Ergodicity of conformal measures for unimodal polynomials

Author:
Eduardo A. Prado

Journal:
Conform. Geom. Dyn. **2** (1998), 29-44

MSC (1991):
Primary 58F03, 58F23

Published electronically:
March 25, 1998

MathSciNet review:
1613051

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a polynomial and a conformal measure for , i.e., a Borel probability measure with Jacobian equal to . We show that if is a real unimodal polynomial (a polynomial with just one critical point), then is ergodic. We also show that is ergodic if is a complex unimodal polynomial with one parabolic periodic point or a quadratic polynomial in the class with a priori bounds (as defined in Lyubich (1997)).

**[BL91]**A. M. Blokh and M. Yu. Lyubich,*Measurable dynamics of 𝑆-unimodal maps of the interval*, Ann. Sci. École Norm. Sup. (4)**24**(1991), no. 5, 545–573. MR**1132757****[Bow75]**Rufus Bowen,*Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR**0442989****[DH85]**Adrien Douady and John Hamal Hubbard,*On the dynamics of polynomial-like mappings*, Ann. Sci. École Norm. Sup. (4)**18**(1985), no. 2, 287–343. MR**816367****[DU91a]**M. Denker and M. Urbański,*On Sullivan’s conformal measures for rational maps of the Riemann sphere*, Nonlinearity**4**(1991), no. 2, 365–384. MR**1107011****[DU91b]**M. Denker and M. Urbański,*Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point*, J. London Math. Soc. (2)**43**(1991), no. 1, 107–118. MR**1099090**, 10.1112/jlms/s2-43.1.107**[Fed69]**Herbert Federer,*Geometric measure theory*, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR**0257325****[GS]**J. Graczyk and G. Swiatek, Polynomial-like property for real quadratic polynomials, preprint, 1995.**[Hub]**J. H. Hubbard,*Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz*, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 467–511. MR**1215974****[LvS95]**G. Levin and S. van Strien, Local connectivity of Julia set of real polynomials,*Ann. of Math.*, to appear.**[Lyu91]**M. Lyubich, On the Lebesgue measure of the Julia set of a quadratic polynomial,*IMS-Stony Brook preprint series*, (1991/10), 1991.**[Lyu97]**M. Lyubich, Dynamics of quadratic polynomials, I-II,*Acta Math.*, 178, 185-297, 1997. CMP**97:15****[LyuY95]**M. Lyubich and M. Yampolski, Complex bounds for real polynomials,*Ann. Inst. Fourier*, 47, 1219-1255, 1997.**[McM94]**Curtis T. McMullen,*Complex dynamics and renormalization*, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR**1312365****[McM95]**C. McMullen, The classification of conformal dynamical systems, preprint, 1995. CMP**98:02****[MvS93]**Welington de Melo and Sebastian van Strien,*One-dimensional dynamics*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR**1239171****[Mil90]**J. Milnor, Dynamics in one complex variable: Introductory lectures,*IMS-Stony Brook preprint series*, (1990/5), 1990.**[Mil91]**J. Milnor, Local connectivity of Julia sets: expository lectures,*IMS-Stony Brook preprint series*, (1991/10), 1991.**[Pra95]**E. A. Prado, Conformal measures in polynomial dynamics, In*PhD thesis*, SUNY at Stony Brook, 1995.**[Prz]**F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures, preprint, 1996. CMP**96:17****[Sul80]**D. Sullivan,*Conformal dynamics*, 725-752, volume 1007 of*Lecture Notes in Mathematics*, Springer-Verlag, 1980.**[U]**Mariusz Urbański,*Rational functions with no recurrent critical points*, Ergodic Theory Dynam. Systems**14**(1994), no. 2, 391–414. MR**1279476**, 10.1017/S0143385700007926**[Wal78]**Peter Walters,*Invariant measures and equilibrium states for some mappings which expand distances*, Trans. Amer. Math. Soc.**236**(1978), 121–153. MR**0466493**, 10.1090/S0002-9947-1978-0466493-1

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (1991):
58F03,
58F23

Retrieve articles in all journals with MSC (1991): 58F03, 58F23

Additional Information

**Eduardo A. Prado**

Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281 CEP 05315-970, São Paulo, Brazil

Email:
prado@ime.usp.br

DOI:
https://doi.org/10.1090/S1088-4173-98-00019-8

Keywords:
Holomorphic dynamics,
conformal measures

Received by editor(s):
September 1, 1997

Received by editor(s) in revised form:
December 15, 1997

Published electronically:
March 25, 1998

Additional Notes:
Supported in part by CNPq-Brazil and S.U.N.Y. at Stony Brook

Article copyright:
© Copyright 1998
American Mathematical Society