approach to the study of ribbon
concordance using knot Floer homology, which was generalized to 3-manifolds by
Daemi, Lidman, Vela-Vick, and Wong [DLVVW22]. Their formalism also provides
important links to Thurston geometries.

A careful analysis of the classical articles of Fox and Milnor [Fox62,FM66], Mura-
sugi [Mur65], Robertello [Rob65], Levine [Lev69b], and Tristam [Tri69] ensured the
existence of infinitely generated Z∞ and Z∞

2 summands of the knot concordance
group so that we pose the following first question regarding the algebraic structure
of C:

Problem Q. Is the group C isomorphic to Z∞ ⊕ Z∞
2 ?
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Levine’s eminent articles provide a surjective homomorphism φ : C � Z∞ ⊕
Z∞
2 ⊕Z∞

4 [Lev69b,Lev69a]. First, Casson and Gordon [CG78] proved that φ is not
an isomorphism. Next, Jiang [Jia81] improved their result by showing that Ker(φ)
has a Z∞ subgroup. Finally, Livingston exhibited that Ker(φ) has a Z∞

2 subgroup
[Liv01]. The following question remains open:

Problem R. Does Levine’s homomorphism φ split?

An affirmative answer to Problem R will provide elements of order 4 in C. Fur-
thermore, it will guarantee that elements of order 2 do not arise only from negative
amphichiral knots; see [Lee05] for more details. Furthermore, obstructions to ele-
ments of order 4 were found by Livingston and Naik [LN99]. Therefore, Problem R
is closely related to the remaining finite part of the knot concordance group.

Problem S. Does the group Θ3
Z contain any torsion Zn for n > 2?

In [COT03, COT04], Cochran, Orr, and Teichner introduced and studied the
deep structure of C by forming a filtration of the group via an infinite sequence of
subgroups

· · · ⊂ Fn+1 ⊂ Fn.5 ⊂ Fn ⊂ · · · ⊂ F1.5 ⊂ F1 ⊂ F0.5 ⊂ F0 ⊂ C,
where F0, F0.5, and F1.5, respectively, correspond to knots with trivial Arf invari-
ant, knots in the kernel of φ, and knots having vanishing Casson–Gordon invari-
ants. This filtration structure is highly nontrivial; in particular, Cochran, Har-
vey, and Leidy proved that each quotient Fn/Fn.5 contains a Z∞ ⊕ Z∞

2 subgroup
[CHL09,CHL11].

The group C and Θ3
Z are related by the maps

S3
1/n : C � Θ3

Z, [K] �� [S3
1/n(K)].

These maps are not homomorphisms but they send identity to identity; see classical
work of González-Acuña [GAn70a] and Gordon [Gor75].

The set of maps S3
1/n was used by Peters to study the knot concordance with the

help of the Heegaard Floer theoretic d-invariant [Pet10]. The same technique was
adapted in the work of Hendricks and Manolescu [HM17] in the setup of involutive
Heegaard Floer homology. This approach can be applied a priori to the other
homology cobordism invariants.

Finally, we briefly mention key obstructive techniques originating from several
theories of knots, 3- and 4-manifolds. Akbulut and Matveyev [AM97] and Rudolph
[Rud95] used contact geometry in the spirit of Eliashberg’s work [Eli90]. The gauge
theoretic methods of Donalson and Taubes [Don83,Tau87] were adapted by Cochran
and Gompf [CG86], Fintushel and Stern [FS85]. Casson–Gordon invariants [CG78,
CG86] were applied successfully by Litherland [Lit84], Kirk and Livingston [KL99],
Friedl [Fri04], Kim [Kim05], and Aceto, Golla, and Lecuona [AGL18]. The knot
Floer homology independently defined Ozsváth and Szabó [OS04b] and Rasmussen
[Ras03] has been used extensively; see for example Ozsváth and Szabó [OS03b] and
Ozsváth, Szabó, and Stipsicz [OSS17]. Furthermore, Khovanov homology and Lee’s
refinement [Kho00,Lee05] provided powerful invariants and techniques through the
work of Rasmussen [Ras10b], Kronheimer and Mrowka [KM13], Lipshitz and Sarkar
[LS14], and Piccirillo [Pic20]. Recently, Dai, Hom, Stoffregen, and Truong produced
involutive Floer theoretic invariants [DHST21], building on the work of Hendricks
and Manolescu [HM17]. Moreover, Khovanov–Rozansky homology [KR08] was used
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by Lobb [Lob09] and Lewark [Lew14] to provide quantum obstructions. Finally,
instanton knot Floer homology [Flo90] has yielded crucial results led by Kronheimer
and Mrowka [KM10, KM11], Hedden and Kirk [HK12], and Baldwin and Sivek
[BS21,BS22].

