Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Finite simultaneous bending


Author: Reza Chamanara
Journal: Conform. Geom. Dyn. 10 (2006), 203-226
MSC (2000): Primary 51M15, 51B10; Secondary 51N25, 51M10, 30F40
DOI: https://doi.org/10.1090/S1088-4173-06-00119-6
Published electronically: September 21, 2006
MathSciNet review: 2261049
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a finite approximation to a Jordan curve with the given pair of bending measured laminations.


References [Enhancements On Off] (What's this?)

  • 1. L. Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94-97. MR 0111834 (22:2694)
  • 2. F. Bonahon, Kleinian groups which are almost Fuchsian, J. Reine. Angew. Math. 587 (2005), 1-15. MR 2186972
  • 3. X. Bao, F. Bonahon, Hyperbolic polyhedra in hyperbolic $ 3$-space, Bull. Soc. Math. France 130 (2002), no. 3, 457-491. MR 1943885 (2003k:52007)
  • 4. F. Bonahon, J.P. Otal, Lamination mesurées de plissage des variétés hyperboliques de dimension $ 3$, Ann. of Math. (2) 160 (2004), no. 3, 1013-1055. MR 2144972
  • 5. P.L. Bowers and K. Stephenson, A branched Andreev-Thurston theorem for circle packings of the sphere, Proc. London Math. Soc. 73 (1996), 185-215. MR 1387087 (97d:52027)
  • 6. Y.E. Choi, C. Series, Lengths are coordinates for convex structures, J. Differential Geometry, to appear.
  • 7. D.B.A. Epstein, A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces. Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984), 113-253, London Math. Soc. Lecture Note Ser., 111, Cambridge Univ. Press, Cambridge, 1987. MR 0903852 (89c:52014)
  • 8. F.P. Gardiner, J. Hu, N. Lakic, Earthquake curves, Complex manifolds and hyperbolic geometry (Guanajuato, 2001), 141-195, Contemp. Math., 311, Amer. Math. Soc., Providence, RI, 2002. MR 1940169 (2003i:37033)
  • 9. Zheng-Xu He, Rigidity of infinite disk patterns, Ann. of Math. (2) 149 (1999), no. 1, 1-33. MR 1680531 (2000j:30068)
  • 10. C.D. Hodgson, I. Rivin, A characterization of compact convex polyhedra in hyperbolic $ 3$-space, Invent. Math. 111 (1993), no. 1, 77-111. MR 1193599 (93j:52015)
  • 11. R. Kulkarni, U.S. Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994), no. 1, 89-129. MR 1273468 (95b:53017)
  • 12. L. Keen, C. Series, Pleating invariants for punctured torus groups, Topology 43 (2004), no. 2, 447-491. MR 2052972 (2005f:30077)
  • 13. L. Keen, C. Series, How to bend pairs of punctured tori, Lipa's legacy (New York, 1995), 359-387, Contemp. Math., 211, Amer. Math. Soc., Providence, RI, 1997. MR 1476997 (98m:30063)
  • 14. I. Rivin, On geometry of convex polyhedra in hyperbolic $ 3$-space, Ph.D. Thesis, Princeton, 1986.
  • 15. I. Rivin, A characterization of ideal polyhedra in hyperbolic $ 3$-space, Ann. of Math. (2) 143 (1996), no. 1, 51-70. MR 1370757 (96i:52008)
  • 16. I. Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. of Math. (2) 139 (1994), no. 3 , 553-580. MR 1283870 (96h:57010)
  • 17. C. Series, On Kerckhoff minima and pleating varieties for quasifuchsian groups, Geometriae Dedicata Vol. 88, 211-237, 2001. MR 1877217 (2002j:30066)
  • 18. C. Series, Limits of quasifuchsian groups with small bending, Duke J. Mathematics, to appear.
  • 19. H. Tanigawa, Grafting, harmonic maps and projective structures on surfaces, J. Differential Geom. 47 (1997), no. 3, 399-419. MR 1617652 (99c:32029)
  • 20. W.P. Thurston, The geometry and topology of $ 3$-manifolds, Princeton University Lecture Notes, Online at http://www.msri.org/publications/books/gt3m, 1982.
  • 21. W.P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), 91-112, London Math. Soc. Lecture Note Ser., 112, Cambridge Univ. Press, Cambridge, 1986.

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 51M15, 51B10, 51N25, 51M10, 30F40

Retrieve articles in all journals with MSC (2000): 51M15, 51B10, 51N25, 51M10, 30F40


Additional Information

Reza Chamanara
Affiliation: Institute for Studies in Theoretical Physics and Mathematics (IMP), Tehran, Iran
Address at time of publication: Institute for Mathematical Sciences, Stony Brook University, Stony Brook, New York 11794-3660
Email: rchamanara@math.sunysb.edu

DOI: https://doi.org/10.1090/S1088-4173-06-00119-6
Keywords: M\"{o}bius structures, grafting, convex hulls, disk patterns
Received by editor(s): March 22, 2004
Received by editor(s) in revised form: April 3, 2006
Published electronically: September 21, 2006
Additional Notes: This research was in part supported by a grant from IPM (No. 83510120)
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society