Tessellation and LyubichMinsky laminations associated with quadratic maps, II: Topological structures of laminations
Author:
Tomoki Kawahira
Journal:
Conform. Geom. Dyn. 13 (2009), 675
MSC (2000):
Primary 37F45; Secondary 37F99
Published electronically:
February 3, 2009
MathSciNet review:
2476656
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: According to an analogy to quasiFuchsian groups, we investigate the topological and combinatorial structures of Lyubich and Minsky's affine and hyperbolic laminations associated with hyperbolic and parabolic quadratic maps. We begin by showing that hyperbolic rational maps in the same hyperbolic component have quasiisometrically the same laminations. This gives a good reason to regard the main cardioid of the Mandelbrot set as an analogue of the Bers slices in the quasiFuchsian space. Then we describe the topological and combinatorial changes of laminations associated with hyperbolictoparabolic degenerations (and parabolictohyperbolic bifurcations) of quadratic maps. For example, the differences between the structures of the quotient laminations of Douady's rabbit, the Cauliflower, and are described. The descriptions employ a new method of tessellation inside the filled Julia set introduced in Part I [Ergodic Theory Dynam. Systems 29 (2009), no. 2] that works like external rays outside the Julia set.
 [BS]
Eric
Bedford and John
Smillie, Polynomial diffeomorphisms of 𝐂². VIII.
Quasiexpansion, Amer. J. Math. 124 (2002),
no. 2, 221–271. MR 1890993
(2003c:32017)
 [Be]
Lipman
Bers, Simultaneous uniformization,
Bull. Amer. Math. Soc. 66 (1960), 94–97. MR 0111834
(22 #2694), http://dx.doi.org/10.1090/S000299041960104132
 [Ca]
Carlos
Cabrera, On the classification of laminations associated to
quadratic polynomials, J. Geom. Anal. 18 (2008),
no. 1, 29–67. MR 2365667
(2009c:37045), http://dx.doi.org/10.1007/s1222000790094
 [CK]
C. Cabrera and T.Kawahira. Topology of the regular part for infinitely renormalizable quadratic polynomials. Preprint, 2007. (arXiv:math.DS/0706.4225)
 [CC]
Alberto
Candel and Lawrence
Conlon, Foliations. I, Graduate Studies in Mathematics,
vol. 23, American Mathematical Society, Providence, RI, 2000. MR 1732868
(2002f:57058)
 [DU]
M.
Denker and M.
Urbański, Hausdorff and conformal measures on Julia sets
with a rationally indifferent periodic point, J. London Math. Soc. (2)
43 (1991), no. 1, 107–118. MR 1099090
(92k:58153), http://dx.doi.org/10.1112/jlms/s243.1.107
 [Ha]
Peter
Haïssinsky, Rigidity and expansion for rational maps, J.
London Math. Soc. (2) 63 (2001), no. 1,
128–140. MR 1802762
(2001m:37085), http://dx.doi.org/10.1112/S0024610700001563
 [HO]
John
H. Hubbard and Ralph
W. ObersteVorth, Hénon mappings in the complex domain. II.
Projective and inductive limits of polynomials, Real and complex
dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995,
pp. 89–132. MR 1351520
(96h:58147)
 [KL]
Vadim
A. Kaimanovich and Mikhail
Lyubich, Conformal and harmonic measures on laminations associated
with rational maps, Mem. Amer. Math. Soc. 173 (2005),
no. 820, vi+119. MR 2111096
(2006b:37087), http://dx.doi.org/10.1090/memo/0820
 [KLR]
Jeremy
Kahn and Mikhail
Lyubich, A priori bounds for some infinitely renormalizable
quadratics. II. Decorations, Ann. Sci. Éc. Norm. Supér.
(4) 41 (2008), no. 1, 57–84 (English, with
English and French summaries). MR 2423310
(2009k:37106)
 [Ka1]
Tomoki
Kawahira, On the regular leaf space of the cauliflower, Kodai
Math. J. 26 (2003), no. 2, 167–178. MR 1993672
(2004c:37089), http://dx.doi.org/10.2996/kmj/1061901060
 [Ka2]
Tomoki
Kawahira, Semiconjugacies between the Julia sets of geometrically
finite rational maps. II, Dynamics on the Riemann sphere, Eur. Math.
