NONLINEAR AUTOMORPHISMS OF PLANE DOMAINS

TIMO ERKAMA

Abstract. We prove that the number of holomorphic nonlinear polynomials mapping a plane domain one-to-one onto itself is at most countable.

1. Introduction

Several symmetric plane domains have a nondiscrete group of automorphisms defined by holomorphic polynomials of degree one. Examples of such domains are the whole complex plane \mathbb{C}, a disk, a strip and an annulus. A strip has a continuous group of automorphisms defined by monic polynomials whereas the unit disk $U = \{ z \in \mathbb{C} \mid |z| < 1 \}$ and the upper half plane $H = \{ z \in \mathbb{C} \mid \text{Im} z > 0 \}$ have a one-dimensional group of automorphisms defined by homogeneous polynomials of degree one. A complete characterization of domains with the above property appears in [4].

Some nonlinear polynomials can also map a planar domain one-to-one onto itself. For example, if a nonlinear polynomial is holomorphically conjugate to a rotation in a neighborhood of a neutral fixed point, then this point is the center of a Siegel disk D and the polynomial generates a nondiscrete semigroup of holomorphic automorphisms of D. Another example of automorphisms defined by nonlinear polynomials is studied in Section 5.

For any subdomain D of \mathbb{C} let $\text{Pol}(D)$ be the set of all holomorphic polynomials mapping D one-to-one onto itself. Then $\text{Pol}(D)$ is a semigroup with a topology induced by the Lie group $\text{Aut}(D)$ of all holomorphic automorphisms of D.

Theorem 1. For each $k \geq 2$ the set $\{ P \in \text{Pol}(D) \mid \deg P = k \}$ is discrete.

Corollary 1. $\text{Pol}(D)$ contains at most countably many nonlinear polynomials.

Corollary 1 is an immediate consequence of Theorem 1 because $\text{Aut}(D)$ is second countable. Hence $\text{Pol}(D)$ can be uncountable only if it has a nondiscrete subgroup of linear polynomials; then D is one of the symmetric domains described in [4].

If $\text{Aut}(D)$ is not discrete, then D is either simply or doubly connected. In both cases each nonlinear element of $\text{Pol}(D)$ is conformally conjugate to an elliptic, parabolic or hyperbolic Möbius transformation. In the elliptic case D is an invariant subdomain of a Siegel disk; the example in Section 5 deals with the hyperbolic case.

The proof of Theorem 1 is based in the study of polymorphisms introduced in [6]. A polymorphism of a nonconstant holomorphic function $f : H \to \mathbb{C}$ is a pair (ϕ, P) of holomorphic polynomials such that $\phi \in \text{Pol}(H)$ and $f \circ \phi = P \circ f$. The...
set \(\Pi(f) \) of all polymorphisms of \(f \) is a topological semigroup with the topology induced by the map \((\phi, P) \mapsto \phi \) from \(\Pi(f) \) to \(\text{Pol}(H) \). In [6] we proved

Theorem 2. For each \(k \geq 2 \) the set \(\{(\phi, P) \in \Pi(f) \mid \deg P = k\} \) is discrete unless \(f \) is the composition of the exponential function \(e^z \) and two linear polynomials.

The property of Theorem 2 can be used to characterize the exponential function also in the whole complex plane \(C \) [5, Theorem 2].

We assume that the reader is familiar with complex analytic geometry; this will be needed in the study of some complex analytic subsets of \(\text{Aut}(C \cup \{\infty\}) \). For the terminology we refer to [2].

It is well known that all nonelementary groups of Möbius transformations contain loxodromic elements. We start with a corresponding result for semigroups which we shall need in Section 4.

2. Semigroups of \(SL(2, \mathbb{R}) \)

Let \(SL(2, \mathbb{R}) \) be the multiplicative Lie group of real \(2 \times 2 \) matrices with determinant one. An element of \(SL(2, \mathbb{R}) \) is hyperbolic if it has two real distinct eigenvalues.

Lemma 1. Suppose that a subset \(\Gamma \subset SL(2, \mathbb{R}) \) is a multiplicative semigroup. Then either \(\Gamma \) is commutative or \(\Gamma \) contains a hyperbolic element.

Proof. Suppose that \(\Gamma \) contains two elements \(A_1 \) and \(A_2 \) which do not commute. We have to prove that \(\Gamma \) contains a hyperbolic element.

