Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173



The McMullen domain: Satellite Mandelbrot sets and Sierpinski holes

Author: Robert L. Devaney
Journal: Conform. Geom. Dyn. 11 (2007), 164-190
MSC (2000): Primary 37F45; Secondary 37F20
Published electronically: September 20, 2007
MathSciNet review: 2346215
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we describe some features of the parameter planes for the families of rational maps given by $ F_\lambda(z) = z^n + \lambda/z^n$ where $ n \geq 3, \lambda \in \mathbb{C}$. We assume $ n \geq 3$ since, in this case, there is a McMullen domain surrounding the origin in the $ \lambda$-plane. This is a region where the corresponding Julia sets are Cantor sets of concentric simple closed curves. We prove here that the McMullen domain in the parameter plane is surrounded by infinitely many simple closed curves $ {\mathcal S}^k$ for $ k = 1,2,\ldots$ having the property that:

  1. Each curve $ {\mathcal S}^k$ surrounds the McMullen domain as well as $ {\mathcal S}^{k+1}$, and the $ {\mathcal S}^k$ accumulate on the boundary of the McMullen domain as $ k \rightarrow \infty$.
  2. The curve $ {\mathcal S}^k$ meets the centers of $ \tau_k^n$ Sierpinski holes, each with escape time $ k+2$ where

    $\displaystyle \tau_{k}^n = (n-2) n^{k-1} + 1. $

  3. The curve $ {\mathcal S}^k$ also passes through $ \tau_k^n$ parameter values which are centers of the main cardioids of baby Mandelbrot sets with base period $ k$.

References [Enhancements On Off] (What's this?)

  • 1. Blanchard, P., Devaney, R. L., Look, D. M., Seal, P., and Shapiro, Y., Sierpinski Curve Julia Sets and Singular Perturbations of Complex Polynomials. Ergodic Theory and Dynamical Systems 25 (2005), 1047-1055. MR 2158396 (2006d:37087)
  • 2. Devaney, R. L., Baby Mandelbrot Sets Adorned with Halos in Families of Rational Maps. In Complex Dynamics: Twenty Five Years After the Appearance of the Mandelbrot Set, Contemporary Math 396 (2006), 37-50. MR 2209085 (2006k:37131)
  • 3. Devaney, R. L., Structure of the McMullen Domain in the Parameter Planes for Rational Maps. Fundamenta Mathematicae 185 (2005), 267-285. MR 2161407 (2006c:37046)
  • 4. Devaney, R. L. and Marotta, S., The McMullen Domain: Rings Around the Boundary. Trans. Amer. Math. Soc. 359 (2007), no. 7, 3251-3273 (electronic). MR 2299454
  • 5. Devaney, R. L. and Look, D. M., A Criterion for Sierpinski Curve Julia Sets. Spring Topology and Dynamical Systems Conference. Topology Proc. 30 (2006), no. 1, 163-179. MR 2280665
  • 6. Devaney, R. L., Look, D. M., and Uminsky, D., The Escape Trichotomy for Singularly Perturbed Rational Maps. Indiana University Mathematics Journal 54 (2005), 1621-1634. MR 2189680 (2006i:37105)
  • 7. Douady, A. and Hubbard, J., Etude Dynamique des Polynômes Complexes. Publ. Math. D'Orsay (1984).
  • 8. Douady, A., and Hubbard, J. On the Dynamics of Polynomial-like Mappings. Ann. Sci. ENS Paris 18 (1985), 287-343. MR 816367 (87f:58083)
  • 9. Mane, R., Sad, P., and Sullivan, D., On the Dynamics of Rational Maps. Ann. Sci. ENS Paris 16 (1983), 193-217. MR 732343 (85j:58089)
  • 10. McMullen, C., Automorphisms of Rational Maps. Holomorphic Functions and Moduli. Vol. 1. Math. Sci. Res. Inst. Publ. 10. Springer, New York, 1988. MR 955807 (89m:58187)
  • 11. McMullen, C., The Classification of Conformal Dynamical Systems. Current Developments in Mathematics. Internat. Press, Cambridge, MA, (1995) 323-360. MR 1474980 (98h:58162)
  • 12. Milnor, J., Dynamics in One Complex Variable. Third Edition. Princeton University Press. MR 2193309 (2006g:37070)
  • 13. Milnor, J. and Tan Lei, A ``Sierpinski Carpet'' as Julia Set. Appendix F in Geometry and Dynamics of Quadratic Rational Maps. Experiment. Math. 2 (1993), 37-83. MR 1246482 (96b:58094)
  • 14. Petersen, C. and Ryd, G., Convergence of Rational Rays in Parameter Spaces, The Mandelbrot set: Theme and Variations, London Mathematical Society, Lecture Note Series 274, Cambridge University Press, 161-172, 2000. MR 1765088 (2001f:37057)
  • 15. Roesch, P., On Capture Zones for the Family $ f_\lambda(z) = z^2 + \lambda/z^2$. In Dynamics on the Riemann Sphere, European Mathematical Society, (2006), 121-130.
  • 16. Whyburn, G. T., Topological Characterization of the Sierpinski Curve. Fundamenta Mathematicae 45 (1958), 320-324. MR 0099638 (20:6077)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 37F45, 37F20

Retrieve articles in all journals with MSC (2000): 37F45, 37F20

Additional Information

Robert L. Devaney
Affiliation: Department of Mathematics, Boston University, 111 Cummington Street, Boston, Massachusetts 02215

Keywords: McMullen domain, Sierpinski curve, Mandelbrot set, Julia set, rational map
Received by editor(s): July 11, 2006
Published electronically: September 20, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society