Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173



Continuity of Hausdorff dimension of Julia-Lavaurs sets as a function of the phase

Authors: Mariusz Urbanski and Michel Zinsmeister
Journal: Conform. Geom. Dyn. 5 (2001), 140-152
MSC (2000): Primary 37F45; Secondary 37F35, 37F15
Published electronically: October 18, 2001
MathSciNet review: 1872160
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f_{0}(z)=z^{2}+1/4$ and ${\mathcal E}_{0} $ the set of phases $\overline{\sigma}$ such that the critical point $0$ escapes in one step by the Lavaurs map $g_{\sigma}$; it is a topological strip in the cylinder of phases whose boundary consists of two Jordan curves symmetric wrt $\mathbb R/ \mathbb Z$. We prove that if $\overline{\sigma}_{n}\in{\mathcal E}_{0}$converges to $\overline{\sigma}\in\partial{\mathcal E}_{0}$in such a way that $g_{\sigma_{n}}(0)$ converges to $g_{\sigma}(0)$ along an external ray, then the Hausdorff dimension of the Julia-Lavaurs set $J(f_{0}, g_{\sigma_{n}})$ converges to the Hausdorff dimension of $J(f_{0},g_{\sigma})$.

References [Enhancements On Off] (What's this?)

  • 1. Adrien Douady: Does a Julia set depend continuously on the polynomial? Proceedings of Symposia in Applied Mathematics 49 (1994), 91-135. CMP 95:07
  • 2. Pierre Lavaurs: Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques. These, Université Paris-Sud, 1989.
  • 3. Mariusz Urbanski and Michel Zinsmeister: Geometry of hyperbolic Julia-Lavaurs sets, Preprint 2000, to appear Indagationes Math.
  • 4. R. Daniel Mauldin and Mariusz Urbański, Dimensions and measures in infinite iterated function systems, Proc. London Math. Soc. (3) 73 (1996), no. 1, 105–154. MR 1387085, 10.1112/plms/s3-73.1.105
  • 5. Michel Zinsmeister (after A. Douady): Basic parabolic implosion in five days. Jyvaskyla 1997.
  • 6. Adrien Douady, Pierrette Sentenac, and Michel Zinsmeister, Implosion parabolique et dimension de Hausdorff, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 765–772 (French, with English and French summaries). MR 1483715, 10.1016/S0764-4442(97)80057-2
  • 7. Olivier Bodart and Michel Zinsmeister, Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques, Fund. Math. 151 (1996), no. 2, 121–137 (French, with English summary). MR 1418992
  • 8. Curtis T. McMullen, Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math. 120 (1998), no. 4, 691–721. MR 1637951
  • 9. Guillaume Havard and Michel Zinsmeister: Thermodynamic formalism and variations of the Hausdorff dimension of quadratic Julia sets, Commun. Math. Phys. 210 (2000), 225-247. CMP 2000:10
  • 10. David Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 (1982), no. 1, 99–107. MR 684247
  • 11. R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 37F45, 37F35, 37F15

Retrieve articles in all journals with MSC (2000): 37F45, 37F35, 37F15

Additional Information

Mariusz Urbanski
Affiliation: Department of Mathematics, University of North Texas, P.O. Box 311430, Denton, Texas 76203-1430

Michel Zinsmeister
Affiliation: Mathématiques, Université d’Orleans, BP 6759 45067 Orléans Cedex, France

Received by editor(s): September 18, 2000
Received by editor(s) in revised form: June 28, 2001
Published electronically: October 18, 2001
Additional Notes: The research of the first author was partially supported by the NSF Grant DMS 9801583. He wishes to thank the University of Orleans and IHES, where a part of the research was done, for warm hospitality and excellent working conditions
Article copyright: © Copyright 2001 American Mathematical Society