Volumes of hyperbolic -manifolds. Notes on a paper of Gabai, Meyerhoff, and Milley

Authors:
T. H. Marshall and G. J. Martin

Journal:
Conform. Geom. Dyn. **7** (2003), 34-48

MSC (2000):
Primary 30F40, 30D50, 57M50

Published electronically:
June 17, 2003

MathSciNet review:
1992036

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new approach and improvements to the recent results of Gabai, Meyerhoff and Milley concerning tubes and short geodesics in hyperbolic -manifolds. We establish the following two facts: if a hyperbolic -manifold admits an embedded tubular neighbourhood of radius about any closed geodesic, then its volume exceeds that of the Weeks manifold. If the shortest geodesic of has length less than , then its volume also exceeds that of the Weeks manifold.

**1.**Colin C. Adams,*The noncompact hyperbolic 3-manifold of minimal volume*, Proc. Amer. Math. Soc.**100**(1987), no. 4, 601–606. MR**894423**, 10.1090/S0002-9939-1987-0894423-8**2.**I. Algol,*Volume change under drilling*, to appear.**3.**A. Beardon,*The geometry of discrete groups*, Springer-Verlag, 1981.**4.**C. Cao, F. W. Gehring, and G. J. Martin,*Lattice constants and a lemma of Zagier*, Lipa’s legacy (New York, 1995) Contemp. Math., vol. 211, Amer. Math. Soc., Providence, RI, 1997, pp. 107–120. MR**1476983**, 10.1090/conm/211/02816**5.**Chun Cao and G. Robert Meyerhoff,*The orientable cusped hyperbolic 3-manifolds of minimum volume*, Invent. Math.**146**(2001), no. 3, 451–478. MR**1869847**, 10.1007/s002220100167**6.**David Gabai, G. Robert Meyerhoff, and Peter Milley,*Volumes of tubes in hyperbolic 3-manifolds*, J. Differential Geom.**57**(2001), no. 1, 23–46. MR**1871490****7.**D. Gabai, R. Meyerhoff and N. Thurston,*Homotopy hyperbolic**-manifolds are hyperbolic*, Annals of Math., to appear.**8.**F. W. Gehring, T. H. Marshall, and G. J. Martin,*The spectrum of elliptic axial distances in Kleinian groups*, Indiana Univ. Math. J.**47**(1998), no. 1, 1–10. MR**1631604**, 10.1512/iumj.1998.47.1433**9.**F. W. Gehring and G. J. Martin,*Commutators, collars and the geometry of Möbius groups*, J. Anal. Math.**63**(1994), 175–219. MR**1269219**, 10.1007/BF03008423**10.**F. W. Gehring and G. J. Martin,*Precisely invariant collars and the volume of hyperbolic 3-folds*, J. Differential Geom.**49**(1998), no. 3, 411–435. MR**1669657****11.**F. W. Gehring and G. J. Martin,*The volume of hyperbolic 3-folds with 𝑝-torsion, 𝑝≥6*, Quart. J. Math. Oxford Ser. (2)**50**(1999), no. 197, 1–12. MR**1673252**, 10.1093/qjmath/50.197.1**12.**F. W. Gehring, C. Maclachlan, G. J. Martin, and A. W. Reid,*Arithmeticity, discreteness and volume*, Trans. Amer. Math. Soc.**349**(1997), no. 9, 3611–3643. MR**1433117**, 10.1090/S0002-9947-97-01989-2**13.**Troels Jørgensen,*On discrete groups of Möbius transformations*, Amer. J. Math.**98**(1976), no. 3, 739–749. MR**0427627****14.**T. H. Marshall and G. J. Martin,*Cylinder packings in hyperbolic space*, preprint.**15.**Robert Meyerhoff,*A lower bound for the volume of hyperbolic 3-manifolds*, Canad. J. Math.**39**(1987), no. 5, 1038–1056. MR**918586**, 10.4153/CJM-1987-053-6**16.**A. Przeworski,*Tubes in hyperbolic**-manifolds*, Thesis. University of Chicago and Top. and Appl. 128/2-3, 103-122.**17.**A. Przeworski,*Density of tube packings in hyperbolic space*, to appear.

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (2000):
30F40,
30D50,
57M50

Retrieve articles in all journals with MSC (2000): 30F40, 30D50, 57M50

Additional Information

**T. H. Marshall**

Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand

Email:
t_marshall@math.auckland.ac.nz

**G. J. Martin**

Affiliation:
Department of Mathematics, University of Auckland, Auckland, New Zealand

Email:
martin@math.auckland.ac.nz

DOI:
https://doi.org/10.1090/S1088-4173-03-00081-X

Received by editor(s):
August 30, 2001

Received by editor(s) in revised form:
April 10, 2003

Published electronically:
June 17, 2003

Additional Notes:
Research supported in part by the N. Z. Marsden Fund and the N. Z. Royal Society (James Cook Fellowship)

Article copyright:
© Copyright 2003
American Mathematical Society