Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Notes on complex hyperbolic triangle groups


Authors: Shigeyasu Kamiya, John R. Parker and James M. Thompson
Journal: Conform. Geom. Dyn. 14 (2010), 202-218
MSC (2010): Primary 22E40; Secondary 51M10, 53C35, 53C55
DOI: https://doi.org/10.1090/S1088-4173-2010-00215-8
Published electronically: August 30, 2010
MathSciNet review: 2718204
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We first demonstrate a family of isomorphisms between complex hyperbolic triangle groups and outline a systematic approach classifying the groups. Then we describe conditions that determine the discreteness of certain groups, in particular we prove a slightly weaker version of a conjecture given by Schwartz. Finally we collect together a list of known discrete triangle groups and propose some good candidates for discrete groups.


References [Enhancements On Off] (What's this?)

  • 1. M. Deraux, Deforming the $ \mathbb{R}$-Fuchsian (4,4,4)-triangle groups into a lattice. Topology, 45 (2006), 989-1020. MR 2263221 (2007m:32015)
  • 2. M. Deraux, E. Falbel, J. Paupert, New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math 194 (2005), 155-201. MR 2231340 (2007h:32038)
  • 3. E. Falbel, J.R. Parker, The geometry of the Eisenstein-Picard group. Duke Math. J., 131 (2006), 249-289. MR 2219242 (2007f:22011)
  • 4. E. Falbel, G. Francis, J.R. Parker, The geometry of the Gauss-Picard modular group. Preprint http://www.maths.dur.ac.uk/~ dma0jrp/img/GaussPicard.pdf
  • 5. W.M. Goldman, Complex hyperbolic geometry, Oxford University Press, New York, 1999. MR 1695450 (2000g:32029)
  • 6. S. Kamiya, J.R. Parker, J.M. Thompson, Non-Discrete Complex Hyperbolic Triangle Groups of Type $ (n,n,\infty;k)$. To appear in Canadian Mathematical Bulletin.
  • 7. R.A. Livné, On certain covers of the universal elliptic curves. Ph.D. thesis, Havard University, 1981.
  • 8. J.R. Parker, Unfaithful complex hyperbolic triangle groups I. Pacific Journal of Mathematics, 238 (2008), 145-169. MR 2443511 (2009h:20056)
  • 9. J.R. Parker, Cone metrics on the sphere and Livné's lattices. Acta Math., 196 (2006), 1-64. MR 2237205 (2007j:32021)
  • 10. A. Pratoussevitch, Traces in complex hyperbolic triangle groups. Geometriae Dedicata 111 (2005), 159-185. MR 2155180 (2006d:32036)
  • 11. R.E. Schwartz, Complex hyperbolic triangle groups. Proc. of the International Cong. of Math. Vol. II (Beijing, 2002), 339-349, Higher Ed. Press Beijing, 2000. MR 1957045 (2004b:57002)
  • 12. R.E. Schwartz, Real hyperbolic on the outside, complex hyperbolic on the inside. Invent. Math. 151 (2003), no. 2, 221-295. MR 1953259 (2003j:32032)
  • 13. J.M. Thompson, Two new triangle group lattices in the complex hyperbolic plane. Preprint http://maths.dur.ac.uk/~ dma2jmt/TwoNewLattices.pdf
  • 14. J. Wyss-Gallifent, Complex Hyperbolic Triangle Groups. Ph.D. thesis, University of Maryland, 2000.

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 22E40, 51M10, 53C35, 53C55

Retrieve articles in all journals with MSC (2010): 22E40, 51M10, 53C35, 53C55


Additional Information

Shigeyasu Kamiya
Affiliation: Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
Email: s.kamiya@are.ous.ac.jp

John R. Parker
Affiliation: Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
Email: j.r.parker@dur.ac.uk

James M. Thompson
Affiliation: Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
Email: j.m.thompson@dur.ac.uk

DOI: https://doi.org/10.1090/S1088-4173-2010-00215-8
Received by editor(s): December 17, 2009
Published electronically: August 30, 2010
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society