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MR0920369 (89a:11067) 11H31; 05B40, 11H06, 20E32, 52A43, 52A45, 94C30

Conway, J. H.; Sloane, N. J. A.

Sphere packings, lattices and groups. (English)

Grundlehren der mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], 290.
Springer-Verlag , New York , 1988, xxviii+663 pp., $87.00, ISBN 0-387-96617-X

The book is a landmark in the literature on sphere packings. It is mainly con-
cerned with the problem of packing spheres in d-dimensional Euclidean space Ed.
The authors also study closely related problems as, e.g., the kissing number problem
(how many spheres touch a given central sphere?); the problem of covering Ed in
the least dense way by equal spheres; and the classification of lattices and quadratic
forms. The book also deals with applications of these geometric problems to other
areas of mathematics (mainly number theory) and to areas outside mathematics,
mainly the channel coding problem, but also crystals and quasicrystals.

Two mathematical objects play a central role in this book, namely the famous
sphere packings in the E8-lattice and in the Leech lattice Λ24. As the authors
formulate, one could say “that the book is devoted to studying these two lattices
and their properties”. Also remarkable are the informative tables and graphs which
are helpful for the reader.

The book contains a lot of new material, mainly from papers by the two au-
thors, but also remarkable contributions by others (e.g. by Bannai, Leech, Norton,
Odlyzko, Parker, Queen, and Venkov). In fact the book was originally planned as
a collection of some important papers by these authors which can be seen from its
structure and the different chapters. However, in its final form it has become much
more than such a collection—it is a successful synthesis of these papers.

J. M. Wills

From MathSciNet, October 2023

MR1681101 (2000b:57039) 57R17; 53D35, 57R57

Biran, Paul

A stability property of symplectic packing.

Inventiones Mathematicae 136 (1999), no. 1, 123–155.

Optimally filling the entire volume of a compact manifold with N balls of the
same radius r by volume preserving maps for given N is clearly unobstructed.
On the other hand there is an obvious obstruction to full packings when filling
by isometric embeddings, like for instance Euclidean embeddings in the famous
Kepler conjecture about densest sphere packings. In this perspective packings by
symplectic embeddings represent an intermediate case. Given a compact symplectic
manifold (M,ω), let vN (M,ω) denote the supremum of the ratio of volumes N ·
vol(B2n(r))

/
vol(M,ω) such that there exist disjoint symplectic embeddings of N
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copies of the ball B2n(r) of any radius r into M . The situation vN (M,ω) < 1
represents a packing obstruction, vN = 1 signifies full packings.

This symplectic packing problem was first addressed by M. Gromov in his seminal
paper [Invent. Math. 82 (1985), no. 2, 307–347; MR0809718] as an extension of the
non-squeezing phenomenon. Using the method of pseudoholomorphic curves for
almost complex structures tamed by ω he showed for example that vN (B2n(1)) ≤
N/2n for 1 < N < 2n. Packing B2n(1) is equivalent to packing (CPn, ω0) with
ω0([CP1]) = π. Since one can find a line through the centers of any two of the
embedded balls, the lower bound πr2 for the area of a holomorphic curve through
the center of a ball B2n(r) implies that 2r2 < 1. Thus, packing obstructions are
obtained by finding holomorphic curves through a prescribed number of points in
general position.

Further essential progress was achieved by D. McDuff and L. Polterovich [Invent.
Math. 115 (1994), no. 3, 405–434; MR1262938] based on the unique correspondence
between symplectically embedded balls and symplectic blowing-up. Given an em-
bedded ball of radius r, one can find a symplectic form on the complex blow-up M̃
of the center such that its cohomology class is given by [Θ∗ω]−πr2e, where e is the
Poincaré dual of the exceptional divisor E resulting from the blowing-up. In fact,
symplectic blowing-up can be understood as removing the interior of the symplectic
ball of radius r and collapsing the remaining bounding sphere to the exceptional
divisor. In dimension 4 symplectic blowing-up for N embedded balls thus encoun-
ters obstructions in terms of evaluating the symplectic form in the class [Θ∗ω] −
πr2

∑N
q=1 eq on M̃ on holomorphic curves in the classes d ·PD(Θ∗ω)−

∑N
q=1 mqEq,

viz. necessarily d
∫
M

ω ∧ ω ≥ πr2
∑

mq. The crucial problem is therefore to de-

termine tuples (d,m1, · · · ,mN ) ∈ ZN+1
+ which can be represented by holomorphic

curves. On the other hand, symplectic blowing-down provides a construction of
symplectic packings. The problem here is to find symplectic forms representing the

class [Θ∗ω]− πr2
∑N

q=1 eq which are Kähler near the exceptional divisors.
Whereas the results by Gromov and McDuff-Polterovich mainly focus on packing

obstructions, the article under review deals with the existence of full packings.
The main result states that for any four-dimensional (M,ω) with rational class
[ω] ∈ H2(M,Q) there exists N0 such that vN (M,ω) = 1 for N ≥ N0. That
is, for any such symplectic four-manifold there are at most finitely many packing
obstructions. Moreover, if the Poincaré dual of k0[ω] can be represented by a
symplectic manifold of genus at least 1, then one has N0 = k20

∫
M

ω ∧ ω. The
latter statement relates the search for the threshold N0 of stable full packings to
the minimal k0 in S. K. Donaldson’s seminal theorem [J. Differential Geom. 44
(1996), no. 4, 666–705; MR1438190] providing symplectic submanifolds Poincaré
dual to k0[ω] for k0 sufficiently large. In examples, Biran finds the optimal N0 by
this approach, e.g. N0 = 9 for CP2.