For more details and further advancements, see the surveys of Gordon
[Gor78], Livingston [Lee05], Hom [Hom17,Hom21], and the problem lists [Pr111,
DFK+16,HPR19].

3.2. The younger: The rational homology cobordism group Θ3
Q. Changing

the role of integer coefficients with rational ones in the definition of Θ3
Z, we obtain

the rational homology cobordism group Θ3
Q. Deciphering the trivial class of this

group has been of special interest in low-dimensional topology, constituting the
following problem attributed to Casson.

Problem T ([Kir78b, Problem 4.5]). Which rational homology 3-spheres bound
rational homology 4-balls?

From both constructive and obstructive perspectives, Problem T has been stud-
ied extensively with the help of the techniques introduced by Casson and Gordon
[CG78]. For each prime p and r ≥ 1, we have a group homomorphism

Σpr : C � Θ3
Q, [K] �� [Σpr(K)].

The homomorphism of Casson and Gordon was used for the construction of
concordance invariants. See the work of Manolescu and Owens [MO07], Jabuka
[Jab12], Alfieri, Kang, and Stipsicz [AKS20], and Baraglia [Bar22].

The work of Lisca [Lis07a, Lis07b] on the slice-ribbon conjecture for 2-bridge
knots led to the classification of lens spaces and sums of lens spaces bounding ra-
tional homology 4-balls. Similarly, the articles of Greene and Jabuka [GJ11] and
Lecuona [Lec12,Lec15,Lec18,Lec19] provided Seifert fibered rational homology 3-
spheres bounding rational homology 4-balls. Recently, Aceto and Golla [AG17] and
Aceto, Golla, Larson, and Lecuona [AGLL20] classified surgeries on torus knots
that bound rational balls. Also, Lokteva [Lok20] extended their results to cables of
torus knots. Furthermore, Maruyama [Mar80], Fintushel and Stern [FS80], Casson
and Harer [CH81], Etnyre and Tosun [ET20], Simone [Sim21,Sim20], and Lokteva
[Lok22] constructed various rational homology 3-spheres bounding rational homol-
ogy 4-balls by using Kirby calculus and knot theory; see also [Lis07a,Lis07b,Lec12,
AGLL20] for the construction of certain spaces.

Several theories extended to rational homology 3-spheres and their invariants
can be extensively used for powerful obstructions. Consult the articles by Owens
and Strle [OS06], Simone [Sim20], Choe and Park [CP21], and Greene and Owens
[GO22] using Donaldson’s diagonalization theorem and Heegaard Floer homology;
Casson and Gordon [CG86], Fintushel and Stern [FS87], Matić [Mat88], Ruber-
man [Rub88], Yu [Yu91], and Mukawa [Muk02] using Casson–Gordon invariants
and gauge theory; Wahl [Wah81,Wah11], Stipsicz, Szabó, and Wahl [SSW08], and
Bhupal and Stipsicz [BS11] using singularity theory; Baraglia and Hekmati using
Seiberg–Witten–Floer theory [BH21,BH22].

A combination of the classical work of Casson and Harer [CH81] and Litherland
[Lit79] indicate that Ker(Σp) contains a Z∞ subgroup for any prime p. In partic-
ular, Aceto and Larson showed that Ker(Σ2) has a Z∞ summand. Further, Aceto,
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Celoria, and Park [ACP20] proved that Coker(Σpr) contains a subgroup isomorphic
to Z∞ if p ≡ 3(mod 4) and Z∞ ⊕ Z∞

2 otherwise.

Problem U. Describe other types of subgroups or summands of Ker(Σpr) and
Coker(Σpr ).

In particular, the linear independence of collections of rational homology 3-
spheres in Θ3

Q has been studied by Hedden, Livingston, and Ruberman [HLR12]
and Golla and Larson [GL21] using Heegaard Floer homology. See also the work of
Mukawa [Muk02] in the machinery of gauge theory. Nevertheless, the detection of
summands in the rational homology cobordism group is an open problem.