Recall that an element \(A \in SL(2, \mathbb{R}) \) is hyperbolic if and only if the trace of \(A \) satisfies \(|\text{tr } A| > 2\). If \(A \) is not hyperbolic, then either \(A \) or \(-A\) is conjugate to

\[
\begin{pmatrix}
1 & b \\
0 & 1
\end{pmatrix}
\quad \text{or} \quad
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix}.
\]

Suppose first that \(A_1 \) has exactly one real eigenvalue and that \(A_2 \) is not hyperbolic. By conjugation (and if necessary replacing \(A_1 \) by \(A_1^2 \)) we may assume that \(A_1 = I + be_1e_2^T \) where \(e_1 \) and \(e_2 \) are the first and second columns of the identity matrix \(I \), respectively. Then for each positive integer \(k \) the binomial theorem implies that \(A_1^kA_2 = A_2 + kbe_1e_2^TA_2 \). Moreover, the trace of \(be_1e_2^TA_2 \) is nonzero, because \(A_1 \) and \(A_2 \) do not commute and \(A_2 \) is not hyperbolic. We conclude that \(|\text{tr } (A_1^kA_2)| > 2\) if \(k \) is large enough, so that \(A_1^kA_2 \) is hyperbolic. It remains to consider the case when \(A_1 \) and \(A_2 \) have no real eigenvalues. Then \(A_1 \) and \(A_2 \) are both conjugate to a matrix of the form

\[
\begin{pmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{pmatrix},
\]

so that \(A_1^{-1} \) and \(A_2^{-1} \) can be approximated by positive powers of \(A_1 \) and \(A_2 \), respectively. More precisely, for \(i = 1, 2 \) every neighborhood of \(A_i^{-1} \) contains a power of \(A_i \). Since \(A_1 \) and \(A_2 \) do not commute, their commutator \(A_1A_2A_1^{-1}A_2^{-1} \) is hyperbolic [3, Lemma 3.2] and can be approximated by elements of \(\Gamma \) of the form \(A_1A_2A_1^kA_2^l \) for suitable positive integers \(k \) and \(l \). Since the set of hyperbolic elements is open in \(SL(2, \mathbb{R}) \), we conclude that \(A_1A_2A_1^kA_2^l \) is hyperbolic for some \(k, l \). This completes the proof of Lemma 1. \(\square \)
We finally mention that there is an epimorphism from $SL(2, \mathbb{R})$ to the complex analytic Lie group $Aut(C \cup \{\infty\})$ of holomorphic automorphisms of the Riemann sphere. The image of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ under this epimorphism will be denoted by A_*; then

$$A_*(z) = \frac{az+b}{cz+d} \quad \text{for each} \quad z \in C \cup \{\infty\}.$$

3. Holomorphic families of functional equations

For each subdomain $G \subset C$ let $H(G)$ denote the algebra of holomorphic functions of G.

Let N be a complex analytic subset of $Aut(C \cup \{\infty\})$, and let $f \in H(U)$ be nonconstant. We say that a map $\beta: N \rightarrow H(f(U))$ is a holomorphic family of functional equations of f if there is a subdomain $V \subset U$ such that $\phi(V) \subset U$ for each $\phi \in N$ and

$$(1) \quad f(\phi(z)) = \beta(\phi)(f(z))$$

for each $(\phi, z) \in N \times V$.

Theorem 3. Suppose that $\beta: N \rightarrow H(f(U))$ is a holomorphic family of functional equations of a nonconstant holomorphic function $f \in H(U)$, and suppose that N has an accumulation point $\phi_0 \in N$ such that $\phi_0(U) = U$. Then f has a holomorphic extension to all but at most two points of ∂U.

The function $f(z) = \log \frac{1+z}{1-z}$ provides an example of a situation where the hypotheses of Theorem 3 are satisfied but f fails to have a holomorphic extension to two points of ∂U. In this case N consists of Möbius transformations of the form $\phi_\alpha(z) = \frac{z-\alpha}{1-\alpha z}$ where $|\alpha| < \frac{1}{2}$, and $\beta(\phi_\alpha)(w) = w - f(\alpha)$ for each $w \in f(U)$.