The essential idea behind the proof of the main theorem is to focus on a symplec-
tic tubular neighborhood of the symplectic submanifold Σ Poincaré dual to k0[ω].
Namely, symplectically compactifying the normal bundle N → Σ by adding a sec-
tion Z∞, at infinity one obtains a so-called ruled surface S → Σ. In [Geom. Funct.
Anal. 7 (1997), no. 3, 420–437; MR1466333] Biran already developed techniques
for achieving full packings of such ruled surfaces. Using a crucial inflating technique
due to Lalonde and McDuff one can enlarge the symplectic neighborhood of Σ until
it essentially fills out the entire volume of M . Thus it remains to fill S\Z∞. Biran
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shows that vN (S\Z∞, ωS) = 1 if N ≥ (
∫
S
ωS ∧ ωS)/(

∫
F
ωS)

2, where F is the class
of the fiber of S → Σ.

In order to obtain the full packing of the ruled surface S\Z∞, one proceeds by
starting with N sufficiently small disjointly embedded balls not intersecting the
section at infinity. Using again a suitably generalized inflation technique the balls
are enlarged without intersecting Z∞ until the volume is filled. The inflation lemma
works by deforming the symplectic structure of the ruled surface symplectically
blown-up at the centers of the embedded small balls. The deformation adds to
ω̃ a form Poincaré dual to a suitably chosen homology-2-class represented by a
symplectic 2-dimensional submanifold C ⊂ S̃. In order to apply this inflation
technique, however, the crucial condition of positivity of intersections of C with
Z∞ and all exceptional divisors Eq, q = 1, · · · , N , has to be guaranteed. This
essential condition constitutes the hardest part of the construction of the packing.
It is here, where one observes a lower bound for N , where the genus of Σ has to be at
least 1 and where the structure of S as a ruled surface plays a role, namely in terms
of a four-manifold of Seiberg-Witten non-simple type. The idea is to represent all
necessary 2-dimensional symplectic submanifolds by pseudoholomorphic curves, so
that positivity of intersection in dimension 4 follows. The essential technique to
achieve this is due to McDuff [in Topics in symplectic 4-manifolds (Irvine, CA,
1996), 85–99, Internat. Press, Cambridge, MA, 1998; MR1635697]. One of the
crucial conditions is that the class of C has to intersect all exceptional spheres
nonnegatively. This restricts N from below.

The article under review fills a large white area on the map of symplectic topol-
ogy, answering the important question of how far one can expect symplectic packing
obstructions. The link to Donaldson’s symplectic submanifold theorem is fascinat-
ing. Biran makes elegant use of the rich and powerful theory of holomorphic curves
at his disposal, based on essential contributions due to Gromov, Taubes, McDuff
and Donaldson. The article provides valuable insight into a highly modern field
and is very clearly written. In particular, the introduction and the outline of the
proof are perfectly accessible even to the non-expert in this area. It is fascinating
to note how strongly the holomorphic curve method relies on dimension 4, largely
due to positivity of intersections. It is an intriguing problem to find similar results
on symplectic packing obstructions for higher dimensions.

Matthias Schwarz

From MathSciNet, October 2023

MR1797293 (2002a:52020) 52C20; 51M16

Hales, T. C.

The honeycomb conjecture.

Discrete & Computational Geometry. An International Journal of Mathematics
and Computer Science 25 (2001), no. 1, 1–22.

If the Euclidean plane is to be partitioned into cells of equal area, how should the
shapes of the cells be designed to minimize the average perimeter of the cells? Both
the question and the “obvious” answer (each cell should be a regular hexagon, as in
a honeycomb) date back to antiquity, but the precise statement of the problem had
to wait for the development of the notions and language of modern mathematics
(What exactly is a cell? How is a cell’s perimeter measured and what is meant by
the average?). Then it turned out that the answer is not as obvious as it seemed,



176 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

and the question became known as the honeycomb conjecture. Simple to state but
surprisingly difficult to solve, the conjecture remained open for a long time. A
special case of the question, requiring that all cells be congruent, is attributed to
H. Steinhaus by H. T. Croft, K. J. Falconer, and R. K. Guy in Problem C15 of
[Unsolved problems in geometry, Springer, New York, 1991; MR1107516].