Problem V. Does the group Θ3
Q contain a Qn summand for n ≥ 1?

When Lisca classified connected sums of lens spaces bounding rational homology
4-balls [Lis07b], and he found 2-torsion elements in Θ3

Q. However, the existence of
other types of torsion is currently unknown.

Problem W. Does the group Θ3
Q contain any n-torsion for n > 2?

We have a natural group homomorphism

ψ : Θ3
Z � Θ3

Q

induced by inclusion. It is known that the map ψ is not injective. There exists ho-
mology 3-spheres listed in Theorem Z that represent nontrivial elements in Ker(ψ)
by the work of Fintushel and Stern [FS84], Akbulut and Larson [AL18], the author
[Şav20b], and Simone [Sim21].22

Theorem Z. The following homology 3-spheres bound rational homology 4-balls
but do not bound homology 4-balls. Therefore, they nontrivially lie in Ker(ψ) since
they all have nonvanishing Rokhlin invariant:

(1) Σ(2, 3, 7), Σ(2, 3, 19),
(2) Σ(2, 4n+ 1, 12n+ 5), Σ(3, 3n+ 1, 12n+ 5) for odd n ≥ 1,
(3) Σ(2, 4n+ 3, 12n+ 7), Σ(3, 3n+ 2, 12n+ 7) for even n ≥ 2,
(4) S3

−1(Kn), where Kn is the twist knot for odd n ≥ 1.

Furthermore, Ker(ψ) has a Z subgroup generated by any single homology 3-
sphere listed above except those in (4) because they have nonzero μ̄-invariants. In
particular, μ-invariants of Simone’s examples in item (4) are nontrivial. One can
expect that Ker(ψ) might be larger than Z, including some linearly independent
infinite subset of these homology 3-spheres. Thus, we ask the following problem,
first posed by Akbulut and Larson [AL18]:

Problem X. Does Ker(ψ) contain a Z∞ subgroup or a Z∞ summand?

It is worthwhile to note that all current homology cobordism invariants cannot
detect the linear independence of Brieskorn spheres listed in Theorem Z in Θ3

Z; see
the discussion in Subsection 2.1.1. This is also true for Simone’s family; see surgery
formulae of the relevant homology cobordism invariants.

22Note that these families of Brieskorn spheres all bound rational homology 4-balls for all
values of n. Simone’s family can be generalized in the sense that S3

−1(K) (resp., S3
+1(K)) bounds

a rational homology 4-ball when K is an unknotting number one knot with a positive (resp.,
negative) crossing that can be switched to unknot K.
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The existence of these homology 3-spheres has a nice application in symplectic ge-
ometry. Let (X,ω) be a symplectic 4-manifold. A Stein domain is a triple (X, J, φ)
such that J is complex structure on X and φ : X � R is a proper plurisubharmonic
function. Here, φ provides compact level sets and a symplectic form: φ is smooth
such that φ−1((−∞, c]) is compact for all c ∈ R and ωφ(v, w) = −d(dφ ◦ J)(v, w)
gives a symplectic form. The handle decompositions of Stein domains are com-
pletely characterized in the celebrated articles of Eliashberg [Eli90] and Gompf
[Gom98]: A 4-manifold is a Stein domain if and only if it has a handle decomposi-
tion with 0-handles, 1-handles, and 2-handles; and the 2-handles are attached along
Legendrian knots with framing tb− 1, where tb denotes the Thurston–Bennequin
number.

If we choose any homology 3-sphere listed in Theorem Z, then the handle decom-
position of the corresponding rational ball must contain 3-handles by an algebraic
topology argument.23 Then, the above characterization indicates that such a ra-
tional homology 4-ball cannot be a Stein domain. Mazur manifolds are potential
candidates of Stein domains, but this is not the case for all Mazur manifolds; see
the impressive work of Mark and Tosun [MT18].

In addition to the noninjectivity of ψ, we know that it is not surjective. In
particular, Kim and Livingston proved that Coker(ψ) has a Z∞ ⊕ Z∞

2 subgroup
[KL14]. This was reproved by Aceto and Larson [AL17] as a consequence of a more
general fact. They proved that ψ

(
Θ3

Z

)
and L intersect trivially where L denotes

the subgroup of Θ3
Q generated by lens spaces. In particular, the structure of L has

been studied in [AL17,ACP20]. Finally, we can ask:

Problem Y. Does Coker(ψ) contain a Z∞ ⊕ Z∞
2 summand? Does it have other

types of subgroups or summands?

