Ergodicity of conformal measures for unimodal polynomials

Author:
Eduardo A. Prado

Journal:
Conform. Geom. Dyn. **2** (1998), 29-44

MSC (1991):
Primary 58F03, 58F23

DOI:
https://doi.org/10.1090/S1088-4173-98-00019-8

Published electronically:
March 25, 1998

MathSciNet review:
1613051

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a polynomial and a conformal measure for , i.e., a Borel probability measure with Jacobian equal to . We show that if is a real unimodal polynomial (a polynomial with just one critical point), then is ergodic. We also show that is ergodic if is a complex unimodal polynomial with one parabolic periodic point or a quadratic polynomial in the class with a priori bounds (as defined in Lyubich (1997)).

**[BL91]**A. M. Blokh and M. Lyubich, Measurable dynamics of -unimodal maps of the interval,*Ann. Sci. École Norm. Sup.*, 24, 545-573, 1991. MR**93f:58132****[Bow75]**R. Bowen,*Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, volume 470 of*Lecture Notes in Mathematics*, Springer-Verlag, 1975. MR**56:1364****[DH85]**A. Douady and J. Hubbard, On the dynamics of polynomial-like mappings,*Ann. Sci. École Norm. Sup.*, 18, 287-343, 1985. MR**87f:58083****[DU91a]**M. Denker and M. Urbanski, On Sullivan's conformal measures for rational maps of the Riemann sphere,*Nonlinearity*, 4, 365-384, (1991). MR**92f:58097****[DU91b]**M. Denker and M. Urbanski, Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point,*J. London Math. Soc.*, 2(43), 107-118, 1991. MR**92k:58153****[Fed69]**F. Federer,*Geometric measure theory*, Springer-Verlag, 1969. MR**41:1976****[GS]**J. Graczyk and G. Swiatek, Polynomial-like property for real quadratic polynomials, preprint, 1995.**[Hub]**J. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz,*Topological methods in modern mathematics, A symposium in honor of John Milnor*, Publish or Perish, 467-511. MR**94c:58172****[LvS95]**G. Levin and S. van Strien, Local connectivity of Julia set of real polynomials,*Ann. of Math.*, to appear.**[Lyu91]**M. Lyubich, On the Lebesgue measure of the Julia set of a quadratic polynomial,*IMS-Stony Brook preprint series*, (1991/10), 1991.**[Lyu97]**M. Lyubich, Dynamics of quadratic polynomials, I-II,*Acta Math.*, 178, 185-297, 1997. CMP**97:15****[LyuY95]**M. Lyubich and M. Yampolski, Complex bounds for real polynomials,*Ann. Inst. Fourier*, 47, 1219-1255, 1997.**[McM94]**C. McMullen,*Complex dynamics and renormalization*, Number 135, Princeton Univ. Press, 1994. MR**96b:58097****[McM95]**C. McMullen, The classification of conformal dynamical systems, preprint, 1995. CMP**98:02****[MvS93]**W. de Melo and S. van Strien,*One dimensional dynamics*, Springer-Verlag, 1993. MR**95a:58035****[Mil90]**J. Milnor, Dynamics in one complex variable: Introductory lectures,*IMS-Stony Brook preprint series*, (1990/5), 1990.**[Mil91]**J. Milnor, Local connectivity of Julia sets: expository lectures,*IMS-Stony Brook preprint series*, (1991/10), 1991.**[Pra95]**E. A. Prado, Conformal measures in polynomial dynamics, In*PhD thesis*, SUNY at Stony Brook, 1995.**[Prz]**F. Przytycki, Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures, preprint, 1996. CMP**96:17****[Sul80]**D. Sullivan,*Conformal dynamics*, 725-752, volume 1007 of*Lecture Notes in Mathematics*, Springer-Verlag, 1980.**[U]**M. Urbanski, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 391-414. MR**95g:58191****[Wal78]**P. Walters, Invariant measures and equilibrium states for some mappings which expand distance,*Trans. Amer. Math. Soc.*, 263, 121-153, 1978. MR**57:6371**

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (1991):
58F03,
58F23

Retrieve articles in all journals with MSC (1991): 58F03, 58F23

Additional Information

**Eduardo A. Prado**

Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 66281 CEP 05315-970, São Paulo, Brazil

Email:
prado@ime.usp.br

DOI:
https://doi.org/10.1090/S1088-4173-98-00019-8

Keywords:
Holomorphic dynamics,
conformal measures

Received by editor(s):
September 1, 1997

Received by editor(s) in revised form:
December 15, 1997

Published electronically:
March 25, 1998

Additional Notes:
Supported in part by CNPq-Brazil and S.U.N.Y. at Stony Brook

Article copyright:
© Copyright 1998
American Mathematical Society