Proof. For each $\phi \in N$ we can define a holomorphic extension of f to $U \cup \phi(U)$ such that (1) holds for each $z \in U$. By replacing N with a sufficiently small subspace of N we may assume that for each $\phi \in N$ the closure of $\phi(U)$ contains the origin but does not contain the point at infinity. Then for each $\omega \in \partial U$ there is a holomorphic function $\Phi_\omega: N \rightarrow C$ such that

$$\Phi_\omega(\phi) = \phi(\omega) \quad (\phi \in N).$$

Let V be the set of all points $\omega \in \partial U$ such that Φ_ω is locally constant at ϕ_0. Then V contains at most two points, because elements of N are uniquely determined by their values at any three distinct points.

Let ω_1, ω_2, and ω_3 be three distinct points of ∂U such that $\omega_1 \in \phi_0(V)$ if V is not empty. It suffices to prove that f has a holomorphic extension to either ω_2 or ω_3.

If V is empty, choose $\omega \in \partial U$ such that $\phi_0(\omega) = \omega_2$. Since Φ_ω is not locally constant at ϕ_0, by the maximum principle [3] p. 234 the image of Φ_ω contains an open neighborhood of $\phi(\omega_0) = \omega_2$. Thus there exists $\phi \in N$ and $\omega_0 \in \partial U$ such that $|\phi(\omega_0)| > 1$ and $\arg \phi(\omega_0) = \arg \omega_2$. Since the closure of $\phi(U)$ contains $\phi(\omega_0)$ and the origin, by convexity the point ω_2 on the line segment joining $\phi(\omega_0)$ and 0 is contained in $\phi(U)$. Hence f has a holomorphic extension to ω_2.

If V is not empty, we choose $h \in Aut(C \cup \{\infty\})$ such that $h(U) = H$, $h(\infty) = -i$ and $h(\omega_1) = \infty$. Let x be any point between $h(\omega_2)$ and $h(\omega_3)$ on the real axis such
that \(h^{-1}(x) \not\in \phi_0(V) \), and let \(\omega = \phi_0^{-1}(h^{-1}(x)) \). Then \(\Phi_\omega \) is not locally constant at \(\phi_0 \), so that again by the maximum principle \(\Phi_\omega \) maps every neighborhood of \(\phi_0 \) to a neighborhood of \(h^{-1}(x) \). Thus there exists \(\phi \in N \) such that \(h(\phi(\omega)) \) is an interior point of the triangle \(T \) with vertices at \(h(\omega_2), h(\omega_3) \) and \(-i \), and by choosing \(\phi \) close to \(\phi_0 \) we may assume that \(\phi^{-1}(\omega_1) = \phi_0^{-1}(\omega_1) \), because \(\omega_1 \in \phi_0(V) \). Then \(h(\phi(U)) \) is a half plane containing at least one vertex of \(T \), because the point \(h(\phi(\omega)) \) on the boundary of \(h(\phi(U)) \) is an interior point of \(T \). On the other hand, the vertex \(-i \) of \(T \) is not contained in \(h(\phi(U)) \), so that either \(h(\omega_2) \) or \(h(\omega_3) \) is a point of \(h(\phi(U)) \). Thus either \(\omega_2 \) or \(\omega_3 \) is contained in \(\phi(U) \), so that \(f \) has a holomorphic extension to \(\omega_2 \) or \(\omega_3 \). This completes the proof of Theorem [3].

Suppose that the set \(\{ P \in \text{Pol}(D) \mid \deg P = k \} \) is not discrete for some \(k \); we have to prove that \(k = 1 \). Since \(\text{Pol}(D) \) is a subset of \(\text{Aut}(D) \), it follows that \(\text{Aut}(D) \) is not discrete. It is well known that \(\text{Aut}(D) \) can be nondiscrete only if \(D \) is either simply or doubly connected [10]. Thus we may assume that there exists a holomorphic isomorphism \(f : G \to D \) where \(G \) is either the whole plane, a punctured plane, a punctured disk, or an annulus.

Let \(N_0 \) be the set of all \(\phi \in \text{Aut}(G) \) such that \(f \circ \phi \circ f^{-1} \) is the restriction of a polynomial of degree \(\leq k \); then \(N_0 \) is not discrete in \(\text{Aut}(G) \). Let us first consider the case when the semigroup \(\langle N_0 \rangle \) generated by \(N_0 \) is commutative.