In light of the results therein and in Section 2.2, we can also address the following
explicit problem:

Problem Z. Do the Brieskorn spheres Σ(2, 3, 6n + 1) bound rational homology
4-balls (resp., homology 4-balls) for odd n ≥ 5 (resp., even n ≥ 6)?

The notion of a rational homology cobordism can be generalized among all closed
connected oriented 3-manifolds. Such a homology cobordism is said to be ribbon if
the cobordism 4-manifold is built by attaching only 1- and 2-handles. This gives
rise to a preorder on the set of homeomorphism classes of closed connected oriented
3-manifolds. Daemi, Lidman, Vela-Vick, and Wong conjectured that this preorder
is in fact a partial order. Independently, Friedl, Misev, and Zentner [FMZ22] and
Huber [Hub22] proved this conjecture affirmatively, relying on the result of Agol
[Ago22].

4. Appendix: Examples of homology 3-spheres

In the wide world of closed connected oriented 3-manifolds, there is a simple
characterization of homology 3-spheres Y thanks to Poincaré duality and the uni-
versal coefficient theorem: H1(Y ;Z) = 0. Since the abelianization of π1(Y ) gives
H1(Y ;Z) due to the Hurewicz theorem, they are even easily recognized. In this

23One can consult the paper of Akbulut and Larson [AL18] for the handle diagram of a rational
homology 4-ball including a 3-handle. This 4-manifold has the boundary Σ(2, 3, 7).



140 OĞUZ ŞAVK

appendix, we discuss several constructions of homology 3-spheres, our main refer-
ences are Neumann and Raymond [NR78], Eisenbud and Neumann [EN85], Gompf
and Stipsicz [GS99], Saveliev [Sav02b], and Akbulut [Akb16].

The first example of homology 3-spheres was given by Poincaré [Poi04] as a
counterexample to the first version of the Poincaré conjecture. This 3-manifold is
known as the Poincare homology sphere, and the exposition of Kirby and Scharle-
mann can be seen for the eight equivalent descriptions of the Poincaré homology
sphere [KS79].

The next source for homology 3-spheres was found by Dehn [Deh38] by providing
a passage from 1-manifolds—knots and links—to 3-manifolds via the topological
operation called surgery. Consider the tubular neighborhood of K in S3, which is
a solid torus ν(K) ≈ S1 ×D2. On the boundary torus ∂ν(K), there is a preferred
longitude λ, i.e., a simple closed curve with lk(λ,K) = 0, and there is a canonical
meridian μ with lk(μ,K) = 1.

A Dehn (p/q)-surgery along K in S3 is constructed by the following two steps.
We first drill out the interior of ν(K) from S3 and consider the knot exterior
S3 \ ˚ν(K). Next, we glue another solid torus D2 × S1 to the knot exterior by a
homeomorphism ϕ. The resulting closed 3-manifold S3

p/q(K) is given by

S3
p/q(K) =

(
S3 \ ˚ν(K)

)
∪ϕ

(
D2 × S1

)
, ϕ(∂D2 × {∗}) = pμ+ qλ.

Since H1(S
3
p/q(K);Z) = Zp, the manifolds of the form S3

1/n(K) are automatically

homology 3-spheres. In particular, Dehn showed that the Poincaré homology sphere
can be obtained by (−1)-surgery along the left-handed trefoil knot T (2, 3) in S3.

A framed knot in S3 is a knot equipped with a smooth nowhere vanishing vector
field normal to the knot. Thus a framing of a knot is naturally characterized
by its Seifert surface ([Sei35] and [FP30]) so that the specified longitude is given
by 0-framing.24 The set of framings of a knot is identified with a fixed set of
rationals using a Seifert surface, so each knot has a preferred well-defined framing.
This process can be naturally generalized to framed links in S3, which are disjoint
collections of knots in S3.

