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STRANGE NEW UNIVERSES: PROOF ASSISTANTS AND

SYNTHETIC FOUNDATIONS

MICHAEL SHULMAN

Abstract. Existing computer programs called proof assistants can verify
the correctness of mathematical proofs but their specialized proof languages
present a barrier to entry for many mathematicians. Large language models
have the potential to lower this barrier, enabling mathematicians to interact
with proof assistants in a more familiar vernacular. Among other advantages,

this may allow mathematicians to explore radically new kinds of mathematics
using an LLM-powered proof assistant to train their intuitions as well as en-
sure their arguments are correct. Existing proof assistants have already played
this role for fields such as homotopy type theory.

“Out of nothing I have created a strange new universe.”
– János Bolyai, one of the inventors of non-Euclidean geometry

1. Introduction

My most upvoted post on the question-and-answer website MathOverflow is an
answer to the question “Why doesn’t mathematics collapse even though humans
quite often make mistakes in their proofs?”. In my answer [Shu20], I wrote:

[The] fundamental content of mathematics is ideas and understanding,
not only proofs. If mathematics were done by computers that mindlessly
searched for theorems and proof but sometimes made mistakes in their
proofs, then I expect that it would collapse. But usually when a human
mathematician proves a theorem, they do it by achieving some new un-
derstanding or idea, and usually that idea is “correct” even if the first
proof given involving it is not.

At the time in 2020, the idea of a computer “mindlessly searching for theorems
and proof, but sometimes making mistakes” seemed fanciful. But in 2023, Large
Language Models (LLMs) such as ChatGPT can do exactly that. Currently, in
fact, their mistakes are quite frequent. These systems will continue to improve, but
at root they are just word-prediction algorithms, which cannot understand ideas or
check a proof step-by-step like a human. (This is what I meant by “mindlessly”.)

Of course, human mathematicians also make mistakes. I don’t know whether an
LLM will one day “check” a proof as reliably as a human. But I also don’t think this
is a very relevant question, because computer programs called proof assistants can
already verify proofs more reliably than either humans or LLMs. Proof assistants
are not yet used widely, mainly because they require a specialized “coding” of proofs
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(see Section 2). But this is likely not a permanent impediment, because LLMs excel
at mediating such human-computer interaction.

Thus, I believe that future mathematics software will combine the ease of in-
teraction of an LLM with the near-absolute trustworthiness of a proof assistant.
Development of such autoformalizers is already under way (see Section 3). This
would answer the original question reassuringly: if formalized proof were as easy
as LATEX, mistakes could be vanishingly rare. But it could also make mathematics
done by a computer just as trustworthy as mathematics done by a human.

So will human mathematicians become unnecessary? Considering the effects
of other technological advances throughout history, I doubt it. Furthermore, as
noted above, mathematics is fundamentally about ideas and understanding—human
understanding, not whatever sort of “understanding” an LLM might have.

However, I do believe LLMs may change what human mathematicians spend
our time doing, perhaps drastically. A present-day mathematician knows the fun-
damentals of arithmetic, but no longer needs to use tables of logarithms. Similarly,
we can imagine that future mathematicians might still know the fundamentals of
logic, but no longer need the same technical facility of proof construction that we
rely on today. Our conceptual understanding need not be impacted; instead the
technology can free us to put more time and effort into understanding. In partic-
ular, just as a present-day mathematician can exploit a computer’s calculational
ability to explore numerical realms undreamed-of decades ago, these imagined fu-
ture mathematicians may exploit a computer’s logical ability to explore conceptual
realms undreamed-of today.

I find this last possibility the most exciting. As evidence that such realms exist, I
offer homotopy type theory and univalent foundations (Section 4). Barely a decade
old, this field proposes a dramatic change to the set-theoretic perspective that
has reigned supreme in mathematics for close to a century. Rather than sets, in
homotopy type theory we build mathematical structures out of a primitive notion
of space, a.k.a. homotopy type, a.k.a. ∞-groupoid. This has some advantages for
existing mathematics, such as automatic isomorphism-invariance, but it also opens
up entirely new kinds of mathematics, such as synthetic homotopy theory (Section
5).

The rules of logic in homotopy type theory are similar to, but subtly different
than, those of traditional mathematics. Thus, it is easy to make mistakes by for-
getting these differences. For this reason (among others), today’s practitioners of
homotopy type theory have relied heavily on current proof assistants, both to verify
proofs and to train intuitions. This is a marked departure from the way proof as-
sistants have so far been used in most other areas of mathematics, where theorems
are generally proven by hand first and only later formalized in a computer.1

I believe that homotopy type theory could not have enjoyed its current level of
success if proof assistants were less capable than they are today. What new kinds
of mathematics, then, may be waiting for us to explore with the proof assistants
of tomorrow? In Section 6, I will discuss one possibility suggested by the current
frontiers of homotopy type theory, namely modal type theories; but I expect this

1Similar uses of proof assistants are also starting to appear in other fields, however, such as
the Liquid Tensor Experiment [Sch21], about which Scholze wrote, “here we have witnessed an
experiment where the proof assistant has actually assisted in understanding the proof.”
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barely scratches the surface.2 As mathematicians are liberated from calculation
and tedium to spend more energy on ideas and understanding, who knows what
strange new universes we will create?

2. The structure of a proof assistant

At the core of a proof assistant is a program called the kernel that checks whether
a proof is correct. The meaning of “correct” is determined by a so-called founda-
tional theory, which here simply means a formal system that is expressive enough
that “all of mathematics” can be encoded into it.3

The best known foundational theory is ZFC/FOL: Zermelo–Fraenkel set theory
(with the axiom of Choice) expressed in first-order logic. Here FOL supplies rules
for constructing and proving things called “propositions” (statements), while ZFC
supplies axioms about things called “sets” that are used in such proofs. The proof
assistant Mizar4 has a kernel using a theory like ZFC/FOL.

Another class of foundational theories is the dependent type theories in the tra-
dition of Martin-Löf [ML75,ML84]. Rather than separate layers of propositions
and sets, these theories have one layer with rules for constructing and inhabiting
things called types. Some types are treated like sets and used to build mathemat-
ical structures, while other types are treated like propositions and used to prove
things. Remarkably, the same rules for types specialize to the basic operations
of both sets and propositions; this is called propositions-as-types or the Curry–
Howard correspondence. For instance, the cartesian product set A × B and the
conjoined proposition “P and Q” are unified by the notion of product type. Many
proof assistants like Coq,5 Agda,6 and Lean7 have kernels built on dependent type
theory.8

In general, the kernel of a proof assistant takes as input a proof written in the
language of the foundational theory, and checks whether it correctly follows the
rules. Such a formalized proof closely resembles a computer program, and a kernel
is analogous to a compiler. However, because the kernel must be trusted implicitly,
the foundational theory is generally as simple as possible, with hardly any bells and
whistles for convenience; thus it is most like a machine code for mathematics. For
example, the representation of “1 + 1 = 2” in foundational dependent type theory
may look like IdN ((λx.λy.recNx (u.v.S v) y) (S 0) (S 0)) (S S 0).

The spartan nature of the foundational theory makes it tedious for a human to
use directly, so proof assistants also incorporate an elaborator. This is like a com-
piler that translates “programs” (here, constructions and proofs) from a “high-level
language” into “machine code” (the foundational theory) that can be “executed”

2I have used several examples from my own work in this paper, primarily because in such cases
I can speak authoritatively not only about the results, but about the processes that led to them
and the experiences of proving them. I do not intend to downplay or minimize the contributions
of others; think of it as a personal story rather than a comprehensive survey.

3This property is formally similar to those of Turing-complete programming languages and
NP-complete problems, so a foundational theory might also be called “mathematics-complete”.

4http://mizar.org/
5http://coq.inria.fr/
6https://wiki.portal.chalmers.se/agda/pmwiki.php
7https://leanprover.github.io/
8Other foundational theories include Lawvere’s ETCS/FOL [Law05] (not used by any proof

assistant that I know of) and the simple type theories (higher-order logics) used by proof assistants
such as HOL (https://hol-theorem-prover.org/) and Isabelle (https://isabelle.in.tum.de/).
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(verified by the kernel). The high-level language of a proof assistant is called its ver-
nacular ; it implements features with names like “implicit coercions”, “higher-order
unification”, “namespaces”, “mixfix notations”, and so on, which allow vernacular
proofs to look more like pencil-and-paper mathematics. For instance, in a vernac-
ular we can write the above expression as 1 + 1 = 2.

In principle, the vernacular could be any sufficiently expressive formal system.
However, decades of experience have led most designers of proof assistants to con-
clude that type theories make better vernaculars than set theories do; a nice ex-
planation was given by Bauer [Bau20]. (This is one reason that most newer proof
assistants take the foundational theory to be a type theory as well.)

The vernacular improves on the foundational theory, but today’s vernaculars still
require more details than a mathematician would ordinarily write on paper. Thus,
formalizing mathematics in a proof assistant is still a more substantial undertaking
than writing it for human readers. However, in certain restricted domains, modern
vernaculars incorporate automation,9 which can generate a proof by applying de-
cision algorithms or searching a library for applicable lemmas. For example, many
proof assistants can automatically prove identities that hold in any commutative
ring, such as (3x2 − 2yz)(xy + 4z) = y(3x3 − 8z2) − 2xz(y2 − 6x). Formal proofs
using automation can be even more concise than those written on paper.

The flip side is that such “proofs by automation” often convey little understand-
ing of why the statement is true. Sometimes this is no loss: e.g., most mathe-
maticians could prove a commutative ring identity themselves, so automating it
just saves effort. But other times an automated proof can feel like “magic” and
leave a human reader feeling unsatisfied, and this is likely to become more common
as automation becomes more powerful. And, truth be told, even less-automated
vernacular proofs are more difficult for a human to understand than traditional
proofs in a human language. Thus, published mathematics using a proof assistant
often has a dual existence: a traditional paper for humans to read and a parallel
computer-verified formalization.

Reading such mathematics is a slightly different experience from reading un-
formalized mathematics. On one hand, the “human-readable” proofs still often
contain fewer details than otherwise, on the theory that these were mainly for
convincing the reader of the correctness of the proof, which is now unnecessary.
The authors thus tend to concentrate on those parts of the proofs that they view as
central to understanding, expecting the reader to trust the proof assistant regarding
the more tedious or calculational parts. On the other hand, while a human reader no
longer needs to check every proof, there is now a different obligation: someone must
check that the formalization actually formalizes what the author claims. In addition
to executing the proof assistant on the author’s code, this requires checking that
the statements being proved in the vernacular match those written in the paper,
and that the formalized proofs do not use any hidden assumptions or axioms. (As
a referee of formalized papers, I have encountered errors of both sorts.)

9Sometimes automation is considered instead part of the meta-language or tactic language, a
third layer distinguished from the vernacular.
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3. Autoformalization and auto-informalization

Using the terminology just introduced, the suggested integration of LLMs with
proof assistants would bring the “vernacular” closer to ordinary mathematical writ-
ing, perhaps eventually eliminating the parallel existence of paper and formalized
mathematics. Such a vernacular would be less precisely specified than those of to-
day; in a sense, it would consist entirely of “automation”, with the LLM translating
a human-readable proof directly into the foundational theory. Put differently, the
LLM would function as a more powerful and flexible elaborator, which does not
require its input to be so rigidly specified. This is known as autoformalization, and
is already being developed [JSS+22,AGG+22,JWZ+23].

In an integrated autoformalization system, the unaltered trustworthiness of the
kernel would mean that any “hallucinations” of the LLM would not affect the cor-
rectness of the proof. One would still need to ensure that the formalized “theorem”
matches the claim, which might still require a more precisely specified vernacular
alongside the LLM. But this small amount of extra work could easily be offset by
the benefits of autoformalization, along with other improved kinds of automation.

So much for correctness; what about the more “fundamental content” of ideas
and understanding? An autoformalizing proof assistant would reduce one way in
which formalized mathematics challenges understanding: the vernacular “code”
could be directly understood by a human mathematician. But we can also expect
advances in automated proof generation, which also challenges understanding: how
can a human read and understand a proof that was generated by a computer directly
in the foundational theory without any vernacular version at all? For this reason
I believe we will also see a rise of auto-informalization: LLM-powered software for
translating back from proofs in the foundational theory to human-readable ones.
The degree of detail could even be customized to the reader: students may require
all details spelled out, while experts may prefer a concise summary.

In summary, I believe humans will always remain in charge of mathematics,
with a focus on ideas and understanding, not just proofs and correctness. But in
addition to making today’s mathematics easier, faster, and more reliable, I believe
the enhanced proof assistants of the future may enable us to achieve new results
and understandings that would previously have been prohibitively difficult.

One possibility in this regard is quantitatively different mathematics. Some
proofs are just too long, with too many cases or ideas, for any human mathe-
matician to completely understand, but a proof assistant can still guarantee their
correctness. For instance, the Appel–Haken proof of the four color theorem, which
involves hundreds of cases generated and checked by a computer, has now been for-
malized in a proof assistant [Gon08], ensuring that the case-checking software has
no bugs that imperil the proof. Likewise, Hales’s proof of the Kepler conjecture was
so long and complicated that the human referees assigned to it gave up after several
years of work, but it has now been verified in a proof assistant [HAB+17]. However,
the limitations of today’s proof assistants mean that so far, all such projects have
required many years of work by large teams. I believe that with the proof assistants
of the future, we can expect such proofs to become more commonplace, and within
the reach of solitary mathematicians.

A different possibility, which I will spend the rest of the paper discussing, is the
accessibility of qualitatively different mathematics.
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4. Homotopy type theory and univalent foundations

I said previously that a foundational theory must be sufficiently expressive that
“all of mathematics” can be encoded into it. The quotation marks are necessary,
however, because mathematics is continually growing, and its interaction with foun-
dations is a two-way street. A foundational theory must, by definition, be able to
encode the mathematics extant when it is formulated; but it may then suggest new
principles and techniques, changing the face of future mathematics. This was true
historically for ZFC/FOL, and may likewise be the case for more recent theories.

Of these, a particularly interesting one is homotopy type theory and univalent
foundations (HoTT/UF).10 This refers to a new class of dependent type theories,
based on insights of Awodey and Warren, Voevodsky, and others in the late 2000s. I
mentioned in Section 2 that dependent type theories give rules for constructing and
inhabiting types, and that traditionally some types are treated like propositions
while others are treated like sets. In HoTT/UF, these two classes of types are
the bottom two rungs on an infinite ladder, called respectively (−1)-types and 0-
types.11 There are then also 1-types, 2-types, and so on, while arbitrary types may
not have any finite dimension.

This stratification arises from the behavior of equality. In ZFC/FOL, if x and
y are sets, then x = y is a proposition. In dependent type theory, since both
propositions and sets are types, we say more generally that if x and y are elements
of any type A, then x = y is also a type. The rules governing this type incarnate
the Leibnizian principle of “indiscernibility of identicals”. If A is a 0-type (set-like),
we expect x = y to be a (−1)-type (proposition-like); formally, this means it has
at most one element. More generally, we define A to be an (n+ 1)-type if for any
x and y in A, the type x = y is an n-type.

An example of a 1-type in HoTT/UF is the type of groups.12 If G and G′ are
two elements of this type, i.e., two groups, then G = G′ is a 0-type (set-like), whose
elements turn out to be the group isomorphisms from G to G′. More precisely, a
group is a tuple (G0,m, e, i, α, λ, ρ, ι) where G0 is a 0-type, m : G0 × G0 → G0 is
a multiplication, e is an identity, i : G0 → G0 is the inversion, and α, λ, ρ, ι are
witnesses of the group axioms (i.e., elements of the corresponding proposition-like
types). The compositional nature of equality means that an element of the equality
type (G0,m, e, i, α, λ, ρ, ι) = (G′

0,m
′, e′, i′, α′, λ′, ρ′, ι′) consists of componentwise

equalities G0 = G′
0, m = m′, e = e′, and so on.

Now, a central principle of HoTT/UF, known as Voevodsky’s univalence axiom,
says that the elements of G0 = G′

0 are bijections between the 0-types G0 and
G′

0. Then since m and m′ don’t belong to the same type (G0 × G0 → G0 versus
G′

0 × G′
0 → G′

0), an equality m = m′ must actually be a “dependent equality”
parametrized by the specified bijection betweenG0 andG′

0, and this turns out to say
precisely that this bijection preserves the group multiplication. Likewise, the other
equalities say that the bijection preserves identity elements and inverses (automatic

10While the slash in “ZFC/FOL” connects a theory to its logical substrate, the slash in
“HoTT/UF” connects two phrases with closely related but nonidentical meanings. But the dif-
ference between HoTT and UF is not uniformly agreed-upon, and irrelevant for the present.

11Technically, there is an even lower rung at −2, but it contains only the one-point type.
12More precisely, the type of groups with cardinality smaller than some fixed bound. Due to

Russellian paradoxes there is no type of literally all groups.



STRANGE NEW UNIVERSES 263

in the case of groups) as well as the axioms (always automatic, because they are
elements of (−1)-types). Thus, equalities of groups are group isomorphisms.

In ZFC/FOL, groups and group isomorphisms form a groupoid, meaning that
isomorphisms can be composed and inverted. Equality types automatically have
analogous structure, so 1-types are a different way to represent groupoids. More
generally, n-types behave like “n-groupoids”, and arbitrary types behave like “∞-
groupoids”. For example, the type of categories is a 2-type. If C and D are cate-
gories, then C = D is the type of equivalences of categories from C to D, which is a
1-type: its equality types consist of natural isomorphisms.

Prior to HoTT/UF, type theorists tended to assume that all types are set-like.
But this is not provable from the rules of equality in type theory, so it was taken
as an extra axiom. The original insight of HoTT/UF, therefore, is that the philo-
sophically founded Leibnizian concept of equality naturally leads to higher types,
if we simply refrain from closing off that possibility by fiat.

Since most of present-day mathematics deals with structures built from sets,
its formalization in HoTT/UF primarily uses 0-types and (−1)-types. But higher
types do sometimes appear, particularly when notions from category theory are
present implicitly or explicitly. When this occurs, its practical upshot is to ensure
isomorphism-invariance. For instance, because G = G′ is the 0-type of group
isomorphisms from G to G′, the principle of “substitution of equals for equals”
implies that if G and G′ are isomorphic, any true statement about G is also true
about G′. In this way, HoTT/UF directly enforces isomorphism-invariance, and
also equivalence-invariance for categories and higher structures.

Thus, although all of present-day mathematics can be coded into both ZFC/FOL
and HoTT/UF, the two encodings are rather different. For instance, in ZFC/FOL
we define a groupoid as a collection of sets equipped with algebraic structure,
whereas in HoTT/UF we represent these same data by a single primitive object
(a 1-type). Likewise, some statements that require tedious proofs when coded in
ZFC/FOL, such as transport or invariance along isomorphisms, are automatic in
HoTT/UF. In this way, HoTT/UF is closer to informal mathematics than ZFC/FOL
is, since isomorphism-invariance is commonly used implicitly without proof.

On the other hand, due to the influence of ZFC/FOL, present-day informal
mathematics calls all collections “sets”, and treats all equalities as propositions.
Thus, when encoding it into HoTT/UF, we have to decide whether each use of
“set” should be “0-type” or “n-type” for some n > 0 (including ∞); and in the
latter case the translation can be highly nontrivial.

Of course, just because most mathematicians today assume that all collections
are sets and all equalities are propositions doesn’t mean that that need always be the
case. Indeed, the book Homotopy Type Theory—Univalent Foundations of Math-
ematics [Uni13] proposed an informal style of mathematics closer to HoTT/UF,
which is now common in the HoTT/UF community. We might call this univalent
mathematics, in contrast to traditional set-based mathematics. Thus, HoTT/UF
could serve as a foundation for mathematics in exactly the same way as ZFC/FOL,
with an informal mathematical vernacular that could be—but may or may not ever
actually be—completely translated into the formal theory.

However, at present a much larger proportion of univalent mathematics is for-
malized in a proof assistant than is usual in set-based mathematics. One reason is
that the HoTT/UF community has a large overlap with computer science and proof
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formalization.13 But in addition, mathematics involving n-types for n > 0 is harder
to get right than set-level mathematics (regardless of whether the latter is done in
HoTT/UF or in ZFC/FOL), so there is more value in computer formalizations.

Why is this? One reason is that most modern mathematicians were originally
trained in set-based mathematics. But it must also be admitted that the behavior
of n-types for n > 0 is intrinsically further from our everyday experience: when
speaking of trees, horses, or taxicabs, equality really is just a proposition. Accord-
ingly, it is easy to make mistakes by assuming, wrongly, that univalent equality
behaves like set-theoretic equality, without even noticing the assumption.

As an example, suppose f : X → X is a function that is idempotent, i.e.,
f(f(x)) = f(x) for all x ∈ X. In set-based mathematics, we can split f , meaning
to write f = s◦r for two functions r : X → Y and s : Y → X such that r(s(y)) = y
for all y ∈ Y . Namely, we define Y = { x ∈ X | f(x) = x }, with s(y) = y and
r(x) = f(x). But in univalent mathematics, f(x) = x can contain data that is
forgotten by this s, so that r(s(y)) = y no longer holds. And indeed, not every
idempotent function in univalent mathematics can be split; we require an extra
“coherence” condition on the equality datum f(f(x)) = f(x).

One way to develop intuition for HoTT/UF is by translating its concepts into
those of ZFC/FOL. Indeed, Voevodsky [KL21] constructed a model of HoTT/UF in
ZFC/FOL, in which the types of the former are interpreted by the ∞-groupoids of
the latter, and in [Shu19] I generalized this to all∞-toposes in the sense of [Lur09].14

Thus∞-toposes in ZFC/FOL can teach us something of how the types in HoTT/UF
behave, and sometimes even yield directly translatable proofs. For example, the
(possibly surprising) fact that one extra coherence condition is necessary and suffi-
cient to split an idempotent was first shown for∞-toposes by Lurie [Lur14]. When I
was later asked the analogous question in HoTT/UF, I went immediately to Lurie’s
work and came away not only with the theorem that I should expect to hold, but
a proof idea that I was able to use with only small changes [Shu16].

However, this approach has limitations. One is that these models use fairly
intricate homotopy-theoretic machinery, requiring significantly more background
to understand. Another is that they are not “complete”: there are statements true
in every ∞-topos but not provable in HoTT/UF.15 More importantly, even if such
a statement is provable in HoTT/UF, as often as not the ∞-topos proof does not
translate and a new proof must be found. For instance, the Blakers–Massey theorem
in HoTT/UF [FFLL16] was unable to follow any classical proof for ∞-toposes.

Thus, a more accessible and effective way to construct trustworthy proofs in
HoTT/UF is to use a proof assistant. Indeed, in the HoTT/UF community it is

13There are many possible reasons for this. For instance, since HoTT/UF uses dependent type
theory, it is in some ways easier to learn for computer scientists, who tend to already be familiar
with other type theories, than for mathematicians, who tend to be more set-theoretically trained.
Computer scientists are also more open to the invention of new programming languages, whereas
mathematicians tend to think of the “foundations” of mathematics as fixed and unchanging. And,
of course, there is feedback from the other reason mentioned in the text: the additional benefits of
computer formalization for HoTT/UF mean that it tends to attract mathematicians with a prior
interest in formalization, and also that homotopy type theorists tend to learn some computer
formalization even if they had no prior experience with it.

14Conversely, [Uni13, Chapter 10] constructs a model of ZFC/FOL inside HoTT/UF. Thus
the two theories are, at least formally, equally adequate as foundations for mathematics.

15One can circumvent this by generalizing from Grothendieck and Lurie ∞-toposes to a kind
of “elementary” ones, but then the statement becomes so tautological as to be unhelpful.
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not uncommon to develop new mathematics with a proof assistant, rather than
merely formalizing a proof already written on paper. The proof assistant provides
immediate feedback about the correctness of each step and the current status of
the proof, validating or rejecting the mathematician’s understanding, helping to
develop his or her intuition, and ensuring correctness dynamically. Afterwards, the
formal proof can potentially be “informalized” into a more human-readable one;
much of the informal mathematics in [Uni13] already arose from this process.

With current proof assistants, such an approach is currently unpalatable in most
fields of mathematics. But the tradeoffs are different when working with higher
types in HoTT/UF: partly because the benefits are greater, as described above;
and partly because this sort of mathematics (which I will discuss further in Section
5) is currently still fairly close to the foundations, making the additional burden of
formalization relatively small. As the technology of proof assistants becomes more
accessible, I believe this way of doing mathematics will likewise become more com-
mon. This, in turn, may significantly lower the barrier to entry for mathematicians
to work in novel foundational theories such as HoTT/UF.

5. Synthetic homotopy theory

Given the additional difficulty of doing mathematics in HoTT/UF, it is natural
to wonder why we would bother at all. One reason, mentioned previously, is auto-
matic isomorphism-invariance. But a more interesting reason is that there is new
mathematics we can do in HoTT/UF that is essentially impossible in ZFC/FOL.

Recall that the types of HoTT/UF act like ∞-groupoids in ZFC/FOL. Classi-
cally, ∞-groupoids are often the “homotopy types” of topological spaces, remem-
bering the points, paths, deformations, and higher deformations, but not the strict
topology. The coincidence of the word “type” is fortuitous, since many such homo-
topy types in ZFC/FOL have corresponding types in HoTT/UF.

For instance, HoTT/UF has a type called S1 that behaves like the homotopy
type of a circle: it has a basepoint b and a nontrivial “loop” l in the type b = b,
representing the “path” or “isomorphism” that goes around the circle once. There
is also a univalent “fundamental group” π1, which measures the number of ways
we can “wind around” the equalities in a type. And we can prove, as in classical
homotopy theory, that π1(S

1) ∼= Z: a path drawn on a circle is characterized, up
to deformation, by an integral winding number.

However, the proof of this fact in HoTT/UF is different than the classical one,
though related: both use a universal cover of S1, but the univalent proof defines this
cover using the “induction principle” of S1 as a “higher inductive type”, plus the
univalence axiom. These words are explained in [Uni13] and elsewhere; here I only
want to note that while the statement is similar to one from set-based mathematics,
it is in fact a different statement about a different object and has a different proof.
My first proof of the HoTT/UF result [Shu11] (which was developed using a proof
assistant and only afterwards “informalized”) emphasized its similarities to the
classical one. But a deeper analysis by Licata [LS13] uncovered an underlying
general method, now called “encode-decode”, that has no real classical counterpart.
In particular, when this proof is interpreted in Voevodsky’s model, it yields a proof
about ∞-groupoids in ZFC/FOL; but it is a new proof, albeit of an old theorem.
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Since the analogous set-based result belongs to homotopy theory, this sort of
proof in HoTT/UF is known as synthetic homotopy theory, in contrast to classi-
cal analytic homotopy theory in the same way that Euclid’s synthetic geometry
contrasts with the analytic notion of coordinatized geometry. Despite its similar-
ities and debt to classical homotopy theory, synthetic homotopy theory is a new
branch of mathematics, which is essentially invisible to ZFC/FOL: the statement
that “the fundamental group of the higher inductive type S1 is Z” doesn’t even
mean anything in ZFC/FOL, since it has no higher types.16

I find this idea quite exciting for a number of reasons. One is that, just as Euclid’s
geometry admits “nonstandard” models, a proof in synthetic homotopy theory can
automatically be translated, not only to a proof about ∞-groupoids, but to a proof
about objects of any ∞-topos. These models may seem bizarre at first; but, like
the “strange new universes” of non-Euclidean geometry, we soon discover that they
have their own beauty and a wide range of applications. Concepts from higher
category theory and homotopy theory are increasingly appearing in many areas
of mathematics, and often this can be described as working inside a particular ∞-
topos specific to that area, such as sheaves on a space or a site. Synthetic homotopy
theory provides a way to prove theorems in such ∞-toposes using language that
is no more complicated than that of spaces in ordinary homotopy theory. From
this perspective, HoTT/UF can be thought of as a “domain-specific language” that
we can use for reasoning about ∞-toposes even if we choose ZFC/FOL as “the”
foundation of mathematics.17 I believe that one day, this sort of foundational
transfer will also be incorporated into proof assistants.

Another reason I find synthetic homotopy theory exciting is that, compared with
classical homotopy theory, it is very close to the foundations of mathematics, and
yet it includes the deepest problems of homotopy theory. By the former I mean
that after setting up the foundational theory of HoTT/UF, it only takes a few lines
to define spheres Sn and homotopy groups πk. For instance, the circle S

1 is simply
defined as the type freely generated by the basepoint b and the loop l. By contrast,
to define the analogous objects in ZFC/FOL requires first defining real numbers
and proving many of their properties in order to construct spheres and homotopies.
(Of course, ZFC/FOL has different objects that are close to its foundations, such
as the von Neumann ordinals ∅, {∅}, {∅, {∅}}, . . . .)

However, despite the simplicity of spheres and homotopy groups in HoTT/UF,
they immediately give rise to a fascinating sequence of invariants: the groups
πk(S

n), which are called the higher homotopy groups of spheres. These groups
have been studied for decades in classical homotopy theory, and remain a vibrant
research problem with no end in sight. (Contrary to one’s first guess, they can be
nontrivial even when k > n, such as π3(S

2) ∼= Z and π4(S
3) ∼= Z/2Z.) The appear-

ance of these numerical invariants so close to the foundations of HoTT/UF suggests
that like HoTT/UF, these invariants arise unavoidably from the Leibnizian concept
of equality.

16Of course, one can define the formal system of HoTT/UF inside ZFC/FOL and then prove
meta-statements in the latter about what can be proven by the former, but this is a transparent
dodge. For all intents and purposes, synthetic homotopy theory is unique to HoTT/UF.

17And conversely, if we choose HoTT/UF as “the” foundation of mathematics, we can regard
ZFC/FOL as a DSL for reasoning about well-founded hierarchies.
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6. Synthetic and modal mathematics

As intriguing as this is, it only scratches the surface of the possibilities of syn-
thetic mathematics. For if the primitive objects of mathematics can behave like
either sets or ∞-groupoids, it stands to reason they can behave like many other
things as well. And indeed, fields such as synthetic topology, synthetic differential
geometry, synthetic domain theory, and so on, promise foundations for mathematics
in which other “structures” are automatically present on all the primitive objects.

For example, in synthetic topology, the primitive objects are a sort of “topolog-
ical space”, all constructed objects automatically have an appropriate “topology”,
and all functions are “continuous”. I put these words in quotes because the rela-
tionship of the synthetic concepts to their namesakes in ZFC/FOL is, again, one
of analogy and interpretation. Rather than continuity being a defined property
of a function, in synthetic topology we don’t even need to talk about continu-
ity because the theory prevents us from defining anything that isn’t continuous.
Like isomorphism-invariance in HoTT/UF, this is arguably a better fit for informal
mathematics, where objects usually inherit topologies in a canonical way from their
constructions, and most naturally defined functions are continuous, but we don’t
usually bother to check continuity formally. For example, “completions” of alge-
braic structures such as groups and rings must often be considered not as discrete
structures but as topological ones; if we work in synthetic topology, such completion
topologies appear automatically without requiring any extra work to construct, and
cannot be accidentally forgotten. And also analogously to HoTT/UF (the “syn-
thetic theory of ∞-groupoids”), synthetic topology has models using topological
spaces in ZFC/FOL, so that synthetic proofs automatically yield “analytic” ones.

On the other hand, sometimes we do want to discuss discontinuous functions. We
make this possible in synthetic topology with a modality : for every “space” A there
is another space �A that represents “A retopologized discretely”. A “discontinuous
function A → B” is then defined as a (continuous) function �A → B.

There are many other kinds of synthetic mathematics, each with their own
modalities. Synthetic topology also admits a modality �, which retopologizes a
space indiscretely, and

�
, which computes the homotopy type of a space. The lat-

ter connects topological spaces with their homotopy types; in [Shu18] I used it to
prove a version of Brouwer’s fixed-point theorem, which uses homotopy-theoretic
machinery to construrct a strict fixed point.

Synthetic differential geometry admits these same modalities and also a triple
�, 	, and & that manipulate the “infinitesimal directions” of a smooth space.
Synthetic guarded domain theory admits modalities � for a recursive function call
that “happens later” and � for something “at all times”. And in synthetic category
theory the primitive objects behave like ∞-categories, with modalities for opposite
categories and maximal subgroupoids. Each of these theories has models in certain
(∞-)toposes in ZFC/FOL, but goes beyond these models to establish a new kind of
mathematics. And the possibilities for other such theories are endless by applying
recent work on general modal type theories [GKNB21,GCK+22,Shu23].

However, reasoning informally in modal type theories is difficult, because their
rules tend to modify the context in novel ways. Here the context refers to the
assumptions and variables that are available at some point during a definition or
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proof. For instance, if we prove the infinitude of primes by assuming for contradic-
tion that there are only finitely many p1, . . . , pn, then the variables n and p1, . . . , pn
are placed into the context, along with the assumption that each pi is prime.

Ordinarily, we expect that once a variable or assumption is placed in the context,
it remains usable for the rest of the proof (or case or sub-proof). But modal type
theories break this expectation. For example, if defining a function f : A → �B,
we might start by writing f(x) = . . . , with x an element of A now in the context
of the right-hand side of the equality. But since A is not a � type, the rule for
constructing elements of �B then removes this variable from the context, so that
we cannot actually use it in defining the value of f(x). Thus, absent any other
information, the only functions f : A → �B we can define are constant ones (which
makes sense topologically if �B is discrete, since as far as we know A might be
connected).

This is tricky even with one modality, and the problem grows nonlinearly as more
modalities are added with rules governing their interactions. In [Shu18] I wrote
informal mathematics in synthetic topology with �, �, and

�
, but this was already

difficult, even though I used a theory in which only � and � modify the context.
Fortunately, proof assistants are already designed to manage contexts interactively:
at each step the proof assistant displays all the variables and assumptions in the
context. Thus, proof assistants for general modal type theories (currently under
development [SGB22]) should make these theories more practically usable.

Of course, with present-day technology, such proof assistants will also reach a
limited audience due to their inherent difficulty. But when enhanced with auto-
formalization, they have the potential to make synthetic mathematics more widely
accessible, opening a gateway to many entirely new kinds of mathematics.

7. Conclusion

So how will machines change mathematics? Just as they always have, only more
so: by amplifying the ability of human mathematicians to peer into the unknown.
Not only by allowing lone mathematicians to create immense proofs that previously
not even large teams could handle, but by making ever more complicated realms of
mathematics practical to create and explore.

I have discussed homotopy type theory and modal type theories in this connec-
tion because they are an area of current research that I am familiar with, and in
which it seems clear that advances in proof assistant technology have the poten-
tial to make a complicated system much more tractable. However, I suspect that
they are only a fraction of the “strange new universes” waiting to be created, with
powerful and flexible proof assistants to help us explore them.
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