Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Global conformal Assouad dimension in the Heisenberg group


Author: Jeremy T. Tyson
Journal: Conform. Geom. Dyn. 12 (2008), 32-57
MSC (2000): Primary 30C65; Secondary 28A78, 43A80
DOI: https://doi.org/10.1090/S1088-4173-08-00177-X
Published electronically: March 6, 2008
MathSciNet review: 2385407
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study global conformal Assouad dimension in the Heisenberg group $ \mathbb{H}^n$. For each $ \alpha\in\{0\}\cup[1,2n+2]$, there is a bounded set in $ \mathbb{H}^n$ with Assouad dimension $ \alpha$ whose Assouad dimension cannot be lowered by any quasiconformal map of $ \mathbb{H}^n$. On the other hand, for any set $ S$ in $ \mathbb{H}^n$ with Assouad dimension strictly less than one, the infimum of the Assouad dimensions of sets $ F(S)$, taken over all quasiconformal maps $ F$ of $ \mathbb{H}^n$, equals zero. We also consider dilatation-dependent bounds for quasiconformal distortion of Assouad dimension. The proofs use recent advances in self-similar fractal geometry and tilings in $ \mathbb{H}^n$ and regularity of the Carnot-Carathéodory distance from smooth hypersurfaces.


References [Enhancements On Off] (What's this?)