Soc., Zürich, 2006, pp. 131–138. MR 2348959
(2008h:37048), http://dx.doi.org/10.4171/0111/7
 [Ka3]
T. Kawahira. Tessellation and LyubichMinsky laminations associated with quadratic maps, I: Pinching semiconjugacies. Ergodic Theory Dynam. Systems 29 (2009), no. 9.
 [L]
M. Lyubich. Laminations and holomorphic dynamics. Lecture notes in ``New Direction in Dynamical Systems'', Kyoto, 2002, available at his webpage.
 [LM]
Mikhail
Lyubich and Yair
Minsky, Laminations in holomorphic dynamics, J. Differential
Geom. 47 (1997), no. 1, 17–94. MR 1601430
(98k:58191)
 [MT]
Katsuhiko
Matsuzaki and Masahiko
Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New
York, 1998. Oxford Science Publications. MR 1638795
(99g:30055)
 [Mc1]
Curtis
T. McMullen, Renormalization and 3manifolds which fiber over the
circle, Annals of Mathematics Studies, vol. 142, Princeton
University Press, Princeton, NJ, 1996. MR 1401347
(97f:57022)
 [Mc2]
Curtis
T. McMullen, Thermodynamics, dimension and the WeilPetersson
metric, Invent. Math. 173 (2008), no. 2,
365–425. MR 2415311
(2010c:37101), http://dx.doi.org/10.1007/s0022200801212
 [Mi]
John
Milnor, Periodic orbits, externals rays and the Mandelbrot set: an
expository account, Astérisque 261 (2000),
xiii, 277–333 (English, with English and French summaries).
Géométrie complexe et systèmes dynamiques (Orsay,
1995). MR
1755445 (2002e:37067)
 [MS]
Welington
de Melo and Sebastian
van Strien, Onedimensional dynamics, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related
Areas (3)], vol. 25, SpringerVerlag, Berlin, 1993. MR 1239171
(95a:58035)
 [MSS]
R.
Mañé, P.
Sad, and D.
Sullivan, On the dynamics of rational maps, Ann. Sci.
École Norm. Sup. (4) 16 (1983), no. 2,
193–217. MR
732343 (85j:58089)
 [S]
Dennis
Sullivan, Linking the universalities of MilnorThurston, Feigenbaum
and AhlforsBers, Topological methods in modern mathematics (Stony
Brook, NY, 1991) Publish or Perish, Houston, TX, 1993,
pp. 543–564. MR 1215976
(94c:58060)
 [BS]
 E. Bedford and J. Smillie. Polynomial diffeomorphisms of . VIII. Quasiexpansion. Amer. J. Math. 124 (2002), 221271. MR 1890993 (2003c:32017)
 [Be]
 L. Bers. Simultaneous uniformization. Bull. Amer. Math. Soc. 66 (1960), 9497. MR 0111834 (22:2694)
 [Ca]
 C. Cabrera. On the classification of laminations associated to quadratic polynomials. J. Geom. Anal. 18 (2008), 2967. MR 2365667
 [CK]
 C. Cabrera and T.Kawahira. Topology of the regular part for infinitely renormalizable quadratic polynomials. Preprint, 2007. (arXiv:math.DS/0706.4225)
 [CC]
 A. Candel and L. Conlon. Foliations I. Graduate Studies in Mathematics, 23. American Mathematical Society, 2000. MR 1732868 (2002f:57058)
 [DU]
 M. Denker and M. Urbański. Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point. J. London Math. Soc. 43 (1991), 107118. MR 1099090 (92k:58153)
 [Ha]
 P. Haıssinsky. Rigidity and expansion for rational maps. J. London Math. Soc. 63 (2001), 128140. MR 1802762 (2001m:37085)
 [HO]
 J.H. Hubbard and R.W. ObersteVorth. Hénon mappings in the complex domain II: projective and inductive limit of polynomials. Real and Complex Dynamical Systems, B. Branner (ed.) et al., NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., 464, Kluwer Acad. Publ., 1995. MR 1351520 (96h:58147)