L. Fejes Tóth made the first step towards proving the honeycomb conjecture.
He confirmed it in [Math. Naturwiss. Anz. Ungar. Akad. Wiss. 62 (1943), 349–
354; MR0024155] assuming convexity of the cells. While the convexity assumption
seems natural (at first glance it seems that nothing can be gained by designing
nonconvex cells), it forces the cells to be polygonal, excluding from consideration
the potential counterexamples with cells whose boundary might contain circular
arcs, as suggested by the isoperimetric inequality. Fejes Tóth expected that the
honeycomb conjecture should hold true even without the convexity assumption,
but he remarked that “its proof seems to involve considerable difficulties” [Regular
figures, Macmillan, New York, 1964; MR0165423]. Nevertheless, his result was a
significant breakthrough.

More recently, M. N. Bleicher [Studia Sci. Math. Hungar. 22 (1987), no. 1-4, 123–
137; MR0913901] obtained some closely related results, concerning the structure of
the optimal configurations of finitely many cells of prescribed areas, convexity not
assumed. F. Morgan [Pacific J. Math. 165 (1994), no. 2, 347–361; MR1300837]
made further progress in the direction of affirming the honeycomb conjecture. For
a survey of the topic see Morgan’s article [Trans. Amer. Math. Soc. 351 (1999),
no. 5, 1753–1763; MR1615934].

In the paper under review, Thomas C. Hales presents a complete proof of the
honeycomb conjecture. Several versions of the conjecture are proved, corresponding
to various interpretations of the terms involved, and of varied degrees of generality.
Theorem 1-A corresponds precisely to the classical, elementary statement of the
conjecture: Let Γ be a locally finite graph in R2 consisting of smooth curves and
such that R2\Γ has infinitely many bounded connected components, each of unit
area. Let C be the union of these bounded components. Then

lim sup
r→∞

perim(C ∩B(0, r))

area(C ∩B(0, r))
≥ 4

√
12.

Here perim(C ∩B(0, r)) denotes the sum of the lengths of the parts of the edges of
Γ that are contained in the circular disk B(0, r) of radius r, centered at the origin.
The inequality is sharp, since equality is attained by the honeycomb tiling of the
plane with regular hexagons.

A very general form of the conjecture is stated as the Honeycomb Conjecture for
Disconnected Regions (Theorem 1-B). Here the cells are just disjoint measurable
sets with rectifiable boundaries, whose union is contained in a compact set. The
cells need not be of equal areas, they need not be connected, and need not even
form a tiling. A special case of this general form is the Finite Version (Theorem
2), followed by the Honeycomb Conjecture on a Torus (Theorem 3). In the latter
formulation, the cells on a (flat) torus are rather simple, each being connected,
simply connected, and bounded by a finite number of analytic arcs (edges). Yet
this is the version that implies the general result. Theorem 3 includes uniqueness
of the optimal solution: the regular hexagonal honeycomb on the torus. In the
process of reduction to the torus version, Hales follows the approach outlined by
Morgan and he uses Morgan’s partial result for the case in which the number of
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cells is not too large. The solution of the torus version is based on the so-called
Hexagonal Isoperimetric Inequality for Closed Plane Curves, a technical yet very
crucial detail, displaying the author’s impressive analytical skill and ingenuity.

W. Kuperberg

From MathSciNet, October 2023

MR1973059 (2004b:11096) 11H31; 52C17

Cohn, Henry; Elkies, Noam

New upper bounds on sphere packings. I.

Annals of Mathematics. Second Series 157 (2003), no. 2, 689–714.

The sphere packing problem asks for the largest fraction of Rn that can be
covered by congruent balls, which may only intersect along their boundaries. This
problem is solved currently only for dimension ≤ 3. The authors develop linear
programming bounds and apply these to derive the currently best bounds for sphere
packings in dimensions 4 to 36. The authors obtain particularly sharp bounds for
dimension 8 and 24 and conjecture that their techniques can be extended to prove
sharp bounds in these dimensions. The main tool of the article is the following

theorem: Let f̂(t) :=
∫
Rn f(x)e2πi〈x,t〉dx denote the Fourier transform of f : Rn →

R; we assume that there is a constant δ > 0 such that |f(x)| and |f̂(t)| are bounded
from above by a constant factor of (1 + |x|)−n−δ. Suppose, in addition, that f

satisfies (1) f(0) = f̂(0) > 0, (2) f(x) ≤ 0 for |x| ≥ r, and (3) f̂(t) ≥ 0 for all
t. Then the center density of sphere packings in Rn is bounded from above by
(r/2)n.

Matthias Beck

From MathSciNet, October 2023

MR2409678 (2010b:11047) 11F11; 11-02, 11E45, 11F20, 11F25, 11F27, 11F67

Zagier, Don

Elliptic modular forms and their applications.

The 1-2-3 of modular forms, 1–103, Universitext, Springer, Berlin, 2008.

