Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Trace coordinates of Teichmüller space of Riemann surfaces of signature $(0,4)$


Authors: Thomas Gauglhofer and Klaus-Dieter Semmler
Journal: Conform. Geom. Dyn. 9 (2005), 46-75
MSC (2000): Primary 32G15, 30F35; Secondary 11F06
DOI: https://doi.org/10.1090/S1088-4173-05-00106-2
Published electronically: April 26, 2005
MathSciNet review: 2133805
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We explicitly give $\mathcal{T}$, the Teichmüller space of four-holed spheres (which we call X pieces) in trace coordinates, as well as its modular group and a fundamental domain for the action of this group on $\mathcal{T}$ which is its moduli space. As a consequence, we see that on any hyperbolic Riemann surface, two closed geodesics of lengths smaller than $2\operatorname{arccosh}(2)$ intersect at most once; two closed geodesics of lengths smaller than $2\operatorname{arccosh}(3)$ are both non-dividing or intersect at most once.


References [Enhancements On Off] (What's this?)

  • [Art47] E. Artin, Braids and permutations, Ann. of Math. (2) 48 (1947), 643-649. MR 0020989 (9:6c)
  • [Bea83] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 0698777 (85d:22026)
  • [BG99] R. L. Benedetto and W. M. Goldman, The topology of the relative character varieties of a quadruply-punctured sphere, Experiment. Math. 8 (1999), no. 1, 85-103. MR 1685040 (2000c:57028)
  • [Bin00] A. Binotto, Surfaces de riemann de type (0,3) et (1,1): polynômes au service de l'étude spectrale, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 2000.
  • [BS88] P. Buser and K.-D. Semmler, The geometry and spectrum of the one-holed torus, Comment. Math. Helv. 63 (1988), no. 2, 259-274. MR 0948781 (89k:58286)
  • [Bus92] P. Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston Inc., Boston, MA, 1992. MR 1183224 (93g:58149)
  • [FLP79] A. Fathi, F. Laudenbach, and V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979, Séminaire Orsay.
  • [FR95] B. Fine and G. Rosenberger, Classification of all generating pairs of two generator Fuchsian groups, Groups '93 Galway/St. Andrews, Vol. 1 (Galway, 1993), London Math. Soc. Lecture Note Ser., vol. 211, Cambridge Univ. Press, Cambridge, 1995, pp. 205-232. MR 1342792 (96i:20065)
  • [Hel74] H. Helling, Über den Raum der kompakten Riemannschen Flächen vom Geschlecht $2$, J. Reine Angew. Math. 268/269 (1974), 286-293, Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, II. MR 0361167 (50:13613)
  • [Kee65] Linda Keen, Canonical polygons for finitely generated Fuchsian groups, Acta Math. 115 (1965), 1-16. MR 0183873 (32:1349)
  • [Kee66] -, Intrinsic moduli on Riemann surfaces, Ann. of Math. (2) 84 (1966), 404-420. MR 0203000 (34:2859)
  • [Kee71] -, On Fricke moduli, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies, No. 66. Princeton Univ. Press, Princeton, N.J., 1971, pp. 205-224. MR 0288252 (44:5450)
  • [Kee73] -, A correction to: ``On Fricke moduli'', Proc. Amer. Math. Soc. 40 (1973), 60-62. MR 0320306 (47:8845)
  • [Kee77] -, A rough fundamental domain for Teichmüller spaces, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1199-1226. MR 0454075 (56:12326)
  • [KR78] R. N. Kalia and G. Rosenberger, Automorphisms of the Fuchsian groups of type $(0;\,2,\,2,\,2,\,q;\,0)$, Comm. Algebra 6 (1978), no. 11, 1115-1129. MR 0498884 (80a:10039)
  • [Luo98] Feng Luo, Geodesic length functions and Teichmüller spaces, J. Differential Geom. 48 (1998), no. 2, 275-317. MR 1630186 (99e:32031)
  • [Mag80] W. Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980), no. 1, 91-103. MR 0558891 (81a:20043)
  • [Mas65] B. Maskit, On Klein's combination theorem, Trans. Amer. Math. Soc. 120 (1965), 499-509. MR 0192047 (33:274)
  • [Mas88] -, Kleinian groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 0959135 (90a:30132)
  • [Sem88] K.-D. Semmler, A fundamental domain for the Teichmüller space of compact Riemann surfaces of genus 2, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, 1988.
  • [SS86] M. Seppälä and T. Sorvali, Parametrization of Möbius groups acting in a disk, Comment. Math. Helv. 61 (1986), no. 1, 149-160. MR 0847525 (87i:20089)
  • [SS88] -, Parametrization of Teichmüller spaces by geodesic length functions, Holomorphic functions and moduli, Vol. II (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., vol. 11, Springer, New York, 1988, pp. 267-284. MR 0955845 (89m:32040)
  • [SS89] -, Affine coordinates for Teichmüller spaces, Math. Ann. 284 (1989), no. 1, 165-176. MR 0995388 (90e:32024)
  • [SS92] -, Geometry of Riemann surfaces and Teichmüller spaces, North-Holland Mathematics Studies, vol. 169, North-Holland Publishing Co., Amsterdam, 1992. MR 1202043 (94b:32034)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 32G15, 30F35, 11F06

Retrieve articles in all journals with MSC (2000): 32G15, 30F35, 11F06


Additional Information

Thomas Gauglhofer
Affiliation: EPFL SB IGAT GEOM, Bâtiment MA, Station 8, CH-1015 Lausanne (Switzerland)
Email: thomas.gauglhofer@epfl.ch

Klaus-Dieter Semmler
Affiliation: EPFL SB IGAT GEOM, Bâtiment MA, Station 8, CH-1015 Lausanne (Switzerland)
Email: klaus-dieter.semmler@epfl.ch

DOI: https://doi.org/10.1090/S1088-4173-05-00106-2
Received by editor(s): September 3, 2003
Received by editor(s) in revised form: February 8, 2005
Published electronically: April 26, 2005
Additional Notes: The authors were supported in part by the Swiss National Science Foundation, SNSF Grant #2100-065270, Teichmüller Spaces in Trace coordinates and Modular groups
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society