By the eminent results of Lickorish [Lic62], Wallace [Wal60], and Kirby [Kir78a]:
the map D provided by integral n-surgery

D : {framed links in S3} � {closed 3-manifolds}, L �� D(L) = S3
n(L)

is many-to-one. In particular, Kirby completely described when two elements can
represent the same element in the kernel using Cerf theory [Cer70]; i.e., S3

n(L1) is
homeomorphic to S3

n(L2) if and only if the framed links are related by sequences
of two Kirby moves—blow-up and handle-slide. His notable contribution was gen-
eralized, ramified, and reproved by Fenn and Rourke [FR79], César de Sá [CdS79],
Kaplan [Kap79], Rolfsen [Rol84], Lu [Lu92], Matveev and Polyak [MP94], and
Martelli [Mar12].

The next construction of homology 3-spheres was provided by Seifert [Sei33]. Let
e be an integer and let (a1, b1), . . . , (an, bn) be pairs of relatively prime integers. The
Seifert fibered space with base orbifold S2 is a closed 3-manifold

M(S2; e, (a1, b1), . . . , (an, bn))

24The existence of Seifert surfaces of an oriented knot K in an oriented 3-manifold M would
be possible if and only if K is null-homologous, i.e., [K] = 0 ∈ H1(M ;Z), one can consult [Rol76].
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constructed by starting with an S1-bundle over an n-punctured S2 of Euler number
e and filling the kth boundary component with an (ak/bk)-framed solid torus for
k = 1, . . . , n. The core circle of the (ak/bk) Dehn filling is called a singular fiber ;
all other fibers are said to be regular fibers. The resulting manifold is a homology
3-sphere if and only if

a1 · · · an

(
−e+

n∑
k=1

bk
ak

)
= ∓1.(1)

This equation results from the fundamental group [ST80, p. 398], and hence the
first homology group calculations of Seifert fibered spaces; see [ST80, p. 410].25 In
particular, the Poincaré homology sphere corresponds to the Seifert fibered space
M(S2;−2, (2,−1), (3,−2), (5,−4)).

Due to Brieskorn [Bri66a,Bri66b], homology 3-spheres also originate from alge-
braic geometry as seen in the variety of certain complex analytical polynomials. Let
p, q, and r be relatively coprime positive integers. Let f : C3 � C be a complex
analytical polynomial defined by f(x, y, z) = xp+ yq + zr. Then the zero set of f is
the complex surface V (f) = {(x, y, z) ∈ C3 | f(x, y, z) = 0} singular at the origin.
If we transversally intersect this variety with the five-sphere S5

ε of arbitrarily small
radius ε, then the resulting closed 3-manifold is the Brieskorn sphere given by

Σ(p, q, r) = V (f) � S5
ε ⊂ C3.

The Poincaré homology sphere matches with the Brieskorn sphere Σ(2, 3, 5). For
explicit descriptions of fundamental groups of Brieskorn spheres, see Milnor’s paper
[Mil75]. In particular, there is an orientation-preserving homemorphism between
M(S2; a1, a2, a3) and Σ(a1, a2, a3) [NR78, Theorem 4.1]. In general, it is possible
to realize Seifert fibered homology 3-spheres as the links of the complex surface
singularities of Brieskorn complete intersections

VB(a1, . . . , an) = {bi1za1
1 + · · ·+ binz

an
n = 0, i = 1, . . . , n− 2} ⊂ Cn,

where B = (bij) is an (n− 2)×n-matrix of complex numbers such that each of the
maximal minors of B is nonzero; see [NR78, Theorem 2.1].

Let J be an index set. A plumbing graph G is a connected and weighted tree
with vertices vj and weights ej for j ∈ J . We can construct a 4-manifold X(G)
with a boundary Y (G) by using the plumbing graph. First, for each vj , we assign
a D2-bundle over S2 whose Euler number is ej . Next, we plumb two of these
D2-bundles if there is an edge connecting the vertices; see [NR78, Theorem 5.1].

The fundamental classes of the zero-sections of D2-bundles generate the second
homology group H2(X(G);Z). Thus, for each vertex of G, we have a generator of
H2(X(G);Z). Hence, the intersection form on H2(X(G);Z) is naturally character-
ized by the corresponding intersection matrix I = (aij) whose data is given in the
following way:

aij =

⎧⎪⎨
⎪⎩
ei if vi = vj ,

1 if vi and vj is connected by one edge,

0 otherwise.

25Seifert called homology 3-spheres Poincaré spaces; see [ST80, p. 402]. Note that the book
[ST80] includes an English translation of [Sei33] and our citations all lie in that part.
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A plumbing graph G is called unimodular if det(I) = ±1. The unimodularity
of the plumbing graph implies that Y (G) is a homology 3-sphere, so it is called a
plumbed homology 3-sphere. We may characterize the negative definiteness of G, it
requires that I is negative-definite, i.e., signature(I) = −|G|, where |G| denotes the
number of vertices of G.