This article is part of a book of lecture notes from a summer school on modular
forms and their applications which covers the classical theory of elliptic modular
forms. At the same time, it gives a first glimpse into a book in preparation on this
topic by the author, in which he plans to treat in much more detail some of the
topics that are covered (or rather introduced) here. The present article is hence not
an introduction from which the reader is supposed to learn the subject from scratch
but rather a guided tour through a gallery of masterpieces from the art of modular
forms, stopping briefly at each of the items on exhibit, explaining its genesis and
calling the viewer’s attention to some of its most striking features. The connoisseur,
being led by an extraordinarily competent guide who is in fact himself one of the
main artists, encounters enlightening new views of objects which had seemed quite
familiar to him before this tour; the novice, who may have come across this tour
accidentally, will probably leave the gallery amazed by the beauty of what he has
seen but perhaps also somewhat bewildered, in any case hopefully with the firm
intention to come back and learn more about what he has seen.
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The article starts in the first two sections with a complete introduction to the
basic function theory of modular forms for the full modular group SL2(Z), treat-
ing as applications the finiteness of the class number of positive-definite integral
binary quadratic forms, divisor sum identities and congruences for the Ramanu-
jan τ -function. We notice here that throughout the article the word “application”
does not refer to something related to improvements in the industrial production of
goods (sometimes also called “real world applications”) but to inner mathematical
applications, in fact mostly (but not exclusively) applications to other problems of
number theory.

Section 3 deals with theta series and their applications to the theory of qua-
dratic forms, the Kac-Wakimoto conjecture and isospectral manifolds (“drums”).
Section 4 sketches Hecke’s theory of Dirichlet series attached to modular forms
and the striking connections of these series to arithmetic geometry. In Section 5,
the action of differential operators on the ring of modular and quasimodular forms
and the differential equations satisfied by these are discussed. Finally, Section 6,
entitled “Singular moduli and complex multiplication”, not only deals with these
themes, but takes us to topics like Borcherds products, Taylor expansions of mod-
ular forms and (as an application) a discussion of the problem of which primes can
be represented as the sum of two cubes.

Rainer Schulze-Pillot

From MathSciNet, October 2023

MR2601036 (2011d:52037) 52C17

Hales, Thomas C.; McLaughlin, Sean

The dodecahedral conjecture.

Journal of the American Mathematical Society 23 (2010), no. 2, 299–344.

A packing of balls of unit radius in E
3 can be identified with the set Λ of the

centers of the balls. For each center v ∈ Λ, let Ω(Λ, v) be its Voronoi cell. It
consists of all points x ∈ E

3 which are at least as close to v as to any other point
w ∈ Λ. Ω(Λ, v) is a convex polytope. The dodecahedral conjecture asserts that in
any packing of unit balls the volume of each Voronoi cell has volume at least that
of a regular dodecahedron of inradius 1. Equality holds precisely in the case when
the Voronoi cell is a regular dodecahedron of inradius 1.

The dodecahedron conjecture goes back to an article of L. Fejes Tóth [Math. Z.
48 (1943), 676–684; MR0009129]. It has resisted a series of attacks by geometers
such as Fejes Tóth, C. A. Rogers and D. J. Muder and finally was solved in 1998.
The present article contains the revised and many times rewritten proof. It is
essentially the same as the original proof. For certain details the reader is referred
to the expanded version of 2002.

The Kepler conjecture asserts that the maximum density of a packing of balls of
unit radius in E

3 is attained by lattice packings with face-centered cubic lattices. Its
solution is due to T. C. Hales with the help of S. P. Ferguson [T. C. Hales, Discrete
Comput. Geom. 36 (2006), no. 1, 5–20; MR2229657; T. C. Hales and S. P. Ferguson,
Discrete Comput. Geom. 36 (2006), no. 1, 21–69; MR2229658; T. C. Hales, Discrete
Comput. Geom. 36 (2006), no. 1, 71–110; MR2229659; Discrete Comput. Geom.
36 (2006), no. 1, 111–166; MR2229660; S. P. Ferguson, Discrete Comput. Geom.
36 (2006), no. 1, 167–204; MR2229661; T. C. Hales, Discrete Comput. Geom. 36
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(2006), no. 1, 205–265; MR2229662]. Neither conjecture follows from the other
one, but the proofs share a series of ideas and methods.

The authors work on a project with the aim of providing a complete formalization
of the proofs of both conjectures. This means that every logical inference of the
proof can and has been checked by a computer.

The present work is a major breakthrough in discrete geometry.
Peter M. Gruber

From MathSciNet, October 2023

MR3012355 52C17; 03B35, 68T15

Hales, Thomas C.

Dense sphere packings. (English)
A blueprint for formal proofs.

