Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Topics in special functions. II


Authors: G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen
Journal: Conform. Geom. Dyn. 11 (2007), 250-270
MSC (2000): Primary 30C62; Secondary 33E05, 33E99
DOI: https://doi.org/10.1090/S1088-4173-07-00168-3
Published electronically: November 8, 2007
MathSciNet review: 2354098
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In geometric function theory, conformally invariant extremal problems often have expressions in terms of special functions. Such problems occur, for instance, in the study of change of euclidean and noneuclidean distances under quasiconformal mappings. This fact has led to many new results on special functions. Our goal is to provide a survey of such results.


References [Enhancements On Off] (What's this?)

  • [Ag] S. AGARD: Distortion theorems for quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 413 (1968), 1-12. MR 0222288 (36:5340)
  • [AgG] S. B. AGARD AND F. W. GEHRING: Angles and quasiconformal mappings, Proc. London Math. Soc. 14 (1965), 1-21. MR 0178140 (31:2398)
  • [Ah] L. AHLFORS: Lectures on quasiconformal mappings. Manuscript prepared with the assistance of Clifford J. Earle, Jr., Van Nostrand Mathematical Studies, No. 10, Van Nostrand, Toronto-New York-London, 1966. MR 2241787
  • [AhB] L. AHLFORS AND A. BEURLING: Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101-129. MR 0036841 (12:171c)
  • [An] G. D. ANDERSON: Mathematical Reviews.
  • [AQVa] G. D. ANDERSON, S.-L. QIU, AND M. K. VAMANAMURTHY: Grötzsch ring and quasiconformal distortion functions, Hokkaido Math. J. 24 (1995), 551-566. MR 1357030 (96m:30032)
  • [AQVV] G. D. ANDERSON, S.-L. QIU, M. K. VAMANAMURTHY, AND M. VUORINEN: Generalized elliptic integrals and modular equations, Pacific J. Math. 192 (2000), 1-37. MR 1741031 (2001b:33027)
  • [AQVu] G. D. ANDERSON, S.-L. QIU, AND M. VUORINEN: Modular equations and distortion functions, Ramanujan J. (to appear), arXiv math.CV/0701228.
  • [ASVV] G. D. ANDERSON, T. SUGAWA, M. K. VAMANAMURTHY, AND M. VUORINEN: Special functions and hyperbolic metric, Manuscript, 2007.
  • [AV] G. D. ANDERSON AND M. K. VAMANAMURTHY: Some properties of quasiconformal distortion functions, New Zealand J. Math. 24 (1995), 1-15. MR 1348048 (97a:33056)
  • [AVV1] G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN: Distortion functions for plane quasiconformal mappings, Israel J. Math. 62 (1988), 1-16. MR 947825 (89f:30036)
  • [AVV2] G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN: Special functions of quasiconformal theory, Exposition. Math. 7 (1989), 97-136. MR 1001253 (90k:30032)
  • [AVV3] G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN: Inequalities for quasiconformal mappings in space, Pacific J. Math. 160 (1993), 1-18. MR 1227499 (94h:30028)
  • [AVV4] G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN: Conformal Invariants, Inequalities, and Quasiconformal Maps, Wiley, 1997. MR 1462077 (98h:30033)
  • [AVV5] G. D. ANDERSON, M. K. VAMANAMURTHY, AND M. VUORINEN: Topics in special functions, in Papers on Analysis: A volume dedicated to Olli Martio on the occasion of his 60th birthday, Report. Univ. Jyväskylä 83 (2001), pp. 5-26, available at http://www.math.jyu.fi/research/report83.html. MR 1886609 (2003e:33001)