A Seifert fibered homology sphere M(S2; e, (a1, b1), . . . , (an, bn)) can be realized
as the boundary of a star-shaped plumbing graph. This graph is unique when it
is negative-definite [Sav02b, Section 1.1]. The integer weights tij in the graph are
found by solving equation (1) and expanding the continued fractions [ti1, . . . , timi

]
as follows: for each i ∈ {1, . . . , n}, we have

ai/bi = [ti1, ti2, . . . , timi
] = ti1 −

1

ti2 −
1

· · · −
1

timi

t11 t12 t1m1

t21 t22 t2m2

tn1 tn2 tnmn

e

In this survey, we focus on the following three families of Brieskorn spheres.
Assume that p and q are pairwise coprime, positive, and ordered integers such that
2 ≤ p < q:

(1) {Σ(p, q, pqn− 1)}∞n=1;
(2) {Σ(p, q, pqn+ 1)}∞n=1;
(3) {Σ(pn, qn, rn)}∞n=1, where pnqn + pnrn − qnrn = 1;

(a) {Σ(2n, 4n− 1, 4n+ 1)}∞n=1,
(b) {Σ(2n+ 1, 4n+ 1, 4n+ 3)}∞n=1,
(c) {Σ(2n+ 1, 3n+ 2, 6n+ 1)}∞n=1,
(d) {Σ(2n+ 1, 3n+ 1, 6n+ 5)}∞n=1.

Due to the classical result of Moser [Mos71], the first two families can be obtained
by (−1/n) surgeries along the left-handed torus knots T (p, q) and their mirror-image

right-handed torus knots T (p, q) in S3:

Σ(p, q, pqn− 1) = S3
−1/n(T (p, q)) and Σ(p, q, pqn+ 1) = S3

−1/n(T (p, q)).

The third family is called almost simple linear graphs and is extensively studied in
[FS85], [End95], and [KŞ20]. The families (1) and (3) are vast generalizations of
the Poincaré homology sphere Σ(2, 3, 5) while the the family (2) is of Σ(2, 3, 7).

Note that there is a family of Brieskorn spheres realized as the boundaries of
almost simple graphs which cannot be obtained by surgeries along any knots in
S3. This surgery obstruction was due to Hom, Karakurt, and Lidman [HKL16].
In particular, they showed that Σ(2n, 4n − 1, 4n + 1) cannot be realized as knot
surgeries for n ≥ 4.

Another classical way to produce homology 3-spheres is the method of cyclic
branched coverings of S3 branched over knots K, which dates back to work of
Alexander [Ale20] and Seifert [Sei33]. Let Xn(K) be the n-fold regular covering of
the knot exterior X(K) = S3 \ ˚ν(K). Then the n-fold cyclic branched covering of



A SURVEY OF THE HOMOLOGY COBORDISM GROUP 143

S3 over K is a closed 3-manifold

Σn(K) = Xn(K) ∪ϕ

(
D2 × S1

)
, ϕ(μ̃) = μ,

where μ ⊂ ∂X(K) is the meridian of K and μ̃ is the lift of μ to ∂Xn(K). Note
that Σn(K) is a homology 3-sphere when

n∏
k=1

ΔK

(
e

2πik
n

)
= 1,

where ΔK(t) is the Alexander polynomial of K normalized so that there are no neg-
ative powers of t and the constant term is positive. The Brieskorn sphere Σ(p, q, r)
is an r-fold cyclic branched coverings of S3 branched over the torus knots T (p, q);
see [Mil75, Lemma 1.1] and compare with [ST80, p. 405]. In general, a Seifert
fibered sphere Σ(a1, . . . , an) is a 2-fold cyclic branched covering of an S3 branched
over Montesinos knots K(a1, . . . , an); see [Mon73,Mon75].

Given two homology 3-spheres together with knots inside them, we can produce
a new closed 3-manifold by following the agenda of Gordon [Gor75].

