Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Gold Open Access
Conformal Geometry and Dynamics
Conformal Geometry and Dynamics
ISSN 1088-4173


Shapes of tetrahedra with prescribed cone angles

Authors: Ahtziri González and Jorge L. López-López
Journal: Conform. Geom. Dyn. 15 (2011), 50-63
MSC (2010): Primary 51M20; Secondary 58D17, 51M10, 51M25
Published electronically: June 7, 2011
MathSciNet review: 2833472
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given real numbers $ 4\pi>\theta_0\geq\theta_1\geq\theta_2\geq\theta_3>0$ so that $ \sum_{j=0}^3\theta_j=4\pi$, we provide a detailed description of the space of flat metrics on the 2-sphere with 4 conical points of cone angles $ \theta_0,\theta_1,\theta_2,\theta_3$, endowed with a geometric structure arising from the area function.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 51M20, 58D17, 51M10, 51M25

Retrieve articles in all journals with MSC (2010): 51M20, 58D17, 51M10, 51M25

Additional Information

Ahtziri González
Affiliation: CIMAT, Mineral de Valenciana, C.P. 36240, Guanajuato, Gto., Mexico

Jorge L. López-López
Affiliation: Facultad de Ciencias Físico-matemáticas, UMSNH, Ciudad Universitaria, C.P. 58040, Morelia, Mich., Mexico

PII: S 1088-4173(2011)00225-6
Received by editor(s): December 7, 2010
Published electronically: June 7, 2011
Additional Notes: The study was partially supported by funding from the UMSNH (by means of a project of the CIC) and the SEP (by means of the Red Temática de Colaboración “Álgebra, topología y análisis”).
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia