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SOME THOUGHTS ON AUTOMATION

AND MATHEMATICAL RESEARCH

AKSHAY VENKATESH

Abstract. I discuss how mathematicians come to a shared notion of what is
important, and how automated reasoning might affect that process.

The deeper one digs the spade, the harder the digging gets; maybe it has

become too hard for us unless we are given some outside help, be it even

by such devilish devices as high-speed computing machines. (Weyl, [6])

1. Introduction

In 2017, DeepMind’s Alphazero taught itself chess and Go “overnight,” surpass-
ing human performance and apparently reconstructing a good part of accumulated
knowledge about chess openings. We will consider a thought experiment:

What if, in ten years, “Alephzero” (written ℵ(0)) does the same for
mathematics?

“Mathematics” for the purpose of this essay means “research in pure mathe-
matics.” Our starting point is to imagine that ℵ(0) teaches itself high school and
college mathematics and works its way through all of the exercises in the Springer-
Verlag Graduate Texts in Mathematics series. The next morning, it is let loose
upon the world—mathematicians download its children and run them with our
own computing resources. What happens next—say, in the subsequent decade?

This is indeed a thought experiment, for it is clearly unrealistic: By restricting
our horizon to ten or twenty years in the future, we allow ourselves to consider the
question in isolation from the social changes that would likely accompany this kind
of technological advance, and also allow ourselves to avoid thinking about more
extreme types of machine intelligence—we model ℵ(0) as a power tool and not as
a sentient collaborator. Nonetheless, I have found the exercise to be clarifying.

We may comfort ourselves with the thought that, in reality, the premise is so far
in the future that we need not think about it. But if we allow even a remote possi-
bility that this might happen in twenty years—the timescale between commencing
an undergraduate degree and obtaining tenure—it certainly merits us grappling
with the possibilities. I suggest that:
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• Human mathematics may go on as before in many respects, just as many
other professions have adapted to automation. Indeed, the resulting math-
ematics will be inestimably more powerful than ours, in the sense that its
ability to solve any specific question will be vastly greater.

• However, the resulting field will be greatly altered; its central questions
and values will be very different from those to which we are accustomed,
rendering it all but unrecognizable to us.

The main point I want to make here is that the mechanization of our cognitive
processes will enhance our ability to do mathematics but also will alter our un-
derstanding of what mathematics is. We cannot meaningfully assess the first point
without taking into account the second. To look at it seriously we must examine, at
a minimum, the effect of automation on those processes by which our field decides
which questions are interesting and fruitful; as practitioners we rarely stop to think
about these, but, even setting aside our current purpose, there are many reasons
not to leave the examination of such matters entirely to historians and sociologists
of science.

In the remainder of the essay, I will discuss how value and consensus is con-
structed and maintained in current research mathematics, and then consider how
ℵ(0) will affect some of these processes.

2. Preliminary observations

We should begin by observing that human mathematical research is in no danger
of being killed. There is a very large gap between the ease of asking a question and
the difficulty of answering it; and for a meaningful notion of human research it is
sufficient that we understand the questions but cannot solve them readily.

It is tempting to wonder about the specifics of ℵ(0)’s capabilities. Will it be able
to visualize higher dimensions? Will it produce proofs that are displeasing, or even
oracular insight without proofs? Will it surpass us at all mathematical reasoning
tasks (a scenario that we should certainly not dismiss)? Indeed, it is very hard to
imagine the exact structure of post-ℵ(0) mathematics without some understanding
of such issues. But we can still hope to obtain insight without such details simply
by thinking of extreme versions of commonplace phenomena. For example, many
consequences of the development of ℵ(0) will resemble the consequences of a very
large increase in the number of working mathematicians. The experience of ℵ(0)
producing alien insight without proof would also not be wholly foreign to us, for
our colleagues in physics departments have done this for a long time, and with less
electricity consumed.

It is similarly irrelevant to our current purpose to know whether ℵ(0) can enter
mathematical realms that are essentially beyond our comprehension. We will regard
this as the proverbial tree falling in an unpopulated forest, i.e., we are interested
only in the effect on humans.

3. Value and consensus in mathematics

What follows is, evidently, a crude analysis of one part of a very complicated
system. However, the specifics do not matter so much; the key take-away for our
purposes will be that how we value mathematics is an active process inextricably
woven in with the actual doing of mathematics.
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There are infinitely many mathematical problems, and a finite number of mathe-
maticians. Very few mathematicians substantively interact with a typical problem,
and conversely a single mathematician can be aware of only a small part of the
mathematical landscape. By what mechanism, then, does it happen that there is a
substantial measure of consensus on what the important problems are, at least at a
given time, and even stronger consensus on who is doing important work? I don’t
mean to suggest, of course, that we mathematicians have anything near unanimity
on such issues. However, my impression is that we have much more of it than other
academic fields.

The valuation mechanism is fundamentally important because it constrains with
an iron, if invisible, hand, the mathematics we can feasibly do. It is responsible
for selecting what we are exposed to in talks, seminars, and papers, and for in-
centivizing some questions over others. In a sense, it defines what mathematics
is at any given time. So it is crucial to carefully examine how this value struc-
ture evolves. The points I am about to make are very simple ones, instinctively
grasped by mathematicians in our working lives, but they are not often enunciated
explicitly.

There are some obvious (overlapping) mechanisms that influence the construc-
tion of value:

(a) External validation (for example, the influence of applied fields such as
cryptography or fluid mechanics);

(b) Processes that direct our attention (e.g., seminars, conferences, journals,
prizes, influence of individual charisma, social media);

(c) Infrastructure (e.g., the organization of the educational system, the hiring
process, and the grant process);

(d) Aesthetic considerations.

We shall assume these mechanisms will evolve slowly in relationship to the tran-
sition we want to study, and so we will not discuss them. This is clearly not entirely
realistic and point (b) is particularly important, both because it has evolved very
rapidly in recent times (e.g., through the creation of giant online seminars), and
because it mediates the processes discussed below.

In any case, (a)–(d) miss a crucial part of the picture because they are not specific
to mathematics, and I think they do not adequately explain why mathematics
should have a higher level of consensus than other academic fields. There is one
feature of mathematics that stands out: it has distinguished a specific class of
scholarly communication (proofs) which are defined by the fact that they should
induce uniform agreement about their validity without any need for replication.1

It is reasonable to suppose that our elevated level of broad consensus is eventually
derived from our much higher level of consensus on the narrow issue of validity of
proof. I will assume this is so, although it is by no means obvious; to investigate this
point further, it would be useful to compare with fields such as physics, economics,
and computer science where proof plays a substantial but less central role. In
any case, it becomes important to study how consensus might propagate from a
restricted setting to a broader one.

1In fact, in practice, the correctness of mathematical proofs is at least partly maintained by
a process of replication, and it is currently an interesting topic of discussion how close modern
proofs are to being formally valid. However, all that is important for us here is that a proof is
generally understood to mean an argument compelling consensus.
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There are many situations, such as the price mechanism in a free market or the
Elo rating system of chess, where information is propagated through a network
through repeated local transactions, thereby arriving at a consensus even when
individual actors have only local information. I suggest that a similar mechanism,
which we could informally call

(e) Free trade in ideas,2

is a crucial component of the valuation mechanism in mathematics. I will describe
it as a Bayesian process of updating our mental landscape of mathematics and
mathematicians as we receive information about it. Models of this type have been
studied extensively in different contexts (see [3, 5] for examples from computer
science and cognitive science, respectively).

Tautologically, the value we assign to a work of mathematics is purely subjective,
in the sense that it depends solely on the perception of that work, and not on any
objective quality. Through what means is a work of mathematics perceived by other
mathematicians? The size and complexity of modern mathematics means that most
papers are almost incomprehensible to us; our opinion of them can then only repeat
that of others. The only people who can be involved in the formation of opinion
about a given paper or a given question are those who interact with it in some
way. Now, the set of people who study the details of any argument themselves is
very small; a much larger group acquire, instead, an awareness of its relationship to
other existing work. This can be acquired quite incidentally, e.g., through attending
talks, reading or refereeing papers, reading or writing recommendation letters, and
other less formal methods. Let us, proceeding by way of example, examine how
such awareness of the relationship between different works can shape opinion.

Suppose that we learn of a relationship between two hitherto unrelated conjec-
tures in our field:

(1) conjecture X =⇒ conjecture Y .

This could mean that (i) conjecture X is more important than we thought, or that
(ii) conjecture Y is easier than we thought. In practice we decide (to some extent
unconsciously) according to the prior uncertainty of our beliefs: if Y is a conjecture
of long standing, option (i) is more likely, and if X is a conjecture of long standing,
option (ii) is more likely. Nor does X need to imply Y for this conclusion—they
need only be linked in some substantive way. A similar situation occurs if

(2) mathematician A proves conjecture Y ;

this is possible evidence that either A is a good mathematician, or that Y is an
easy conjecture, and in practice we again choose in a fashion dependent on our
prior information. In either of the situations (1) or (2), our views and uncertainty
about both interacting parties are altered.

