Sphericalization and flattening

Authors:
Zoltán M. Balogh and Stephen M. Buckley

Journal:
Conform. Geom. Dyn. **9** (2005), 76-101

MSC (2000):
Primary 30F45

Published electronically:
November 29, 2005

MathSciNet review:
2179368

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The conformal deformations of flattening and sphericalization of length metric spaces are considered. These deformations are dual to each other if the space satisfies a simple quantitative connectivity property. Moreover, the quasihyperbolic metrics corresponding to the flat and the spherical metrics are bilipschitz equivalent if a weaker connectivity condition is satisfied.

**[AG]**K. Astala and F. W. Gehring,*Quasiconformal analogues of theorems of Koebe and Hardy-Littlewood*, Michigan Math. J.**32**(1985), no. 1, 99–107. MR**777305**, 10.1307/mmj/1029003136**[AK]**Kari Astala and Pekka Koskela,*Quasiconformal mappings and global integrability of the derivative*, J. Anal. Math.**57**(1991), 203–220. MR**1191747**, 10.1007/BF03041070**[BB]**Zoltán M. Balogh and Stephen M. Buckley,*Geometric characterizations of Gromov hyperbolicity*, Invent. Math.**153**(2003), no. 2, 261–301. MR**1992014**, 10.1007/s00222-003-0287-6**[BK]**Zoltán M. Balogh and Pekka Koskela,*Quasiconformality, quasisymmetry, and removability in Loewner spaces*, Duke Math. J.**101**(2000), no. 3, 554–577. With an appendix by Jussi Väisälä. MR**1740689****[BHK]**Mario Bonk, Juha Heinonen, and Pekka Koskela,*Uniformizing Gromov hyperbolic spaces*, Astérisque**270**(2001), viii+99. MR**1829896****[BHR]**Mario Bonk, Juha Heinonen, and Steffen Rohde,*Doubling conformal densities*, J. Reine Angew. Math.**541**(2001), 117–141. MR**1876287**, 10.1515/crll.2001.089**[BKo]**Mario Bonk and Pekka Koskela,*Conformal metrics and size of the boundary*, Amer. J. Math.**124**(2002), no. 6, 1247–1287. MR**1939786****[BKR]**Mario Bonk, Pekka Koskela, and Steffen Rohde,*Conformal metrics on the unit ball in Euclidean space*, Proc. London Math. Soc. (3)**77**(1998), no. 3, 635–664. MR**1643421**, 10.1112/S0024611598000586**[HK]**Juha Heinonen and Pekka Koskela,*Quasiconformal maps in metric spaces with controlled geometry*, Acta Math.**181**(1998), no. 1, 1–61. MR**1654771**, 10.1007/BF02392747**[He1]**D. Herron,*Quasiconformal deformations and volume growth*, preprint.**[He2]**David A. Herron,*Conformal deformations of uniform Loewner spaces*, Math. Proc. Cambridge Philos. Soc.**136**(2004), no. 2, 325–360. MR**2040578**, 10.1017/S0305004103007199**[Se1]**Stephen Semmes,*Bi-Lipschitz mappings and strong 𝐴_{∞} weights*, Ann. Acad. Sci. Fenn. Ser. A I Math.**18**(1993), no. 2, 211–248. MR**1234732****[Se2]**S. Semmes,*On the nonexistence of bilipschitz parametrization and geometric problems about weights*, Rev. Math. Iberoamericana**12**(1996), 345-360.**[Ty1]**Jeremy Tyson,*Quasiconformality and quasisymmetry in metric measure spaces*, Ann. Acad. Sci. Fenn. Math.**23**(1998), no. 2, 525–548. MR**1642158****[Ty2]**Jeremy T. Tyson,*Metric and geometric quasiconformality in Ahlfors regular Loewner spaces*, Conform. Geom. Dyn.**5**(2001), 21–73 (electronic). MR**1872156**, 10.1090/S1088-4173-01-00064-9**[V]**Jussi Väisälä,*Lectures on 𝑛-dimensional quasiconformal mappings*, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR**0454009**

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (2000):
30F45

Retrieve articles in all journals with MSC (2000): 30F45

Additional Information

**Zoltán M. Balogh**

Affiliation:
Departament Mathematik, Universität Bern, Sidlerstrasse 5, 3012, Bern, Schweiz

Email:
zoltan@math-stat.unibe.ch

**Stephen M. Buckley**

Affiliation:
Department of Mathematics, National University of Ireland, Maynooth, Co. Kildare, Ireland

Email:
sbuckley@maths.nuim.ie

DOI:
https://doi.org/10.1090/S1088-4173-05-00124-4

Received by editor(s):
October 26, 2004

Received by editor(s) in revised form:
September 28, 2005

Published electronically:
November 29, 2005

Additional Notes:
This research was partially supported by the Swiss Nationalfond and Enterprise Ireland. It was partly conducted during a visit by the second author to the University of Bern; the hospitality of the Mathematics Department was much appreciated.

Article copyright:
© Copyright 2005
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.