London Mathematical Society Lecture Note Series, 400.
Cambridge University Press , Cambridge, 2012, xiv+271 pp., $60.00,
ISBN 978-0-521-61770-3

The Kepler conjecture states that the densest sphere packing of 3-dimensional
space by equal spheres is attained by the FCC (face-centered cubic) lattice packing,
which has density π√

18
. In 2005 and 2006 T. C. Hales, together with S. P. Fergu-

son, published a proof of the Kepler Conjecture [T. C. Hales, Ann. of Math. (2)
162 (2005), no. 3, 1065–1185; MR2179728; Discrete Comput. Geom. 36 (2006),
no. 1, 5–20; MR2229657; T. C. Hales and S. P. Ferguson, Discrete Comput. Geom.
36 (2006), no. 1, 21–69; MR2229658; T. C. Hales, Discrete Comput. Geom. 36
(2006), no. 1, 71–110; MR2229659; Discrete Comput. Geom. 36 (2006), no. 1, 111–
166; MR2229660; S. P. Ferguson, Discrete Comput. Geom. 36 (2006), no. 1, 167–
204; MR2229661; T. C. Hales, Discrete Comput. Geom. 36 (2006), no. 1, 205–265;
MR2229662]. A revision to this proof made in 2010 appears in [T. C. Hales et al.,
Discrete Comput. Geom. 44 (2010), no. 1, 1–34; MR2639816]. All the papers on
this proof, including the revision and supporting work, are collected in the volume
[T. C. Hales and S. P. Ferguson, The Kepler conjecture, Springer, New York, 2011;
MR3075372].

The Kepler conjecture is an asymptotic statement about packing large volumes
of space with spheres. A general approach to the Kepler Conjecture was suggested
in the 1950’s by L. Fejes Tóth [Lagerungen in der Ebene, auf der Kugel und im
Raum, Die Grundlehren der MathematischenWissenschaften in Einzeldarstellungen
mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXV, Springer,
Berlin, 1953; MR0057566] via proving some type of local density inequality around
each sphere center; see [J. C. Lagarias, Discrete Comput. Geom. 27 (2002), no. 2,
165–193; MR1880936] for general background. A local density inequality is a
logically stronger statement than the Kepler Conjecture because it also proves that
certain local densities within a finite region of a fixed size cannot exceed the Kepler
Conjecture density. The proof of Hales and Ferguson proceeds by formulating a
particular local density inequality near each individual sphere in a given packing,
which has the property of implying Kepler’s conjecture, and which could in principle
be verified by a finite computation. The inequality was very complicated, having
features which would simplify the subsequent computer calculations to a point
where they became feasible, and in particular giving a way to list all the possible
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configurations to be checked. The actual proof had many thousands of cases and
intensive computer calculations.

Since 2006 Hales has engaged in a project to produce a formal proof of the Ke-
pler Conjecture, terming the project Flyspeck. A formal proof is a proof written
in a formal logical system, which can itself be verified by computer by a proof as-
sistant that checks the proof logically line by line. Formal proofs are more reliable
than proofs written in mathematics journals; the latter are like computer program
specifications, while a formal proof is analogous to a computer program itself. The
planned formal proof of Kepler’s Conjecture is intended to be checked by computer
using the proof assistant HOL light [J. R. Harrison, in Theorem proving in higher
order logics, 60–66, Lecture Notes in Comput. Sci., 5674, Springer, Berlin, 2009;
MR2550931]. Some statements in the formal proof will be inequalities checked by
computer. Other parts require first formalizing some parts of Euclidean geome-
try going beyond D. Hilbert’s work on foundations of geometry [Grundlagen der
Geometrie, fourteenth edition, Teubner-Arch. Math. Suppl., 6, Teubner, Stuttgart,
1999; MR1732507]. Such a formalization, which includes notions of point set topol-
ogy, is described in work of Harrison [J. Automat. Reason. 50 (2013), no. 2, 173–190;
MR3016800]. When completed such a formal proof will be among the largest formal
proofs, comparable with the formal proof of the Feit-Thompson theorem that all
odd-order finite groups are solvable, undertaken by G. Gonthier [in Interactive the-
orem proving, 2, Lecture Notes in Comput. Sci., 6898, Springer, Heidelberg, 2011;
MR2877865].

The present book reports on part of this project. Its object is to present a
blueprint version of the formal proof: a structure which will be a guide to con-
structing the detailed formal proof organized in a suitable way for conversion to a
formal proof. The book is self-contained and does not require any knowledge of the
previous proofs.

This formal proof aims to establish an entirely new set of local inequalities that
imply Kepler’s conjecture. It will constitute a new second-generation proof of the
Kepler Conjecture logically independent of the previous proof, which proves entirely
new inequalities. The new local inequalities are motivated by work of C. Marchal
[Math. Z. 267 (2011), no. 3-4, 737–765; MR2776056] which we now review. Marchal
associated to a given saturated packing of spheres a partition of space into cells of
four types, plus possibly some unused extra volume. (The cells are closed and
overlap on volume zero sets.) The cells of type 1 are tetrahedra with vertices at 4
different sphere centers. The cells of type 2 are tetrahedra with vertices at 3 sphere
centers plus one extra vertex which is strictly outside any sphere. The cells of
type 3 are (roughly) unions of two truncated half-cones having 2 vertices at sphere
centers. The cells of type 4 are truncated half-cones with a vertex at a sphere center
(and edge length