 [KL]
 V.A. Kaimanovich and M. Lyubich. Conformal and harmonic measures on laminations associated with rational maps. Mem. Am. Math. Soc., 820, 2005. MR 2111096 (2006b:37087)
 [KLR]
 J. Kahn, M. Lyubich, and L. Rempe. A note on hyperbolic leaves and wild laminations of rational functions. Stony Brook IMS Preprint, # 2008/5. (arXiv:math.DS/0810.5571) MR 2423310
 [Ka1]
 T. Kawahira. On the regular leaf space of the cauliflower. Kodai Math. J. 26 (2003), 167178. MR 1993672 (2004c:37089)
 [Ka2]
 T. Kawahira. Semiconjugacies between the Julia sets of geometrically finite rational maps II. Dynamics on the Riemann Sphere: A Bodil Branner Festschrift, P. G. Hjorth (ed.) et al., European Math. Soc., 2006, 131138. MR 2348959 (2008h:37048)
 [Ka3]
 T. Kawahira. Tessellation and LyubichMinsky laminations associated with quadratic maps, I: Pinching semiconjugacies. Ergodic Theory Dynam. Systems 29 (2009), no. 9.
 [L]
 M. Lyubich. Laminations and holomorphic dynamics. Lecture notes in ``New Direction in Dynamical Systems'', Kyoto, 2002, available at his webpage.
 [LM]
 M. Lyubich and Y. Minsky. Laminations in holomorphic dynamics. J. Differential Geom. 47 (1997), 1794. MR 1601430 (98k:58191)
 [MT]
 K. Matsuzaki and M. Taniguchi. Hyperbolic Manifolds and Kleinain Groups. Oxford Univ. Press, 1998. MR 1638795 (99g:30055)
 [Mc1]
 C. McMullen. Renormalization and 3manifold which fiber over the circle. Annals of Math Studies 142, Princeton University Press, 1996. MR 1401347 (97f:57022)
 [Mc2]
 C. McMullen. Thermodynamics, dimension and the WeilPetersson metric. Invent. Math. 173 (2008), 365  425. MR 2415311
 [Mi]
 J. Milnor. Periodic orbits, external rays, and the Mandelbrot set: An expository account. Géométrie complexe et systèmes dynamiques., M. Flexor (ed.) et al. Astérisque 261 (2000), 277333. MR 1755445 (2002e:37067)
 [MS]
 W. de Melo and S. van Strien. One Dimensional Dynamics. SpringerVerlag, 1993. MR 1239171 (95a:58035)
 [MSS]
 R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps. Ann. Sci. École Norm. Sup. 16 (1983), 193217. MR 732343 (85j:58089)
 [S]
 D. Sullivan. Linking the universalities of MilnorThurston, Feigenbaum and AhlforsBers. Topological Methods in Modern Mathematics, R. L. Goldberg (ed.) et al., Publish or Perish, 1993, 543564. MR 1215976 (94c:58060)
Similar Articles
Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society
with MSC (2000):
37F45,
37F99
Retrieve articles in all journals
with MSC (2000):
37F45,
37F99
Additional Information
Tomoki Kawahira
Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusaku, Nagoya, 4648602 Japan
DOI:
http://dx.doi.org/10.1090/S1088417309001866
PII:
S 10884173(09)001866
Received by editor(s):
May 9, 2007
Published electronically:
February 3, 2009
Additional Notes:
Research partially supported by JSPS Research Fellowships for Young Scientists, JSPS GrantinAid for Young Scientists, the Circle for the Promotion of Science and Engineering, Inamori Foundation, and the IHÉS, in chronological order. I sincerely appreciate their support.
Article copyright:
© Copyright 2009
American Mathematical Society