  • [BEFS] A. BAERNSTEIN II, A. EREMENKO, A. FRYNTOV, AND A. SOLYNIN: Sharp estimates for hyperbolic metrics and covering theorems of Landau type, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 1, 113-133. MR 2140301 (2006a:30044)
  • [B1] A. BARICZ: Landen-type inequality for Bessel function, Comput. Methods Funct. Theory 5 (2005), 373-379. MR 2205420
  • [B2] A. BARICZ: Functional inequalities involving special functions, J. Math. Anal. Appl. 319 (2006), 450-459. MR 2227916 (2007a:33004)
  • [B3] A. BARICZ: Functional inequalities involving special functions II, J. Math. Anal. Appl. 327 (2007), 1202-1213. MR 2279998
  • [B4] A. BARICZ: Turán type inequalities for generalized complete elliptic integrals, Math. Z. 256 (2007), 895-911. MR 2308896
  • [BCS] R. W. BARNARD, L. COLE, AND A. YU. SOLYNIN: Minimal harmonic measure on complementary regions, Comput. Methods Funct. Theory 2 (2002), 229-247. MR 2000559 (2004g:30037)
  • [BHS] R. W. BARNARD, P. HADJICOSTAS, AND A. YU. SOLYNIN: The Poincaré metric and isoperimetric inequalities for hyperbolic polygons, Trans. Amer. Math. Soc. 357 (2005), 3905-3932. MR 2159693 (2006b:30035)
  • [Bea1] A. F. BEARDON: The hyperbolic metric in a rectangle. Ann. Acad. Sci. Fenn. Math. 26 (2001), 401-407. MR 1833248 (2002a:30072)
  • [Bea2] A. F. BEARDON: The hyperbolic metric in a rectangle. II. Ann. Acad. Sci. Fenn. Math. 28 (2003), 143-152. MR 1976836 (2004c:30072)
  • [Be1] B. C. BERNDT: Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989. MR 970033 (90b:01039)
  • [Be2] B. C. BERNDT: Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994. MR 1261634 (95e:11028)
  • [BAh] A. BEURLING AND L. AHLFORS: The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. MR 0086869 (19:258c)
  • [BK] M. BIERNACKI AND J. KRZYZ: On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. M. Curie-Sk\lodowska Sect. A 9 (1955), 135-147. MR 0089903 (19:736f)
  • [BB] J. M. BORWEIN AND P. B. BORWEIN: Pi and the AGM, Wiley, New York, 1987. MR 877728 (89a:11134)
  • [Ch] I. CHAVEL: Riemannian Geometry - A Modern Introduction, Cambridge Tracts in Math. 108, Cambridge Univ. Press, 1993. MR 1271141 (95j:53001)
  • [DK] V. N. DUBININ AND D. KARP: Capacities of certain plane condensers and sets under simple geometric transformations, Complex. Var. Elliptic Equ. (to appear).
  • [Fu] B. FUGLEDE: Extremal length and functional completion, Acta Math. 98 (1957), 171-219. MR 0097720 (20:4187)
  • [GY] J.B. GARNETT AND S.S. YANG: Quasiextremal distance domains and integrability of derivatives of conformal mappings, Michigan Math. J. 41 (1994), 389-406. MR 1278443 (95d:30014)
  • [GV] F. W. GEHRING AND J. VÄISÄLÄ: The coefficients of quasiconformality of domains in space, Acta Math. 114 (1965), 1-70. MR 0180674 (31:4905)
  • [Ha] W. K. HAYMAN: Subharmonic functions, Vol. 2, Academic Press, San Diego, 1989. MR 1049148 (91f:31001)
  • [He] C.-Q. HE: Distortion estimates of quasiconformal mappings, Sci. Sinica Ser. A 27 (1984), 225-232. MR 763965 (86a:30036)
  • [HLVV] V. HEIKKALA, H. LINDÉN, M. K. VAMANAMURTHY, AND M. VUORINEN: Generalized elliptic integrals and the Legendre M-function, J. Math. Anal. Appl. 338 (2008), 223-243, arXiv math.CA/0701438.
