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QUASI-METRIC AND METRIC SPACES

VIKTOR SCHROEDER

ABSTRACT. We give a short review of a construction of Frink to obtain a metric
space from a quasi-metric space. By an example we illustrate the limits of the
construction.

1. INTRODUCTION

A quasi-metric space is a set Z with a function p : Z x Z — [0, c0) which satisfies
the conditions

(1) p(z,2") >0 for every z, 2/ € Z and p(z,2") =0 if and only if z = 2/;

(2) p(z, ) = p(#, 2) for every z, 2/ € Z;

(3) p(z,2") < Kmax{p(z,2'),p(,7")} for every z, 2/, 2" € Z and some fixed
K 2 1.

The function p is called in that case a quasi-metric, or more specifically, a K-
quasi-metric. The property (3) is a generalized version of the ultra-metric triangle
inequality (the case K = 1).

Remark 1.1. If (Z,d) is a metric space, then d is a K-quasi-metric for K = 2. In
general dP is not a metric on Z for p > 1. But dP is still a 2P-quasi-metric.

We are interested in the question of how to obtain a metric on Z. Our personal
motivation comes from the study of the boundary at infinity of a Gromov hyperbolic
space, where this question arises naturally, see e.g., [BS| chapter 2], [BoF]. The
problem was studied by Frink in the interesting paper [Fr]. The motivation of Frink
was to obtain suitable conditions for a topological space to be metrizable. Frink
used a natural approach, which we call the chain approach to obtain a metric on Z.
He showed that this approach works and gives a metric if the space (Z, p) satisfies
the axioms (1) and (2) above instead of (3) the weak triangle inequality

(3") If p(z,2") < e and p(2/,2") < e, then p(z,2") < 2e.

Observe that (3") is equivalent to (3) with constant K = 2, but the formulation
as a weak triangle inequality points out that the constant K = 2 plays a special
role.

In this short note we give a review of Frink’s approach and show that there
exists a “natural” counterexample to the chain approach in case the weak triangle
inequality (3') is not satisfied.
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1.1. Quasi-metrics and metrics. Let (Z, p) be a quasi-metric space. We want
to obtain a metric on Z. Since p satisfies all axioms of a metric space except the
triangle inequality, the following approach is very natural. Defineamapd: Zx2Z —
[0,00), d(z,2") =inf >, p(, zit1), where the infimum is taken over all sequences
2 = 20,---,2p41 = 2’ in Z. By definition, d satisfies the triangle inequality. We
call this approach to the triangle inequality the chain approach. The problem with
the chain approach is that d(z,z’) could be 0 for different points z, 2’ and axiom
(1) is no longer satisfied for (Z, d).

This chain approach is due to Frink, who realized that the approach works if the
space (Z, p) satisfies the axioms (1), (2) and (3') above. For the convenience of the
reader we give a proof of Frink’s result.

Theorem 1.2. Let p be a K-quasi-metric on a set Z with K < 2. Then, the chain
construction applied to p yields a metric d with ﬁp <d<p.

Proof. Clearly, d is nonnegative, symmetric, satisfies the triangle inequality and
d < p. We prove by induction over the length of sequences o = {z = 2, ..., 2zk41 =
Z'}, |o| = k + 2, that

k—1
(1) pz2)<) (0)=K (P(Zov 2) 42 plzi zin) + pl2k, Zk+1)> :
1

For |o| = 3, this follows from the triangle inequality (3) for p. Assume that ()
holds true for all sequences of length |o| < k + 1, and suppose that |o| = k + 2.

Given p € {1,...,k — 1}, we let 0}, = {20,..,2ps1}, 0y = {2p;---, 2k11}, and
note that ) (o) = > (0},) + > ().

Because p(z,2") < K max{p(z, zp), p(zp, 2') }, there is a maximal p € {0,..., k}
with p(z,2') < Kp(zp, 2'). Then p(z,2') < Kp(z, zp+1)-

Assume now that p(z,z") > > (¢). Then, in particular, p(z,z") > Kp(z, z1) and
p(z,2") > Kp(z, 2'). Tt follows that p € {1,...,k — 1} and thus by the inductive
assumption

(2 2p41) + (29, 2) <Y (03) + D> (o)) =Y (0) < p(2,2).
On the other hand,

p(2,2') < K minfp(z, 2pe1), p(2ps 7)} < p(z 2p1) + P25, 2)

because K < 2; a contradiction. Now, it follows from () that p < 2Kd; hence, d
is a metric as required. O

2. EXAMPLE

In this section we construct for any given € > 0 a quasi-metric space (Z, p) such
that the chain approach does not lead to a metric space and the following holds:
For every triple of points zg, 21, 22 we have

p(z1,22) < (1 +¢)[p(z1, 20) + p(20, 22)].