The intellectual activity in a field involves innumerable interactions of this gen-
eral type. (It is a gross oversimplification to reduce mathematics to a collection of
events of type (1) and (2), but we will adopt this very crude model for our current
discussion, keeping in mind its obvious limitations.) The endless iteration of the
resulting value negotiations is an important means by which the value of problem

2This phrase, suggesting a market metaphor for an intellectual process, appears in the dissent
of the justice Oliver Wendell Holmes in a famous decision of the United States Supreme Court
[1]; that text continues “the best test of truth is the power of the thought to get itself accepted
in the competition of the market.”
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X is established within the “vicinity” of X, i.e., among those people to whom prob-
lem X is visible, and is also perhaps the dominant means of establishing a status
hierarchy3 among workers in that community. The specifics of how this mechanism
work are, of course, heavily influenced by what defines “visible”—in particular, the
processes mentioned in (b). Now, although two observers A,B in the same field do
not observe the same interactions and they do not, in general, interpret identically
those that they do both see, there is nonetheless a substantial fraction on which
they agree precisely because of the concept of rigorous proof. This reduces the
discrepancy between the value systems deduced by A and B.

To spell out: when will a new conjecture X acquire a high value in this model?
This will be so, to the greatest extent, if both of the processes (1) and (2) just
described raise its status, which is to say:

(a) It is difficult: many people try to solve X and fail.
(b) It is central: X is linked with many other questions of (prior) importance.

An interesting empirical study of the relative status of different research fields
within mathematics has been carried out by Schlenker [4]. He examines which
subfields of mathematics have the most “prestige”, this notion being defined via
bibliometrics, prizes, and departmental rankings; to explain his results, he hypoth-
esizes that fields of high “prestige” are distinguished by a focus on a small number
of central questions.

How does this hypothesis relate to our discussion? We just noted that our simple
model predicts the role of centrality in determining status. The function of small
number is that problems require many repeated attempts at a solution (strictly,
many repeated visible attempts) to certify their difficulty. This is only possible
when the number of workers is large relative to the number of questions.

But then—why do some fields have fewer central questions than others? I cannot
see any meaningful or intrinsic sense that one field has “fewer” problems than
another. Partly the emergence of central questions may reflect the structure of the
mathematics itself, which is very difficult to quantify, but a readily visible factor
is the extent of barriers to working on new problems. Where such barriers are low
(as, for example, in combinatorics)4 the set of problems under investigation can be
relatively large in comparison to the number of workers in the field.

It is also interesting to consider failures of consensus, which may arise because
different observers see different parts of the network. Consider, for example, prob-
lems X that are common to two fields C,D which otherwise have little overlap.
Observers from field C and those from field D then see X within entirely different
“contexts” and its importance may be perceived rather differently within the two
fields. This can even happen when field D is an offshoot of field C, or potentially
when D and C are the same field at different times. Increases in the overlap of C
and D would probably lead to equalization.

I have attempted here to mechanistically model some part of how valuation in
mathematics operates in practice, but I am not advocating any position on how

3This phrase may evoke various negative connotations—however, I want to avoid discussing
normative issues here, and make only the point that such hierarchies both influence and are
influenced by the hierarchy of importance assigned to scientific problems.

4A colleague of mine, in reading this, felt that it might be interpreted as demeaning combina-
torics. My intention is in fact quite the opposite. If anything I hope that analyzing the origins of
our conceptions about “depth” will make us think more critically about those conceptions.
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it should work. To discuss this, we would first need to clarify what the goals,
internal and external, of mathematics research are; such a discussion can obviously
go on without end—which is fortunate, because in our post-ℵ(0) existence the
fundamental role for humans may be exactly to carry on this conversation.

4. The impact of mechanization

We have offered a very rough model of part of our valuative mechanism via
(Bayesian) interaction in a network of mathematicians and problems. We now
consider how ℵ(0) will affect this network and alter the resulting outcome.

Perceived difficulty is, as we have seen, an essential component of our construc-
tion of value. No matter the specifics, ℵ(0) will alter our ability to solve questions
and therefore our perception of their difficulty. The parts of the mathematical pro-
cess that can be speeded up the most by ℵ(0) will have the greatest reductions in
their perceived difficulty, and, according to our model above, will suffer the greatest
reduction in status. Similar patterns occur in many instances of automation.