  • [HVV] V. HEIKKALA, M. K. VAMANAMURTHY, AND M. VUORINEN: Generalized elliptic integrals, Preprint 404, November 2004, University of Helsinki, arXiv math.CA/0701436.
  • [HV] V. HEIKKALA AND M. VUORINEN: Teichmüller's extremal ring problem, Math. Z. 254 (2006), 509-529. MR 2244363 (2007e:30025)
  • [Hem1] J. A. HEMPEL: The Poincaré metric of the twice punctured plane and the theorems of Landau and Schottky, J. London Math. Soc. (2) 20 (1979), 435-445. MR 561135 (81c:30025)
  • [Hem2] J. A. HEMPEL: Precise bounds in the theorems of Schottky and Picard, J. London Math. Soc. (2) 21 (1980), 279-286. MR 575385 (81i:30053)
  • [Her] J. HERSCH: Longueurs extrémales et théorie des fonctions, Comment. Math. Helv. 29 (1955), 301-337. MR 0076031 (17:835a)
  • [HP] J. HERSCH AND A. PFLUGER: Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234 (1952), 43-45. MR 0046452 (13:736d)
  • [Hi] E. HILLE: Analytic Function Theory, Vol. II, Ginn and Co., Boston, 1962. MR 0201608 (34:1490)
  • [Hü] O. HÜBNER: Remarks on a paper by \Lawrynowicz on quasiconformal mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 183-186. MR 0264066 (41:8662)
  • [JOT] M. JEONG, J.-W. OH, AND M. TANIGUCHI: Equivalence problem for annuli and Bell representations in the plane, J. Math. Anal. Appl. 325 (2007), 1295-1305. MR 2270084
  • [KS] S. KANAS AND T. SUGAWA: On conformal representations of the interior of an ellipse, Ann. Acad. Sci. Fenn. Math. 31 (2006), 329-348. MR 2248819 (2007g:30009)
  • [KiS] Y. C. KIM AND T. SUGAWA: A conformal invariant for non-vanishing analytic functions and its applications, Michigan Math. J. 54 (2006), 393-410. MR 2252767 (2007i:30071)
  • [K] R. KÜHNAU: The application of conformal maps in electrostatics, in Handbook of Complex Analysis: Geometric Function Theory, Vol. 2, 599-619, Elsevier, Amsterdam, 2005. MR 2121868 (2005k:31018)
  • [KY] S. KURIHARA AND S. YAMASHITA: Extremal functions for plane quasiconformal mappings. J. Math. Kyoto Univ. 43 (2003), 71-99. MR 2028701 (2005a:30032)
  • [Kuz1] G. V. KUZ'MINA: Moduli of Families of Curves and Quadratic Differentials, A translation of Trudy Mat. Inst. Steklov. 139 (1980), Proc. Steklov Inst. Math. 1982. MR 612632 (84j:30038a)
  • [Kuz2] G. V. KUZ'MINA: Methods of the geometric theory of functions. I, II, Erratum, (Russian), Algebra i Analiz 9 (1997), no. 3, 41-103, no. 5, 1-50; translation in St. Petersburg Math. J. 9 (1998), no. 3, 455-507, Algebra i Analiz 9 (1998), no. 5, 889-930, translation in St. Petersburg Math. J. 9 (1998), no. 5, 889-930, Algebra i Analiz 10 (1998), no. 3, 223; translation in St. Petersburg Math. J. 10 (1999), no. 3, 577. MR 1466796 (98h:30041)
  • [LV] O. LEHTO AND K. I. VIRTANEN: Quasiconformal Mappings in the Plane, 2nd ed., Springer-Verlag, New York, 1973. MR 0344463 (49:9202)
  • [LVV] O. LEHTO, K. I. VIRTANEN, AND J. VÄISÄLÄ: Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 273 (1959), 1-14. MR 0122990 (23:A321)
  • [Lyz] A. LYZZAIK: The modulus of the image annuli under univalent harmonic mappings and a conjecture of Nitsche, J. London Math. Soc. (2) 64 (2001), no. 2, 369-384. MR 1853457 (2002h:30023)