  • 1. ARCOZZI, N., AND FERRARI, F.,
    Metric normal and distance function in the Heisenberg group.
    Math. Z. 256, 3 (2007), 661-684. MR 2299576
  • 2. ARCOZZI, N., FERRARI, F., AND MONTEFALCONE, F.,
    in preparation.
  • 3. ASSOUAD, P.,
    Plongements lipschitziens dans $ \mathbb{R}^n$.
    Bull. Soc. Math. France 111 (1983), 429-448. MR 763553 (86f:54050)
  • 4. BALOGH, Z. M.,
    Hausdorff dimension distribution of quasiconformal mappings on the Heisenberg group.
    J. Anal. Math. 83 (2001), 289-312. MR 1828495 (2002b:30022)
  • 5. BALOGH, Z. M., HOEFER-ISENEGGER, R., AND TYSON, J. T.,
    Lifts of Lipschitz maps and horizontal fractals in the Heisenberg group.
    Ergodic Theory Dynam. Systems 26, 3 (2006). MR 2237461 (2007i:28009)
  • 6. BALOGH, Z. M., AND TYSON, J. T.,
    Hausdorff dimensions of self-similar and self-affine fractals in the Heisenberg group.
    Proc. London Math. Soc. (3) 91, 1 (2005), 153-183. MR 2149533 (2006b:28008)
  • 7. BALOGH, Z. M., TYSON, J. T., AND WARHURST, B.,
    Gromov's dimension comparison problem on Carnot groups.
    C. R. Math. Acad. Sci. Paris 346,
    (2008), 135-138.
  • 8. BALOGH, Z. M., TYSON, J. T., AND WARHURST, B.,
    Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry on Carnot groups.
    Preprint, 2007.
  • 9. BISHOP, C. J.,
    Quasiconformal mappings which increase dimension.
    Ann. Acad. Sci. Fenn. Ser. A I Math. 24 (1999), 397-407. MR 1724076 (2000i:30044)
  • 10. BISHOP, C. J., AND TYSON, J. T.,
    Conformal dimension of the antenna set.
    Proc. Amer. Math. Soc. 129 (2001), 3631-3636. MR 1860497 (2002j:30021)
  • 11. BISHOP, C. J., AND TYSON, J. T.,
    Locally minimal sets for conformal dimension.
    Ann. Acad. Sci. Fenn. Ser. A I Math. 26 (2001), 361-373. MR 1833245 (2002c:30027)
  • 12. BONK, M., AND KLEINER, B.,
    Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary.
    Geom. Topol. 9 (2005), 219-246 (electronic). MR 2116315 (2005k:20102)
  • 13. BOURDON, M.,
    Au bord de certains polyèdres hyperboliques.
    Ann. Inst. Fourier (Grenoble) 45 (1995), 119-141. MR 1324127 (96b:20045)
  • 14. BOURDON, M.,
    Immeubles hyperboliques, dimension conforme et rigidité de Mostow.
    Geom. Funct. Anal. 7 (1997), 245-268. MR 1445387 (98c:20056)
  • 15. CAPOGNA, L.,
    Regularity of quasilinear equations in the Heisenberg group.
    Comm. Pure Appl. Math. 50, 9 (1997), 867-889. MR 1459590 (98k:22037)
  • 16. CAPOGNA, L.,
    Regularity for quasilinear equations and $ 1$-quasiconformal maps in Carnot groups.
    Math. Ann. 313, 2 (1999), 263-295. MR 1679786 (2000a:35027)
  • 17. CAPOGNA, L., AND COWLING, M.,
    Conformality and $ Q$-harmonicity in Carnot groups.
    Duke Math. J. 135, 3 (2006), 455-479. MR 2272973 (2007h:30017)
  • 18. CAPOGNA, L., DANIELLI, D., PAULS, S. D., AND TYSON, J. T.,
    An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, vol. 259 of Progress in Mathematics.
    Birkhäuser Verlag, Basel, 2007. MR 2312336
  • 19. CAPOGNA, L., AND GAROFALO, N.,
    Ahlfors type estimates for perimeter measures in Carnot-Carathéodory spaces.
    J. Geom. Anal. 16, 3 (2006), 455-497. MR 2250055 (2008a:28005)
  • 20. FALCONER, K. J., AND MAULDIN, R. D.,
    Fubini-type theorems for general measure constructions.
    Mathematika 47 (2000), 251-265. MR 1924502 (2003e:28009)
  • 21. GEHRING, F. W., AND VäISäLä, J.,
    Hausdorff dimension and quasiconformal mappings.
    J. London Math. Soc. (2) 6 (1973), 504-512. MR 0324028 (48:2380)
  • 22. GELBRICH, G.,
    Self-similar periodic tilings on the Heisenberg group.
    J. Lie Theory 4, 1 (1994), 31-37. MR 1326950 (96e:22013)
  • 23. HEINONEN, J.,
    Calculus on Carnot groups.
    In Fall School in Analysis (Jyväskylä, 1994), vol. 68. Ber. Univ. Jyväskylä Math. Inst., Jyväskylä, 1995, pp. 1-31. MR 1351042 (96j:22015)
  • 24. HEINONEN, J.,
    A capacity estimate on Carnot groups.
    Bull. Sci. Math. 119 (1995), 475-484. MR 1354248 (96j:22011)
  • 25. HEINONEN, J.,
    Lectures on analysis on metric spaces.
    Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • 26. HEINONEN, J., AND KOSKELA, P.,
    Quasiconformal maps in metric spaces with controlled geometry.
    Acta Math. 181 (1998), 1-61. MR 1654771 (99j:30025)