The number of polynomials of degree \(k \) commuting with a given nonlinear polynomial is finite [7]. Since \(\langle N_0 \rangle \) is commutative, it follows that \(f \circ \phi \circ f^{-1} \) can be the restriction of a nonlinear polynomial only for finitely many \(\phi \in N_0 \). Since \(N_0 \) is not discrete, we conclude that \(k = 1 \). Thus we may assume that \(\langle N_0 \rangle \) is not commutative.

If \(G \) is the whole complex plane \(\mathbb{C} \), the same is true of \(D \) and there is nothing to prove. If \(G \) is a punctured plane, a punctured disk or an annulus, then \(f \) can be chosen so that \(f \) linearizes each element of \(\text{Pol}(D) \), i.e. \(f^{-1} \circ P \circ f \) is the restriction of a linear polynomial for each \(P \in \text{Pol}(D) \). In this case the component of the identity of \(\text{Aut}(G) \) is abelian and contains \(N_0 \), so that \(\langle N_0 \rangle \) is commutative. Hence it remains to consider the case when \(G \) is a disk, and we may of course assume that \(G \) is the open unit disk \(U \). Then each element of \(N_0 \) is the restriction of an element of \(\text{Aut}(\mathbb{C} \cup \{ \infty \}) \), and from now on we shall identify \(N_0 \) with the corresponding subset of \(\text{Aut}(\mathbb{C} \cup \{ \infty \}) \).

Let \(V = \{ z \in U \mid |z| < \frac{1}{2} \} \) and let \(\mathcal{M} = \{ \phi \in \text{Aut}(\mathbb{C} \cup \{ \infty \}) \mid \phi(V) \subset U \} \); then \(\mathcal{M} \) is open in \(\text{Aut}(\mathbb{C} \cup \{ \infty \}) \), and the map

\[
(\phi, w) \mapsto (f \circ \phi \circ f^{-1})(w)
\]

is holomorphic in \(\mathcal{M} \times f(V) \). The partial derivatives of this map with respect to \(w \) are also holomorphic, and for each fixed \(w \in f(V) \) we can define a holomorphic function \(F_w : \mathcal{M} \to \mathbb{C} \) such that

\[
F_w(\phi) = \frac{\partial^{k+1}}{\partial w^{k+1}} (f \circ \phi \circ f^{-1})(w)
\]

for each \(\phi \in \mathcal{M} \). Let

\[
N = \{ \phi \in \mathcal{M} \mid F_w(\phi) = 0 \text{ for each } w \in f(V) \};
\]

then \(N \) is a complex analytic subset of \(\mathcal{M} \) [2].
From the definition of N it follows that for each $\phi \in N$ there is a polynomial P_ϕ of degree $\leq k$ such that

$$P_\phi(w) = (f \circ \phi \circ f^{-1})(w) \text{ for each } w \in f(V).$$

Then

$$f \circ \phi(z) = P_\phi \circ f(z)$$

for each $z \in V$. It is also clear that $N_0 \subset N$, so that N has an accumulation point $\phi_0 \in N$ such that $\phi_0(U) = U$. Moreover, the map $\phi \mapsto P_\phi$ is a holomorphic family of functional equations of f. From Theorem 3 it follows that f has a holomorphic extension to all but at most two points of ∂U.

Let Ω be the set of points $\omega \in \partial U$ such that f does not have a holomorphic extension to ω. It is clear that $\phi^{-1}(\Omega) \subset \Omega$ for each $\phi \in N_0$; in fact, it follows from (2) that if f does not have a holomorphic extension to ω, then f does not have a holomorphic extension to $\phi^{-1}(\omega)$ either. But $\phi^{-1}(\Omega) \subset \Omega$ implies that

$$\Omega \subset \phi(\Omega),$$

and since Ω and $\phi(\Omega)$ have the same cardinality, we conclude that

$$\Omega = \phi(\Omega)$$

for each $\phi \in N_0$.

Let us first consider the case when Ω is empty, so that f has a holomorphic extension to a domain U_1 containing the closure of U. Let Γ be the set of all $A \in SL(2, \mathbb{R})$ such that $A_* = (N_0)$ where A_* is defined as in Section 2. Then Γ is a multiplicative semigroup. Since (N_0) is not commutative, the same is true of Γ, and by Lemma 1 Γ contains a hyperbolic element A.

