Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

On decomposable rational maps


Authors: Carlos Cabrera and Peter Makienko
Journal: Conform. Geom. Dyn. 15 (2011), 210-218
MSC (2010): Primary 37F10; Secondary 30D05
DOI: https://doi.org/10.1090/S1088-4173-2011-00233-5
Published electronically: November 22, 2011
MathSciNet review: 2869014
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ R$ is a rational map, the main result is a uniformization theorem for the space of decompositions of the iterates of $ R$. Secondly, we show that Fatou conjecture holds for decomposable rational maps.


References [Enhancements On Off] (What's this?)

  • 1. W. Bergweiler, Erratum to ``An example concerning factorization of rational functions'', http://analysis.math.uni-kiel.de/bergweiler/schrift.html.
  • 2. -, An example concerning factorization of rational functions, Exposition. Math. 11 (1993), no. 3, 281-283. MR 1224108 (94h:30032)
  • 3. A. Eremenko, Some functional equations connected with the iteration of rational functions, Algebra i Analiz 1 (1989), no. 4, 102-116. MR 1027462 (90m:30030)
  • 4. V. Kaimanovich and M. Lyubich, Conformal and harmonic measures on laminations associated with rational maps, Mem. Amer. Math. Soc. 173 (2005), no. 820. MR 2111096 (2006b:37087)
  • 5. M. Lyubich, Dynamics of the rational transforms; the topological picture, Russian Math. Surveys (1986). MR 863874 (88g:58094)
  • 6. M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Diff. Geom. 47 (1997), 17-94. MR 1601430 (98k:58191)
  • 7. R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Scien. Ec. Norm. Sup. Paris (4) (1983).
  • 8. P. Makienko, Remarks on the Ruelle operator and invariant differentials, Far East J. Math. 8 (2008), no. 2, 180-205. MR 2731771
  • 9. C. McMullen and D. Sullivan, Quasiconformal homeomorphisms and dynamics. III. The Teichmüller space of a holomorphic dynamical system, Adv. Math. 135 (1998), no. 2, 351-395. MR 1620850 (99e:58145)
  • 10. P. Müller and M. Zieve, On Ritt's polynomial decomposition theorems, http://arxiv.org/
    abs/0807.3578, July 2008.
  • 11. J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), no. 1, 51-66. MR 1501189
  • 12. -, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), no. 3, 399-448. MR 1501252
  • 13. Z. Słodkowski, Holomorphic motions commuting with semigroups, Studia Math. 119 (1996), no. 1, 1-16. MR 1388770 (97d:30035)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 37F10, 30D05

Retrieve articles in all journals with MSC (2010): 37F10, 30D05


Additional Information

Carlos Cabrera
Affiliation: Instituto de Matemáticas, Unidad Cuernavaca, University Nacional Autonoma de Mexico, Universidad s/n Col Lomas de Chamilpa, 62100 Cuernavaca, Mexico
Email: carlos@matcuer.unam.mx

Peter Makienko
Affiliation: Instituto de Matemáticas, Unidad Cuernavaca, University Nacional Autonoma de Mexico, Universidad s/n Col Lomas de Chamilpa, 62100 Cuernavaca, Mexico
Email: makienko@matcuer.unam.mx

DOI: https://doi.org/10.1090/S1088-4173-2011-00233-5
Received by editor(s): June 30, 2011
Published electronically: November 22, 2011
Additional Notes: This work was partially supported by PAPIIT project IN 100409 and CONACYT 153850.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society