√
2). The cells of all types having a given sphere center as vertex

contain within them the entire sphere.
The Marchal approach has as a main ingredient a specific choice of weight func-

tion f(h) defined for h ≥ 0 which is compactly supported, which weights nearby
volume. Associated to a sphere center v is the set of all Marchal cells having
v as a vertex. These cells fill out the whole solid angle at v and each one of
them will be assessed for a volume proportional to their solid angle subtended at
v, using the weight function, corrected by their shape. Then to prove Kepler’s
conjecture two types of inequalities are required to be satisfied. The first local
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inequality says that the assessed volume at each sphere center will total up to at
least the amount required by Kepler’s conjecture. It is actually expressed in a neg-
ative form, that a certain amount of “given up” volume is not too large, taking
the form that Lf (V,v) ≤ 12, where Lf (V,v) :=

∑
w∈V�v f((||w − v||)/2). The

second type of local inequality says that for each Marchal cell X the total volume
assessed to it by all the sphere centers at its vertices is at most the total volume
of X. For type 1 and type 2 cells this inequality is expressed as γ(X, f) ≥ 0,
where γ(X, f) := vol(X) − 2m1

π tsol(X) + 8m2

π

∑
e dih(X, e)f(‖e‖), where e is an

edge and ‖e‖ its length. Here tsol(X) is the total solid angle of the sphere center
vertices (up to 4π), while dih(X, e) is the dihedral angle (up to 2π), and f(·) is the
weight function. Marchal proposed a function f(h) = M(h) which is positive up to

h+ = 1.3254 and is zero above h =
√
2, and presented evidence that both types of

inequalities above should hold for this function. This is Marchal’s approach to the
Kepler conjecture, but the details he supplies are not complete.

The new local inequalities of Hales use the Marchal partition of space into cells,
together with a simpler function f(h) = L(h) which is piecewise linear, having
L(h) = 1 for h ≤ 1, L(h) = 0 for h ≥ 1.26 and linearly interpolates between
these values. The important point is its cutoff value 1.26 which is smaller than
the 1.3254 used by Marchal and so reduces the complexity of the later analysis
of counterexample configurations. A price paid for this is that the individual cell
inequalities γ(X,L) ≥ 0 for the function L(h) do not always hold. The bad cases,
treated in section 6.4, concern cells having an edge of length in interval [h−, h+] ≈
[1.23175, 1.3254], which are termed critical edges. Cells with such edges are weighted
and grouped into clusters sharing a common critical edge; the weights for cells with
several critical edges are arranged so that their contributions to different clusters
add up to 1. The replacement for the second inequality γ(X,L) ≥ 0 in this case
is Theorem 6.93, which asserts nonnegativity for a sum of weighted γ(X,L) over
a cluster, after an additional correction term is included. It requires an enormous
computer calculation.

The heart of the new blueprint proof is then a proof of the first local inequal-
ity LL(V,v) =

∑
w∈V \v L((‖w − v‖)/2) ≤ 12. This part of the proof is now a

finite-dimensional nonlinear optimization problem, and Hales now develops and
formalizes ideas used in the earlier proof, to systematize finding and discarding a
large number of cases. It shows that a counterexample local configuration can be
taken to have several extra desirable properties, which he terms being a contraven-
ing configuration. By locating v = 0 and letting W now be the finite set of sphere
centers with ‖w‖ ≤ 2.52, these properties are: one may reduce to the case where
W has cardinality 13, 14 or 15, it is a local maximum of the function LL(W,v),
and the projections w/‖w‖ on the unit sphere, when connected with geodesic arcs
for any two w1,w2 within distance 2.52 forms a planar graph on the surface of the
sphere, with all faces being geodesic polygons having all angles less than π. The
argument then classifies all such planar graphs having some extra structure, which
are termed tame hypermaps. Part of the proof shows that there is a finite list of
such tame hypermaps, and determines them all. To each hypermap is associated
a family of linear programs to obtain upper bounds on LL(W,v). The linear pro-
grams now show for each such configuration that LL(W,v) < 12, i.e. the linear
program is infeasible. This can be certified by a certificate of infeasibility. and
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such bound may be established by suitable linear programs, concocted using many
auxiliary geometric properties of such sphere center configurations W .

The book is divided into three parts. Part I of the book has one chapter, giving
a historical overview of work on the problem in Sections 1.1 to 1.5, finishing in
Section 1.6 with a sketch of the planned blueprint proof.

Part II, Chapters 2 to 5, gives geometric foundations for the proof. Chapter 2
treats trigonometry equalities and inequalities. Chapter 3 treats volumes. Chapter
4 treats the concept of a hypermap, which is a combinatorial structure which re-
places the notion of planar map used in the original proof of the Kepler conjecture.
Chapter 5 introduces a notion of “fan” to describe hypermaps further; this notion
is different from that of “fan” in toric varieties.

Part III, Chapters 6 to 8, then presents a detailed outline of the blueprint of a
new proof of the Kepler conjecture which is planned to be converted to a formal
proof. Chapter 6 details the Marchal cell partition and formulates local inequalities.
Chapter 7 presents main technical estimates for looseness of a packing in terms
of fan parameters, given in Theorem 7.43. Chapter 8 addresses the first local
inequality above. Section 8.6 uses similar ideas to present a new proof of the
Dodecahedral Conjecture, done originally by Hales and S. McLaughlin [J. Amer.
Math. Soc. 23 (2010), no. 2, 299–344; MR2601036], proving a strong form that
characterizes the case of equality.