The centrality of questions—that is to say, their relationship to others—is an-
other component of the way we value mathematics, and we expect ℵ(0) to change
this too. Let us suppose that the energies of ℵ(0) are partly directed towards re-
working the existing literature: revisiting and supplying proofs of known results
rather than examining open questions. As we have emphasized, the number of
mathematicians who have thought about a specific question is typically very small,
and it is likely that very many parts of the literature would be greatly revised even
through careful re-examination by many human mathematicians. It is not unlikely
that we will see a scenario that has happened surprisingly rarely in recent history—
replacement of long elaborate proofs by short overlooked ones. What effect might a
five page combinatorial proof of the Weyl conjectures have? Even if such an extreme
scenario does not occur, it seems very likely that the web of relationships between
standard lemmas and theorems will be altered. This discussion also suggests why
the operators of ℵ(0) may be induced to revisit old problems over studying new
ones: besides settling concerns about formal correctness, the shifting of foundations
has a larger social impact than adding new levels.

Finally, ℵ(0) will greatly expand the entire landscape of questions considered
mathematically interesting. Such inflation can happen through many different
paths; it is not necessary for ℵ(0) to explicitly generate questions on its own, for
new mathematics always generates new questions, and correspondingly any process
accelerating research in mathematics will accelerate the creation of new questions.
(If ℵ(0) does all the proving and we do all the questioning, the result is not so
different to a scenario where ℵ(0) is capable of generating its own mathematical
conjectures.) Now we already saw that fields with an oversupply of problems rel-
ative to the number of workers may lose status, particularly if those problems do
not organize around central ones. Since the existence of ℵ(0) will increase both
the number of problems and the effective number of workers it is not clear how
this will play out; but certainly we may expect great variability from the current
situation. In such an expanded landscape many currently central problems may
become peripheral.

These three points already suggest a great shift in what problems and fields will
attract the most attention. However, the process may extend beyond this, and
affect, for example, the balance between heuristics and rigor, the role of aesthetic
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considerations, the extent of consensus, and the placement of boundaries such as
those between professional and amateur mathematics or pure and applied mathe-
matics. (ℵ(0) will likely level the playing field between professional mathematicians
and other interested parties.) The definitions and concepts which structure our per-
ception of mathematical reality are designed, in part, to ease the cognitive load of
interacting with intricate structure; if this load is partly borne by a machine, it is
possible that new definitions and categorizations may lead to radical reframings.
To analyze the specifics is obviously impossible without a better idea of the abilities
of ℵ(0), but whatever direction it goes, it will go far.

An important limitation on rapid change in a subject is the the length of the
professional career. Those who can most readily enter a new field are the young,
and the extent to which this is possible is limited by the structure of hiring; senior
scientists are slower to change their view of what is valuable. Nonetheless, since
it will presumably be infeasible to do research without making use of mechanized
assistants in the post-ℵ(0) age, the impacts that we have detailed above will likely
extend to senior mathematicians also, although their effects will be more extreme
for younger mathematicians.

In the normal development of any scholarly field the way we assign importance
and value is continuously changing and evolving. What distinguishes our scenario
is the breadth and magnitude of these effects and the short timescale over which
they are likely to occur; developments that previously took several mathematical
generations may be compressed into a few short years.

It is natural to look to history for metaphors. Post-mechanization mathematics
may look to us as modern mathematics might impress those working a century
ago, but I think this does not go far enough: the impact of ℵ(0) on mathematical
cognition may be much greater. To find a suitable parallel for this effect on our
thought process, we might consider, for example, the introduction of algebraic
notation in mathematics.

It is important for us to consider seriously the possibility of such developments.

5. An afterword

Added March 2023. This essay was not originally written with the intention
of publication, but rather with the hope of conveying the urgency of reflecting upon
these issues to the mathematical community.

Kumar Murty and the Fields Institute kindly took these concerns seriously
enough to devote the 2022 Fields Symposium to this topic, broadly construed—
the “changing face of mathematical research.” I learned a great deal from this
wonderful meeting, and I was particularly delighted to interact with scholars from
the humanities who share an interest in these topics. They have much to con-
tribute to discourse among mathematicians, a point that is made at more length in
Michael Harris’s contribution to this volume. Indeed, that we can acquire knowl-
edge about the world in ways inaccessible to the direct reach of the senses, and
that this knowledge may overflow the capacity of our individual brains—these are
hardly new developments, and there is much to be learned by examining parallels
in the history of human thought.

Although what I have written is informal and limited in its scope, and, in partic-
ular, does not examine any of the underlying philosophical issues, I hope that—if
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only as a call to think critically about what it is that we are doing—it is appropriate
for this present issue of the Bulletin.
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