Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Boundary behavior of conformal deformations


Authors: Tomi Nieminen and Timo Tossavainen
Journal: Conform. Geom. Dyn. 11 (2007), 56-64
MSC (2000): Primary 30C65
DOI: https://doi.org/10.1090/S1088-4173-07-00161-0
Published electronically: May 30, 2007
MathSciNet review: 2314242
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study conformal deformations of the Euclidean metric in the unit ball $ \mathbb{B}^{n}$. We assume that the density associated with the deformation satisfies a Harnack inequality and an arbitrary volume growth condition on the isodiametric profile. We establish a Hausdorff (gauge) dimension estimate for the set $ E\subset \partial \mathbb{B}^{n}$ where such a deformation mapping can ``blow up''. We also prove a generalization of Gerasch's theorem in our setting.


References [Enhancements On Off] (What's this?)

  • 1. M. Bonk and P. Koskela, Conformal metrics and size of the boundary, Amer. J. Math. Vol. 124 (6) (2002), 1247-1287. MR 1939786 (2003i:30068)
  • 2. M. Bonk, P. Koskela and S. Rohde, Conformal metrics on the unit ball in euclidean space, Proc. London Math. Soc. Vol. 77 (3) (1998), 635-664. MR 1643421 (99f:30033)
  • 3. H. Federer, Geometric measure theory, Springer-Verlag, Berlin-Heidelberg, 1969. MR 0257325 (41:1976)
  • 4. T. E. Gerasch, On the accessibility of the boundary of a simply connected domain, Michigan Math. J. Vol. 33 (1986), 201-207. MR 837578 (87g:30040)
  • 5. B. Hanson, P. Koskela and M. Troyanov, Boundary behavior of the quasi-regular maps and the isodiametric profile, Conform. Geom. Dyn. Vol. 5 (2001), 81-99. MR 1872158 (2002h:30025)
  • 6. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Univ. Press, 1995. MR 1333890 (96h:28006)
  • 7. O. Martio and R. Näkki, Boundary accessibility of a domain quasiconformally equivalent to a ball, Bull. London. Math. Soc. Vol. 36 (2004), 114-118. MR 2011985 (2004m:30033)
  • 8. C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, 1970. MR 0281862 (43:7576)
  • 9. W. P. Ziemer, Weakly differentiable functions, Springer Graduate Texts in Mathematics 120, 1989. MR 1014685 (91e:46046)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C65

Retrieve articles in all journals with MSC (2000): 30C65


Additional Information

Tomi Nieminen
Affiliation: Department of Mathematics and Statistics, Jyväskylä University, P.O. Box 35, FIN-40014 Jyväskylä, Finland
Email: tominiem@maths.jyu.fi

Timo Tossavainen
Affiliation: Department of Teacher Education, University of Joensuu, P.O. Box 86, FIN-57101 Savonlinna, Finland
Email: timo.tossavainen@joensuu.fi

DOI: https://doi.org/10.1090/S1088-4173-07-00161-0
Keywords: Boundary, conformal metrics, quasiconformal mapping.
Received by editor(s): October 20, 2006
Published electronically: May 30, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society