J. C. Lagarias
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MR3044452 52C17

Venkatesh, Akshay

A note on sphere packings in high dimension.

International Mathematics Research Notices. IMRN (2013), no. 7, 1628–1642.

A theorem of Minkowski and Hlawka says that there is an origin-centered el-
lipsoid E ⊂ Rn of volume 1, containing no nonzero integer vector (i.e., to say:
E ∩ Zn = {0}). Let cn = sup{volume(E)} where E is an origin-centered ellip-
soid and E ∩ Zn = {0}. The first substantial improvement on Minkowski’s work
was given by Rogers (1947) by showing that cn > 0.73n for large enough n. It is
known by work of Ball (1992) that cn ≥ 2(n− 1) always, and due to Vance (2011)
that cn ≥ 2.2n when n is divisible by 4. These results yield the best known lower
bounds on the sphere-packing problem. Minkowski’s result furnishes a periodic
sphere packing of density 2−n. Similarly, Ball’s result yields a sphere packing of
density at least 2(n − 1)2−n in every dimension. The goal here is to improve the
linear bound by a large constant, and also to show that in many dimensions the
asymptotic growth can be improved. The main result states that there exist in-
finitely many dimensions n for which cn > 1

2n log log n. Also, in every sufficiently
large dimension, cn > 65, 963n. The constant 65,963 here could be replaced by any

number less than 2 sinh2(πe)
π2e3 . In the first case, one considers random lattices with

automorphism group containing Z/kZ. The improvement comes from the fact that
the degree of the field extension [Q(μk) : Q] can be as small as k

log log k ; here Q(μk)

denotes the field obtained by adjoining all kth roots of unity to Q. In the second
case, one considers “random orthogonal lattices”. The improvement comes from
the fact that integrality sometimes forces vectors to be longer than they otherwise
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would be. The theorem uses two special properties of the sphere: it is preserved by
a large subgroup of linear automorphisms and its boundary is defined by a poly-
nomial equation. One needs to tweak the free parameter (the discriminant) to get
the most out of it.

Ranjeet Kaur Sehmi
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MR3229046 05B40; 11H31; 52C17

Cohn, Henry; Zhao, Yufei

Sphere packing bounds via spherical codes.

Duke Mathematical Journal 163 (2014), no. 10, 1965–2002.

The sphere packing problem is one of the most important problems in discrete ge-
ometry. Probably the most significant part of this problem is the problem of asymp-
totic behaviour of the maximal packing density ΔRn for spheres in n-dimensional
Euclidean space.

The current best upper bound in all sufficiently high dimensions is due to G. A.
Kabatyanskĭı and V. I. Levenshtein [Problemy Peredači Informacii 14 (1978), no. 1,
3–25; MR0514023]. The proof of this bound consists of two main steps.

(1) Firstly, Kabatyanskĭı and Levenshtein proved the inequality

ΔRn ≤ sinn(θ/2)A(n+ 1, θ),

where A(n, θ) is the greatest size of the spherical code in dimension n with minimum
angle θ.

(2) Further, they used a linear programming method to obtain upper bounds for
A(n, θ).

In the reviewed paper it is proved that in the first step of the described scheme
we have the inequality

ΔRn ≤ sinn(θ/2)A(n, θ)

with supplementary restriction π/3 ≤ θ ≤ π. Note that A(n, θ) ≤ A(n + 1, θ) for
any n ≥ 1. Combining this estimate with known linear programming estimates for
A(n, θ), the authors show that the Kabatyanskĭı-Levenshtein bound for ΔRn can
be improved by a constant factor.

An alternative approach to upper bounds for ΔRn was introduced by H. Cohn
and N. D. Elkies [Ann. of Math. (2) 157 (2003), no. 2, 689–714; MR1973059].
Let f R

n → R be a continuous, positive definite, and integrable function such that

f(x) ≤ 0 for all |x| ≥ 2. Let f̂ be the Fourier transform of f and suppose that

f̂(0) > 0. Then

ΔRn ≤ vol(Bn
1 )

f(0)

f̂(0)
.

Unfortunately, asymptotic behaviour of this estimate is unknown. In the reviewed
paper it is proved that there exists a function f such that the Cohn-Elkies bound
applied to this function gives us exactly the Kabatyanskĭı-Levenshtein bound.

Further, in the reviewed paper the authors consider the hyperbolic version of
the sphere packing problem. Let ΔHn(r) be the optimal packing density for balls
of radius r in n-dimensional hyperbolic space. Then it is proved that for all n ≥ 2,
π/3 ≤ θ ≤ π, and r > 0 we have

ΔHn(r) ≤ sinn−1(θ/2)A(n, θ).
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With linear programming estimates for A(n, θ) that bound allows them to prove
that

sup
r>0

ΔHn(r) ≤ 2−(0.5990···+o(1))n.