Let, therefore, a € (0, ) be a given constant. Let Z be the set of dyadic rationals
of the interval [0, 1]. Then Z is the disjoint union of Z,, , n € N, where Zy = {0, 1},
and Z, = {£ : 0 < k < 2",k odd} for n > 1. If z € Z,, we say that the level of z is
n and write ¢(z) = n. For the following construction it is useful to see Z embedded

by z — (z,£(2)) as a discrete subset of the plane. Let z = % € Z, with n > 1,
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then we define the right and the left neighbors I(2) = %21 and r(z) = . We
see that £(1(2)),4(r(z)) < n and clearly I(z) < z < r(z), where we take the usual
ordering induced by the reals. Given z € Z with ¢(z) > 1 we counsider the right path
2,7(2),72(2),... and the left path 2,1(z),l?(2),.... Note that after a finite number
of steps, the right path always ends at 1 and the left path always ends at 0.

We use the following facts:

Fact 1: Consider for an arbitrary z € Z the levels of the vertices on the right
and on the left path, i.e., £(I(2)),4(13(2)),... and £(r(2)),£(r*(2)),.... Then all
intermediate levels n with 0 < n < £(z) occur exactly once (either on the right
or on the left path). E.g., consider 11/64 which is of level 6. The left path is
11/64,5/32,1/8,0 (containing the intermediate levels 5 and 3), the right path is
11/64,3/16,1/4,1/2,1 (containing the remaining intermediate levels 4,2 and 1).
This fact can be verified by looking at the dyadic expansion of z, e.g., 11/64 =
0.001011. Note that the dyadic expression of I(z) is obtained from the one of z
by removing the last 1 in this expression, i.e., [(0.001011) = 0.00101. The dyadic
expression of r(z) is obtained by removing the last consecutive sequence of 1’s and
putting a 1 instead of the 0 in the last entry before the sequence, e.g., r(0.001011) =
0.0011. Therefore the levels of the left path (resp. of the right path) correspond to
the places with a 1 (resp. with a 0) in the dyadic expansion.

Fact 2: Let [*(2) be a point on the left path and ¢(I*(z)) > 1. Let m be the
integer, such that 7 () is the first point on the right path with £(r™(2)) < £(1*(2)),
then 7(I¥(z)) = r™(z). A corresponding statement holds for points on the right
path. This fact can also be verified by looking at the dyadic expansion.

We consider the graph whose vertex set is Z, and the edges are given by the
pairs {0,1},{z,r(2)},{z,1(2)}, where the z € Z are points with level > 1. One
can visualize this graph nicely, if we use the realization of Z in the plane described
above. In this picture we can see the edges as line intervals and the graph is planar.
In this picture the left path from a point z with ¢(z) > 1 can be viewed as the
graph of a piecewise linear function defined on the interval [0, z] (here z € [0,1])
and the right path as the graph of a piecewise linear function on [z, 1]. The union
of these two paths form a “tent” in this picture (see Figure []).

Fact 3: Below this tent there lies no point of Z.

To every edge in this graph we associate a length. To the edge {0, 1} we associate
the length 1, and to an edge of the type {z,1(2)} and {z,r(z)} we associate the
length a*). Now we define the quasi-metric p. First, set p(0,1) = 1. Let z,2' €
Z be points such that z,z’ is not the pair 0,1. Let us assume z < 2’. Then
we consider the right path z,7(2),r%(2),...,1 starting from z, and the left path
2 1(2"),1%(2"),...,0 starting from z’. Then the properties from above imply that
these two paths intersect at a unique point r¥(z) = [*(z/). Then we obtain a
V-shaped path z,7(z),...,7%(z) = 1°(%),...,1('), %' formed by edges from our
graph from z to z’. We define p(z, z’) to be the sum of the lengths of the edges of
this path.

The main point is now to show that p is a quasi-metric space. Before we prove
this, we show that the chain approach does not give a metric. Therefore, consider
for any integer n the chain 0,1/2",2/2™ 3/2" ... ,2"/2" = 1. By our definition
p(i/2™, (i +1)/2™) = a™. Thus the length of the chain is 2"a™ which converges to
0 since a < 1/2.

It remains to show that p is a quasi-metric.
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F1GURE 1. Graph with a tent

Fact 4: If z € Z,, then p(z,0) + p(z,1) = 7, where
Tn=a+a>+ - +a""! 4 2a".