  • 27. HEINONEN, J., AND SEMMES, S.,
    Thirty-three yes or no questions about mappings, measures, and metrics.
    Conform. Geom. Dyn. 1 (1997), 1-12. MR 1452413 (99h:28012)
  • 28. HUTCHINSON, J. E.,
    Fractals and self-similarity.
    Indiana Univ. Math. J. 30 (1981), 713-747. MR 625600 (82h:49026)
  • 29. KEITH, S., AND LAAKSO, T.,
    Conformal Assouad dimension and modulus.
    Geom. Funct. Anal. 14, 6 (2004), 1278-1321. MR 2135168 (2006g:30027)
  • 30. KIGAMI, J.,
    Analysis on fractals, vol. 143 of Cambridge Tracts in Mathematics.
    Cambridge University Press, Cambridge, 2001. MR 1840042 (2002c:28015)
  • 31. KORáNYI, A., AND REIMANN, H. M.,
    Quasiconformal mappings on the Heisenberg group.
    Invent. Math. 80 (1985), 309-338. MR 788413 (86m:32035)
  • 32. KORáNYI, A., AND REIMANN, H. M.,
    Foundations for the theory of quasiconformal mappings on the Heisenberg group.
    Adv. Math. 111 (1995), 1-87. MR 1317384 (96c:30021)
  • 33. KOVALEV, L. V.,
    Conformal dimension does not assume values between zero and one.
    Duke Math. J. 134, 1 (2006), 1-13. MR 2239342 (2007c:51016)
  • 34. LAGARIAS, J. C., AND WANG, Y.,
    Self-affine tiles in $ {\bf R}\sp n$.
    Adv. Math. 121, 1 (1996), 21-49. MR 1399601 (97d:52034)
  • 35. LUUKKAINEN, J.,
    Assouad dimension: antifractal metrization, porous sets, and homogeneous measures.
    J. Korean Math. Soc. 35 (1998), 23-76. MR 1608518 (99m:54023)
  • 36. MATTILA, P.,
    Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics.
    Cambridge University Press, Cambridge, 1995. MR 1333890 (96h:28006)
  • 37. MORAN, P. A. P.,
    Additive functions of intervals and Hausdorff measure.
    Proc. Cambridge Philos. Soc. 42 (1946), 15-23. MR 0014397 (7:278f)
  • 38. MOSTOW, G. D.,
    Strong rigidity of locally symmetric spaces.
    Princeton University Press, Princeton, N.J., 1973.
    Annals of Mathematics Studies, No. 78. MR 0385004 (52:5874)
  • 39. PANSU, P.,
    Une inégalité isopérimétrique sur le groupe de Heisenberg.
    C. R. Acad. Sci. Paris Sér. I Math. 295, 2 (1982), 127-130. MR 676380 (85b:53044)
  • 40. PANSU, P.,
    Dimension conforme et sphère à l'infini des variétés à courbure négative.
    Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177-212. MR 1024425 (90k:53079)
  • 41. PANSU, P.,
    Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.
    Ann. of Math. (2) 129 (1989), 1-60. MR 979599 (90e:53058)
  • 42. STRICHARTZ, R. S.,
    Self-similarity on nilpotent Lie groups.
    In Geometric analysis (Philadelphia, PA, 1991), vol. 140 of Contemp. Math. Amer. Math. Soc., Providence, RI, 1992, pp. 123-157. MR 1197594 (94e:43011)
  • 43. STRICHARTZ, R. S.,
    Self-similarity in harmonic analysis.
    J. Fourier Anal. Appl. 1, 1 (1994), 1-37. MR 1307067 (96c:42002)
  • 44. TYSON, J. T.,
    Quasiconformality and quasisymmetry in metric measure spaces.
    Ann. Acad. Sci. Fenn. Ser. A I Math. 23 (1998), 525-548. MR 1642158 (99i:30038)
  • 45. TYSON, J. T.,
    Sets of minimal Hausdorff dimension for quasiconformal maps.
    Proc. Amer. Math. Soc. 128, 11 (2000), 3361-3367. MR 1676353 (2001b:30033)
  • 46. TYSON, J. T.,
    Lowering the Assouad dimension by quasisymmetric mappings.
    Illinois J. Math. 45 (2001), 641-656. MR 1878624 (2002k:30040)
  • 47. TYSON, J. T., AND WU, J.-M.,
    Quasiconformal dimensions of self-similar fractals.
    Rev. Mat. Iberoamericana 22 (2006), 205-258. MR 2268118 (2008a:30024)
  • 48. VäISäLä, J.,
    Porous sets and quasisymmetric maps.
    Trans. Amer. Math. Soc. 299 (1987), 525-533. MR 869219 (88a:30049)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2000): 30C65, 28A78, 43A80

Retrieve articles in all journals with MSC (2000): 30C65, 28A78, 43A80


Additional Information

Jeremy T. Tyson
Affiliation: Department of Mathematics, University of Illinois, West Green Street, Urbana, Illinois 61801
Email: tyson@math.uiuc.edu

DOI: https://doi.org/10.1090/S1088-4173-08-00177-X
Keywords: Quasiconformal map, conformal dimension, Assouad dimension, Heisenberg group, self-affine tiling.
Received by editor(s): August 27, 2007
Published electronically: March 6, 2008
Additional Notes: Research supported by NSF grant DMS 0555869
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society