This result is a new best upper bound for ΔHn(r).
In the last part of the paper, some problems on the conjectural hyperbolic ana-

logue of the Cohn-Elkies bound are discussed.
Also one of the appendices of the reviewed paper is devoted to numerical com-

putation of known upper bounds for ΔRn . It is important to note that the results
obtained disagree with the well-known book [J. H. Conway and N. J. A. Sloane,
Sphere packings, lattices and groups, third edition, Grundlehren Math. Wiss., 290,
Springer, New York, 1999; MR1662447].

Anton Vladimirovich Shutov
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de Laat, David; Vallentin, Frank

A breakthrough in sphere packing: the search for magic functions.
Includes an interview with Henry Cohn, Abhinav Kumar, Stephen D. Miller and
Maryna Viazovska.

Nieuw Archief voor Wiskunde. Vijfde Serie 17 (2016), no. 3, 184–192.

This paper is not so much about a research result, which has interest in its own
right, but an interview with the researchers and an exposition of certain features of
the research result. Consequently, this paper would be of interest to graduate and
post-doctorate students who are interested in how a new method can be used to
generate further results as well as an understanding of the collaboration process.

The paper starts by reviewing the definition and history of the sphere-packing
problem and the successes in dimensions 1, 2 and 3. The upper bound on sphere
packings of H. L. Cohn and N. D. Elkies [Ann. of Math. (2) 157 (2003), no. 2,
689–714; MR1973059] is also mentioned.

On March 14, 2016, Maryna Viazovska solved the sphere-packing problem in 8
dimensions [Ann. of Math. (2) 185 (2017), no. 3, 991–1015; MR3664816]. One
week later (March 21, 2016), Cohn, Abhinav Kumar, Stephen D. Miller, Danylo
Radchenko and Viazovska generalized the new methods used and solved the sphere-
packing problem in dimension 24 [Ann. of Math. (2) 185 (2017), no. 3, 1017–1033;
MR3664817].

A good mathematical result typically involves methods from several disparate
mathematical subfields which converge to produce something new. In this case, the
sphere-packing problem is solved using the fields of error correcting codes, theta
functions and modular forms. Use of computers for number crunching was also
crucial for the result.

The interview, as mentioned above, sheds light on the collaboration process.
Little things, like the use of Dropbox or showing tablet drawings on Skype, are
mentioned and should prove useful to those starting their careers and interested in
how things happen.

Russell Jay Hendel

From MathSciNet, October 2023
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MR3664816 52C17; 11F03, 11F06, 11H31

Viazovska, Maryna S.

The sphere packing problem in dimension 8.

Annals of Mathematics. Second Series 185 (2017), no. 3, 991–1015.

The author proves in this article that the E8 lattice gives the densest sphere
packing in dimension 8. This long-standing problem was reduced by H. L. Cohn
and N. D. Elkies [Ann. of Math. (2) 157 (2003), no. 2, 689–714; MR1973059] to the
problem of finding a function f on R

8 for which both f and its Fourier transform

f̂ satisfy certain conditions, and for which f(0)
̂f(0)

attains under these conditions the

smallest possible value 16. The author constructs such a function explicitly, using
integral transforms of some carefully chosen quotients of modular forms.

Rainer Schulze-Pillot
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Cohn, Henry; Kumar, Abhinav; Miller, Stephen D.; Radchenko,
Danylo; Viazovska, Maryna

The sphere packing problem in dimension 24.

Annals of Mathematics. Second Series 185 (2017), no. 3, 1017–1033.

This is another breakthrough result in sphere packing. After the recent spec-
tacular solution of the sphere packing problem in dimension 8 by M. S. Viazovska
[Ann. of Math. (2) 185 (2017), no. 3, 991–1015; MR3664816], the paper under
review solves the problem in dimension 24. The authors show that the maximum
sphere packing density in dimension 24 is achieved by the Leech lattice packing
and, up to scaling and isometries, it is the only periodic packing of this density.

The proof follows the eight-dimensional approach of Viazovska. First, based on
the linear programming bound of H. L. Cohn and N. D. Elkies [Ann. of Math.
(2) 157 (2003), no. 2, 689–714; MR1973059], the optimal density of a packing of

spheres in R
n is upper bounded by vol((1/2)Bn)f(0)/f̂(0), where fR

n → R, f �≡ 0,
is a Schwartz function, which is assumed to be non-positive outside the unit ball

Bn, f̂ is its Fourier transform which has to be non-negative everywhere and vol( )
denotes the n-dimensional volume (Lebesgue measure).

Hence, the sphere packing problem can be solved by determining a magic function
f , such that the linear programming bound matches the density of a conjectured
optimal packing. It is not clear at all, however, in which dimensions such an optimal
magic function exists.

In [op. cit.], Viazovska constructed such a magic function in dimension 8 via a
new connection with quasimodular forms. The construction of the optimal function
f in dimension 24 is also based on this connection. More precisely, the magic
function is a linear combination of two Fourier eigenfunctions with eigenvalues ±1,
and both are constructed via weakly holomorphic quasimodular forms.

Martin Henk
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