  • [Mart] G. MARTIN: The distortion theorem for quasiconformal mappings, Schottky's theorem and holomorphic motions, Proc. Amer. Math. Soc. 125 (1997), 1095-1103. MR 1363178 (97g:30017)
  • [M] A. MORI: On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84 (1957), 56-77. MR 0083024 (18:646c)
  • [P] D. PARTYKA: The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math. (Rozprawy Mat.) 366 (1997), 125 pp. MR 1454189 (98e:30022)
  • [PS1] D. PARTYKA AND K. SAKAN: On an asymptotically sharp variant of Heinz's inequality, Ann. Acad. Sci. Fenn. Math. 30 (2005), 167-182. MR 2140305 (2006g:30023)
  • [PS2] D. PARTYKA AND K. SAKAN: On bi-Lipschitz type inequalities for quasiconformal harmonic mappings, Ann. Acad. Sci. Fenn. Math. 32 (2007), 579-594.
  • [Pi] I. PINELIS: L'Hospital Rules for Monotonicity and the Wilker-Anglesio Inequality, Amer. Math. Monthly 111 (2004), 905-909. MR 2104696 (2005i:26037)
  • [Q1] S.-L. QIU: Agard's $ \eta$-distortion function and Schottky's theorem. (English summary) Sci. China Ser. A 40 (1997), no. 1, 1-9. MR 1451085 (98i:30022)
  • [Q2] S.-L. QIU: On Mori's theorem in quasiconformal theory, A Chinese summary appears in Acta Math. Sinica 40 (1997), 319. Acta Math. Sinica (N.S.) 13 (1997), 35-44. MR 1465533 (99a:30026)
  • [QVV1] S.-L. QIU, M. K. VAMANAMURTHY, AND M. VUORINEN: Bounds for quasiconformal distortion functions, J. Math. Anal. Appl. 205 (1997), 43-64. MR 1426979 (98b:30022)
  • [QVV2] S.-L. QIU, M. K. VAMANAMURTHY, AND M. VUORINEN: Some inequalities for the Hersch-Pfluger distortion function, J. Inequal. Appl. 4 (1999), 115-139. MR 1733479 (2002d:30023)
  • [QVu1] S.-L. QIU AND M. VUORINEN: Quasimultiplicative properties for the $ \eta$-distortion function, Complex Variables Theory Appl. 30 (1996), 77-96. MR 1395233 (98b:30021)
  • [QVu2] S.-L. QIU AND M. VUORINEN: Submultiplicative properties of the $ \varphi_K$-distortion function, Studia Math. 117 (1996), 225-242. MR 1373847 (97d:30024)
  • [RZ] L. RESÉNDIS AND J. ZAJAC: The Beurling-Ahlfors extension of quasihomographies, Comment. Math. Univ. St. Paul. 46 (1997), 133-174. MR 1471828 (98m:30030)
  • [Ri1] S. RICKMAN: Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I 395 (1966), 1-30. MR 0210889 (35:1774)
  • [Ri2] S. RICKMAN: Extension over quasiconformally equivalent curves, Ann. Acad. Sci. Fenn. Ser. A I No. 436 (1968), 1-10. MR 0245791 (39:7097)
  • [Sc] K. SCHIEFERMAYR: Upper and lower bounds for the logarithmic capacity of two intervals, Manuscript, 2005.
  • [Sh] Y.-L. SHEN: Conformal invariants of QED domains, Tôhoku Math. J. 56 (2004), 445-466. MR 2075777 (2005d:30026)
  • [SolV1] A. YU. SOLYNIN AND M. VUORINEN: Extremal problems and symmetrization for plane ring domains, Trans. Amer. Math. Soc. 348 (1996), 4095-4112. MR 1333399 (96m:30037)
  • [SolV2] A. YU. SOLYNIN AND M. VUORINEN: Estimates for the hyperbolic metric of the punctured plane and applications, Israel J. Math. 124 (2001), 29-60. MR 1856503 (2002j:30071)
  • [SuV] T. SUGAWA AND M. VUORINEN: Some inequalities for the Poincaré metric of plane domains, Math. Z. 250 (2005), 885-906. MR 2180380 (2006g:30075)
  • [T] O. TEICHMÜLLER: Untersuchungen über konforme und quasikonforme Abbildung, Deutsche Math. 3 (1938), 621-678.