Let K1 and K2 be knots in homology 3-spheres Y1 and Y2 with the knot ex-
teriors Y1 \ ˚ν(K1) and Y2 \ ˚ν(K2), and the longitude-meridian pairs (λ1, μ1) and

(λ2, μ2), respectively. Consider the following integral 2 × 2 matrix A =

(
a b
c d

)
with det(A) = −1. Gordon constructed closed 3-manifolds obtained by gluing knot
exteriors of homology 3-spheres along their boundary tori by matching longitude-
meridian pairs with respect to the matrix A:

Y (K1,K2, A) = (Y1 \ ˚ν(K1)) ∪A (Y2 \ ˚ν(K2)) .

Clearly, the resulting manifold is a homology 3-sphere whenever A =

(
a ab+ 1
1 b

)
.

Gordon studied the problem in which Y (K1,K2, A) bounds contractible 4-mani-
folds, and he provided several characterizations in terms of sliceness of knots.

The case A =

(
0 1
1 0

)
corresponds to switching longitude-meridian pairs of

knots inside homology 3-spheres. This construction is of special interest and is
known as the splice operation first introduced by Siebenmann [Sie80]. Given the
pairs (Y1,K1) and (Y2,K2), we will denote the splice of these manifolds along the
given knots by Y1 �K1 K2

Y2.
The concept of the splice became popular after the novel book of Eisenbud and

Neumann [EN85] because the splice can be realized as a generalization of several
other topological operations including cabling, connected sum, and disjoint union.
The splice also has a very crucial role in singularity theory due to Neumann and
Wahl [NW90]. For details, one can consult the recent survey of Cueto, Popescu-
Pampu, and Stepanov [CPPS22].

We finally consider the graph 3-manifolds introduced by Waldhausen [Wal67]. A
graph 3-manifold is a closed 3-manifold such that it can be cut along a set of disjoint
embedded tori Ti and has a decomposition with each piece is Σi × S1, where Σi is
a surface with boundary. In light of the JSJ (torus) decomposition theorem (Jaco
and Shalen [JS79] and Johannson [Joh79]), a graph homology 3-sphere is a prime
homology 3-sphere whose JSJ decomposition contains only Seifert fibered pieces.
See Neumann’s paper [Neu07] and its appendix, and Saveliev’s book [Sav02b] for
further discussions.
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Afterword

The recorded history of the n-dimensional homology cobordism group Θn
Z first

appeared in the PhD thesis of González-Acuña [GAn70b] under the supervision of
Ralph H. Fox at Princeton University in 1970. He introduced the notion of study-
ing homology n-spheres by building on the work of Kervaire and Milnor [KM63]
about the n-dimensional homotopy cobordism group Θn of homotopy n-spheres.
González-Acuña proved that these groups Θn and Θn

Z are isomorphic unless n = 3.
Therefore, they are both finite except in the case of n = 3. This result was not
published as an article but was referred to in [GAn70a, Section 2]. Note that the
only unknown value of the order of Θn in [KM63] was the case of n = 3. This has
not been clarified until the work of Perelman [Per02,Per03a,Per03b].

The isomorphism argument of González-Acuña broke down when n = 3, if the
order of Θ3 was known at that time; see [GAn70b, p. 17, Remark and Section I.5].
In particular, the homology cobordism group Θ3

Z was introduced to him by Denis
Sullivan as noted in [GAn70b, p. VII]. Also, the first known proof of the homology
cobordism invariance of the Rokhlin invariant μ was given [GAn70b, pp. 33–34].
Further, the relation between the Arf invariant of knots and the Rokhlin invariant
in terms of knot surgery was found [GAn70b, Theorem III.2]. Unfortunately, his
results were only mentioned in Gordon’s article [Gor75] and they have remained
mysteries.

The main references for our survey are the great book of Saveliev [Sav02b] and
the eminent ICM 2018 article of Manolescu [Man18]. To extend their coherent
frameworks, we list recent results not included in these resources. Further, we
catalog all natural sources of homology 3-spheres in the appendix.
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[AK14] S. Akbulut and Ç. Karakurt, Heegaard Floer homology of some Mazur type mani-

folds, Proc. Amer. Math. Soc. 142 (2014), no. 11, 4001–4013, DOI 10.1090/S0002-
9939-2014-12149-6. MR3251740

[Akb91] S. Akbulut, A fake compact contractible 4-manifold, J. Differential Geom. 33 (1991),
no. 2, 335–356. MR1094459

[Akb16] S. Akbulut, 4-manifolds, Oxford Graduate Texts in Mathematics, vol. 25, Oxford
University Press, Oxford, 2016, DOI 10.1093/acprof:oso/9780198784869.001.0001.
MR3559604

