Tessellation and Lyubich-Minsky laminations associated with quadratic maps, II: Topological structures of -laminations

Author:
Tomoki Kawahira

Journal:
Conform. Geom. Dyn. **13** (2009), 6-75

MSC (2000):
Primary 37F45; Secondary 37F99

DOI:
https://doi.org/10.1090/S1088-4173-09-00186-6

Published electronically:
February 3, 2009

MathSciNet review:
2476656

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: According to an analogy to quasi-Fuchsian groups, we investigate the topological and combinatorial structures of Lyubich and Minsky's affine and hyperbolic -laminations associated with hyperbolic and parabolic quadratic maps.

We begin by showing that hyperbolic rational maps in the same hyperbolic component have quasi-isometrically the same -laminations. This gives a good reason to regard the main cardioid of the Mandelbrot set as an analogue of the Bers slices in the quasi-Fuchsian space. Then we describe the topological and combinatorial changes of laminations associated with hyperbolic-to-parabolic degenerations (and parabolic-to-hyperbolic bifurcations) of quadratic maps. For example, the differences between the structures of the quotient -laminations of Douady's rabbit, the Cauliflower, and are described.

The descriptions employ a new method of *tessellation* inside the filled Julia set introduced in Part I [*Ergodic Theory Dynam. Systems* **29** (2009), no. 2] that works like external rays outside the Julia set.

**[BS]**E. Bedford and J. Smillie. Polynomial diffeomorphisms of . VIII. Quasi-expansion.*Amer. J. Math*.**124**(2002), 221-271. MR**1890993 (2003c:32017)****[Be]**L. Bers. Simultaneous uniformization.*Bull. Amer. Math. Soc*.**66**(1960), 94-97. MR**0111834 (22:2694)****[Ca]**C. Cabrera. On the classification of laminations associated to quadratic polynomials.*J. Geom. Anal.***18**(2008), 29-67. MR**2365667****[CK]**C. Cabrera and T.Kawahira. Topology of the regular part for infinitely renormalizable quadratic polynomials.*Preprint*, 2007. (arXiv:math.DS/0706.4225)**[CC]**A. Candel and L. Conlon.*Foliations I*. Graduate Studies in Mathematics,**23**. American Mathematical Society, 2000. MR**1732868 (2002f:57058)****[DU]**M. Denker and M. Urbański. Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point.*J. London Math. Soc.***43**(1991), 107-118. MR**1099090 (92k:58153)****[Ha]**P. Haıssinsky. Rigidity and expansion for rational maps.*J. London Math. Soc.***63**(2001), 128-140. MR**1802762 (2001m:37085)****[HO]**J.H. Hubbard and R.W. Oberste-Vorth. Hénon mappings in the complex domain II: projective and inductive limit of polynomials.*Real and Complex Dynamical Systems*, B. Branner (ed.) et al.,*NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci.*,**464**, Kluwer Acad. Publ., 1995. MR**1351520 (96h:58147)****[KL]**V.A. Kaimanovich and M. Lyubich. Conformal and harmonic measures on laminations associated with rational maps.*Mem. Am. Math. Soc.*,**820**, 2005. MR**2111096 (2006b:37087)****[KLR]**J. Kahn, M. Lyubich, and L. Rempe. A note on hyperbolic leaves and wild laminations of rational functions.*Stony Brook IMS Preprint*, # 2008/5. (arXiv:math.DS/0810.5571) MR**2423310****[Ka1]**T. Kawahira. On the regular leaf space of the cauliflower.*Kodai Math. J.***26**(2003), 167-178. MR**1993672 (2004c:37089)****[Ka2]**T. Kawahira. Semiconjugacies between the Julia sets of geometrically finite rational maps II.*Dynamics on the Riemann Sphere: A Bodil Branner Festschrift*, P. G. Hjorth (ed.) et al., European Math. Soc., 2006, 131-138. MR**2348959 (2008h:37048)****[Ka3]**T. Kawahira. Tessellation and Lyubich-Minsky laminations associated with quadratic maps, I: Pinching semiconjugacies.*Ergodic Theory Dynam. Systems***29**(2009), no. 9.**[L]**M. Lyubich. Laminations and holomorphic dynamics.*Lecture notes in ``New Direction in Dynamical Systems''*, Kyoto, 2002, available at his web-page.**[LM]**M. Lyubich and Y. Minsky. Laminations in holomorphic dynamics.*J. Differential Geom.***47**(1997), 17-94. MR**1601430 (98k:58191)****[MT]**K. Matsuzaki and M. Taniguchi.*Hyperbolic Manifolds and Kleinain Groups*. Oxford Univ. Press, 1998. MR**1638795 (99g:30055)****[Mc1]**C. McMullen.*Renormalization and 3-manifold which fiber over the circle*. Annals of Math Studies 142, Princeton University Press, 1996. MR**1401347 (97f:57022)****[Mc2]**C. McMullen. Thermodynamics, dimension and the Weil-Petersson metric.*Invent. Math.***173**(2008), 365 - 425. MR**2415311****[Mi]**J. Milnor. Periodic orbits, external rays, and the Mandelbrot set: An expository account.*Géométrie complexe et systèmes dynamiques.*, M. Flexor (ed.) et al. Astérisque**261**(2000), 277-333. MR**1755445 (2002e:37067)****[MS]**W. de Melo and S. van Strien.*One Dimensional Dynamics*. Springer-Verlag, 1993. MR**1239171 (95a:58035)****[MSS]**R. Mañé, P. Sad and D. Sullivan. On the dynamics of rational maps.*Ann. Sci. École Norm. Sup.***16**(1983), 193-217. MR**732343 (85j:58089)****[S]**D. Sullivan. Linking the universalities of Milnor-Thurston, Feigenbaum and Ahlfors-Bers.*Topological Methods in Modern Mathematics*, R. L. Goldberg (ed.) et al., Publish or Perish, 1993, 543-564. MR**1215976 (94c:58060)**

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (2000):
37F45,
37F99

Retrieve articles in all journals with MSC (2000): 37F45, 37F99

Additional Information

**Tomoki Kawahira**

Affiliation:
Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan

DOI:
https://doi.org/10.1090/S1088-4173-09-00186-6

Received by editor(s):
May 9, 2007

Published electronically:
February 3, 2009

Additional Notes:
Research partially supported by JSPS Research Fellowships for Young Scientists, JSPS Grant-in-Aid for Young Scientists, the Circle for the Promotion of Science and Engineering, Inamori Foundation, and the IHÉS, in chronological order. I sincerely appreciate their support.

Article copyright:
© Copyright 2009
American Mathematical Society