  • [Vä] J. VÄISÄLÄ: Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., Vol. 229, Springer-Verlag, Berlin, 1971. MR 0454009 (56:12260)
  • [VV] M. K. VAMANAMURTHY AND M. VUORINEN: Functional inequalities, Jacobi products, and quasiconformal maps, Illinois J. Math. 38 (1994), 394-419. MR 1269695 (95m:30030)
  • [Vas1] A. VASILEV: Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Mathematics, 1788. Springer-Verlag, Berlin, 2002. MR 1929066 (2003j:30003)
  • [Vas2] A. VASILEV: On distortion under quasiconformal mapping, Rocky Mountain J. Math. 34 (2004), 347-370. MR 2061136 (2005i:30033)
  • [Vu1] M. VUORINEN: Geometric properties of quasiconformal maps and special functions, Bull. Soc. Sci. Lett. \Lódz Sér. Rech. Déform. 24 (1997), 7-58, arXiv:math/0703687. MR 1629728 (99m:30044a)
  • [Vu2] M. VUORINEN: Metrics and quasiregular mappings, in Quasiconformal Mappings and Their Applications, eds. S. Ponnusamy, T. Sugawa, and M. Vuorinen, Narosa Publ. (2007), 291-325, available at http:www.math.utu.fi/proceedings/madras.
  • [Vu3] M. VUORINEN: Quasiconformal images of spheres, Mini-Conference on Quasiconformal Mappings, Sobolev Spaces and Special Functions, Kurashiki, Japan, 2003-01-08, available at http:www.capjn.org/complex/conf02/kurashiki/vuorinen.pdf.
  • [WZQC] G. WANG, X. ZHANG, S.-L. QIU, AND Y. CHU: The bounds of the solutions to generalized modular equations, J. Math. Anal. Appl. 321 (2006), 589-594. MR 2241141
  • [WD] S. WU AND L. DEBNATH: A new generalized and sharp version of Jordan's inequality and its application to the improvement of Yang Le inequality II, Applied Mathematics Letters 20 (2007), 532-538. MR 2303989
  • [Ya] S. YAMASHITA: Inverse functions of Grötzsch's and Teichmüller's modulus functions, J. Math. Kyoto Univ. 43 (2004), 771-805. MR 2030798 (2005d:30008)
  • [Za] J. ZAJAC, Functional identities for special functions of quasiconformal theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 1, 93-103. MR 1207897 (94f:30031a)
  • [ZWC] X. ZHANG, G. WANG, AND Y. CHU: Some inequalities for the generalized Grötzsch function, Proc. Edinburgh Math. Soc. (to appear)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C62, 33E05, 33E99

Retrieve articles in all journals with MSC (2000): 30C62, 33E05, 33E99


Additional Information

G. D. Anderson
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: anderson@math.msu.edu

M. K. Vamanamurthy
Affiliation: Department of Mathematics, University of Auckland, Auckland, New Zealand
Email: vamanamu@math.auckland.nz

M. Vuorinen
Affiliation: Department of Mathematics, FIN-00014, University of Turku, Finland
Email: vuorinen@utu.fi

DOI: https://doi.org/10.1090/S1088-4173-07-00168-3
Keywords: Schwarz Lemma, elliptic integral, distortion function, quasiconformal, Schottky, monotonicity, convexity, Teichm\"uller capacity
Received by editor(s): March 30, 2007
Published electronically: November 8, 2007
Additional Notes: The authors thank the Finnish Mathematical Society, the Finnish Academy of Sciences, and the Academy of Finland (grant no. 107317) for their support of this research.
Dedicated: Dedicated to Seppo Rickman and Jussi Väisälä.
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society