[AKS20] A. Alfieri, S. Kang, and A. I. Stipsicz, Connected Floer homology of covering involu-
tions, Math. Ann. 377 (2020), no. 3-4, 1427–1452, DOI 10.1007/s00208-020-01992-9.
MR4126897

[AL17] P. Aceto and K. Larson, Knot concordance and homology sphere groups, Int. Math.
Res. Not. IMRN 23 (2018), 7318–7334, DOI 10.1093/imrn/rnx091. MR3883134

[AL18] S. Akbulut and K. Larson, Brieskorn spheres bounding rational balls, Proc. Amer.
Math. Soc. 146 (2018), no. 4, 1817–1824, DOI 10.1090/proc/13828. MR3754363

[Ale20] J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), no. 8,
370–372, DOI 10.1090/S0002-9904-1920-03319-7. MR1560318

[AM90] S. Akbulut and J. D. McCarthy, Casson’s invariant for oriented homology 3-spheres:
An exposition, Mathematical Notes, vol. 36, Princeton University Press, Princeton,
NJ, 1990, DOI 10.1515/9781400860623. MR1030042

[AM97] S. Akbulut and R. Matveyev, Exotic structures and adjunction inequality, Turkish
J. Math. 21 (1997), no. 1, 47–53. MR1456158
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[CdS79] E. César de Sá, A link calculus for 4-manifolds, Topology of low-dimensional man-

ifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math.,
vol. 722, Springer, Berlin, 1979, pp. 16–30. MR547450
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[HKL16] J. Hom, Ç. Karakurt, and T. Lidman, Surgery obstructions and Heegaard Floer
homology, Geom. Topol. 20 (2016), no. 4, 2219–2251, DOI 10.2140/gt.2016.20.2219.
MR3548466

[HLR12] M. Hedden, C. Livingston, and D. Ruberman, Topologically slice knots with
nontrivial Alexander polynomial, Adv. Math. 231 (2012), no. 2, 913–939, DOI
10.1016/j.aim.2012.05.019. MR2955197

https://mathscinet.ams.org/mathscinet-getitem?mr=1839478
https://mathscinet.ams.org/mathscinet-getitem?mr=356022
https://mathscinet.ams.org/mathscinet-getitem?mr=2619599
https://mathscinet.ams.org/mathscinet-getitem?mr=2808326
https://mathscinet.ams.org/mathscinet-getitem?mr=4260647
https://arxiv.org/abs/2212.06248
https://mathscinet.ams.org/mathscinet-getitem?mr=1668563
https://mathscinet.ams.org/mathscinet-getitem?mr=402762
https://mathscinet.ams.org/mathscinet-getitem?mr=521730
https://mathscinet.ams.org/mathscinet-getitem?mr=634459
https://mathscinet.ams.org/mathscinet-getitem?mr=520461
https://mathscinet.ams.org/mathscinet-getitem?mr=558395
https://mathscinet.ams.org/mathscinet-getitem?mr=1707327
https://mathscinet.ams.org/mathscinet-getitem?mr=2740649
https://mathscinet.ams.org/mathscinet-getitem?mr=4205781
https://mathscinet.ams.org/mathscinet-getitem?mr=3505179
https://arxiv.org/abs/2011.00113
https://mathscinet.ams.org/mathscinet-getitem?mr=4480068
https://mathscinet.ams.org/mathscinet-getitem?mr=133136
https://mathscinet.ams.org/mathscinet-getitem?mr=2971290
https://mathscinet.ams.org/mathscinet-getitem?mr=3548466
https://mathscinet.ams.org/mathscinet-getitem?mr=2955197


150 OĞUZ ŞAVK
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[KLT20d] Ç. Kutluhan, Y.-J. Lee, and C. H. Taubes, HF = HM, I: Heegaard Floer homology
and Seiberg-Witten Floer homology, Geom. Topol. 24 (2020), no. 6, 2829–2854, DOI
10.2140/gt.2020.24.2829. MR4194305
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[KŞ20] Ç. Karakurt and O. Şavk, Ozsváth-Szabó d-invariants of almost simple lin-
ear graphs, J. Knot Theory Ramifications 29 (2020), no. 5, 2050029, 17, DOI
10.1142/S0218216520500297. MR4118004
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