To obtain this fact consider the tent formed by the left path from 0 to z and the
right path from z to 1 and consider the levels of the points on this path. By Fact
1, all intermediate levels occur exactly once. Thus the formula comes immediately
from the definition of p. Note that the 2a™ comes from the two edges starting at
the top point z of the tent.

Note that in the “limit case” a = 1/2 we have 7,, = 1 for all n. For a < 1/2 we

easily compute
a

1—a

Consider now the following special triangle zg, z1, 22, with the properties:

z1 lies on the left path starting from zg,

zo lies on the right path starting from zy, and

zo lies on the right path starting from z.

These conditions imply that z; < zg < zo and £(zg) > (2z1) > £(z2).

Let n = £(zp) and m = £(z1). Then Fact 4 applied to the tents 0, 29, 1 and 0, 21, 1
implies that

20=T1 >Tg >+ > Ty = limT7, =

(21, 20) + p(z0,22) — p(21,22) = Ty — Tiy, < 0.
Hence, {z1, 22} is the longest side of that triangle.
We obtain from the above inequalities in particular that

1—2a
Pz 22) = (pla1, 20) + (20, 22)) < Ton = Too = ™ T,
where the last equality is an easy computation. Since p(z1, 22) > a™, we obtain
P21, %0) + p(20,22) _Ll=2a
p(z1,22) - 1—a’
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and hence
plz1,22) < (14 €a)(p(21, 20) + p(20, 22)),
where e, — 0 for a — 1/2. Actually 1 +¢, = (1 — a)/a.

We consider now an arbitrary (nondegenerate) triangle. We number the vertices
such that z; < zp < 29.

Consider the V-shaped path from 27 to 2y, let Z = 7¥(21) = I*(22) be the “lowest”
point on this path. By symmetry of the whole argument we assume without loss of
generality that zp < Z. Now (using Fact 3) we see that the left path staring at zg
will intersect the right path starting in z;. Let z{ be the intersection point. Let z}
be the first point, where the right path starting at zy coincides with the right path
starting at z;. Fact 3 implies that 2}, < Z. Note that now the triangle 21, 29, 25 is a
special triangle as discussed above. Further note that

p(21,20) = p(z1,21) + p(21, 20),
p(20, 22) = p(20, 23) + p(23, 22),
p(21,22) = p(21, 21) + p(21, 25) + p(25, 22).
Therefore we see as above
p(z1,22) 2 p(21, 20) + p(20, 22).-
We compute
Pt 20) + pla0,23) (7o) +pla0,28) _ 1=2a
o) © el o I-a
where the last inequality is from the special case. Thus also in this case we obtain

p(21,22) < (1+¢ea)(p(21,20) + p(20, 22))-

3. FINAL REMARKS

In this remark we discuss some related results of [BoF]. As already mentioned,
quasi-metrics play an important role in the study of Gromov hyperbolic metric
spaces. Indeed, the boundary Z = J,,X of a Gromov hyperbolic space X carries
a natural quasi-metric p(€,n) = e~ &"e where (.|.), is the Gromov product with
respect to some basepoint o € X. For a quasi-metric space (Z, p) denote by d =
ca(p) the pseudometric which is obtained from p by the chain approach. We call
(Z,p) an LM-space (Lipschitz metrizable), if ca(p) is bi-Lipschitz to p. Hence, a
quasi-metric space is LM if and only if the following two conditions hold:

(1) The chain approach gives a metric.

(2) The metric from the chain approach is bi-Lipschitz to p.

Consider now the whole family of quasi-metrics p*, s € (0,00). If (Z,p) is a
quasi-metric space, then p° is a 2-quasi-metric for s > 0 sufficiently small and thus
the chain approach works and gives a metric bi-Lipschitz to p®. This allows us to
define, for a quasi-metric space, a critical exponent sg € (0, 00] with the following
property: p° is LM for all s < sy and p® is not LM for all s > so. In the case
that Z = 0, X is the boundary of a Gromov hyperbolic space X, the number
K, (X) = —s? is called the asymptotic upper curvature bound of X. This invariant
is defined and studied in [BoF]. Using modifications of our example above, one
can construct Gromov hyperbolic spaces with interesting properties with respect
to the asymptotic upper curvature bound. One can, in particular, give examples of
quasi-metric spaces (Z, p) arising as boundaries of Gromov hyperbolic spaces such
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that the critical quasi-metric p® is (resp. is not) bi-Lipschitz to a metric. These
and related questions will be studied elsewhere.
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