Since $A_* \in (N_0)$, there exist $\phi_1, \ldots, \phi_n \in N_0$ such that $A_* = \phi_1 \circ \cdots \circ \phi_n$, and by recalling the definition of N_0 we see that $f \circ A_* \circ f^{-1}$ is the restriction of a polynomial P. Therefore

$$f \circ A_* = P \circ f$$

in U. By analytic continuation this equation defines a holomorphic extension of f to $A_*(U_1)$, $(A^2)_*(U_1)$, and by induction, to $(A^n)_*(U_1)$ for each positive integer n. But since A is hyperbolic, these sets cover the whole Riemann sphere. However, this is not possible because all holomorphic functions of $C \cup \{\infty\}$ are constant. We conclude that Ω is not empty.

Since Ω contains at most two points, it follows from (3) that $\phi(\phi(\omega)) = \omega$ for each $\phi \in N_0$ and each $\omega \in \Omega$. Choose $h \in Aut(C \cup \{\infty\})$ such that $h(U) = H$ and $h^{-1}(\infty) \in \Omega$. Then $h \circ \phi \circ \phi \circ h^{-1} \in Pol(H)$ for each $\phi \in N_0$, and (2) implies that the set

$$(4) \quad \{(h \circ \phi \circ \phi \circ h^{-1}, P_\phi \circ P_\phi) \mid \phi \in N_0\}$$

is a subset of $\Pi(f \circ h^{-1})$. Moreover, $h \circ \phi \circ \phi \circ h^{-1}$ can be the identity of $Pol(H)$ only if $\deg P_\phi = 1$. It follows that either $k = 1$ or $(h \circ \phi_0 \circ \phi \circ h^{-1}, P_{\phi_0} \circ P_\phi)$ is an accumulation point of (4). Also, $f \circ h^{-1}$ cannot be the composite of e^z and two linear polynomials, because $f \circ h^{-1}$ is univalent in H. In view of Theorem 2 we conclude that $k = 1$. The proof of Theorem 4 is now complete.
5. AN EXAMPLE

In this section we construct a plane domain where the quadratic polynomial

\[P(z) = z^2 + \frac{1}{2}z \]

is holomorphically conjugate to a hyperbolic Möbius transformation. The example shows that a discrete group generated by a holomorphic polynomial need not be a Kleinian group.

Let \(g \) be an entire function linearizing \(P \) at the repelling fixed point \(z = \frac{1}{2} \). Then \(g(0) = \frac{1}{2} \),

\[g\left(\frac{3}{2}z\right) = P(g(z)) \tag{5} \]

for each \(z \in \mathbb{C} \), and we may assume that \(g'(0) = -1 \). Such linearizing maps have been studied in detail by Myrberg [9].

Let \(T \) be the closed triangle with vertices at \(\frac{1}{2} \) and \(-\frac{1}{16}(1 \pm i) \). A straightforward computation shows that \(T \) is forward invariant under \(P \), i.e. \(P \) maps every point of \(T \) into a point of \(T \). A study of the branches of \(P^{-1} \) shows also that \(P \) is one-to-one in \(T \).

Since \(g \) is conformal at the origin and \(g'(0) = -1 \), there is \(\delta > 0 \) such that \(g(re^{i\theta}) \in T \) if \(0 < r < \delta \) and \(|\theta| < \delta \). Since \(T \) is forward invariant, iteration of (5) shows that \(g \) maps the domain

\[\{ \zeta \in \mathbb{C} \mid |\arg \zeta| < \delta \} \]

onto a subdomain \(D \) of \(T \). Moreover, \(P \) maps \(D \) onto itself, so that \(P \in \text{Pol}(D) \).

Figure 1 indicates the shape of \(D \) as well as some of the orbits and streamlines invariant under \(P \). Note that \(P \) generates a discrete group of automorphisms of \(D \). A result of Azarina [1] implies that for examples of this kind the boundary of \(D \) cannot be an analytic curve; accordingly the boundary in Figure 1 is not smooth at the fixed points of \(P \).

\[\text{Figure 1.} \]
For this example it is not hard to prove that $\text{Pol}(D)$ is commutative. It is an open question whether for some other domain $\text{Pol}(D)$ could contain two nonlinear elements which do not commute.

REFERENCES

University of Joensuu, SF-80101 Joensuu, Finland
E-mail address: Timo.Erkama@joensuu.fi