Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Proof of a folklore Julia set connectedness theorem and connections with elliptic functions


Author: Jane M. Hawkins
Journal: Conform. Geom. Dyn. 17 (2013), 26-38
MSC (2010): Primary 37F10, 37F45; Secondary 30D05, 30B99
DOI: https://doi.org/10.1090/S1088-4173-2013-00252-X
Published electronically: February 14, 2013
MathSciNet review: 3019711
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem about Julia sets of the maps

$\displaystyle f_{n,p,\gamma }(z)= z^n + \frac {\gamma }{z^p}, $

for integers $ n,p \geq 2$, $ \gamma \in \mathbb{C}$ by using techniques developed for the Weierstrass elliptic $ \wp $ function and adapted to this setting.

Folklore connectedness theorem: If $ f_{n,p,\gamma }$ has a bounded critical orbit, then $ J(f_{n,p,\gamma })$ is connected.

This is related to connectivity results by the author and others about $ J(\wp )$, where $ \wp $ denotes the Weierstrass elliptic $ \wp $ function, especially where the period lattice has some symmetry. We illustrate several further connections between the dynamics of some specific elliptic functions and the family $ f_{n,p,\gamma }$ for some values of $ n$ and $ p$.


References [Enhancements On Off] (What's this?)

  • [1] Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Complex analytic dynamical systems. MR 1128089 (92j:30026)
  • [2] Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151-188. MR 1216719 (94c:30033), https://doi.org/10.1090/S0273-0979-1993-00432-4
  • [3] P. Blanchard, F. Cilingir, D. Cuzzocreo, D. Look, and E. Russell, Checkerboard Julia Sets for Rational Maps (preprint, 2011).
  • [4] Joshua J. Clemons, Dynamical properties of Weierstrass elliptic functions on square lattices, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)-The University of North Carolina at Chapel Hill. MR 2941395
  • [5] Joshua J. Clemons, Connectivity of Julia sets for Weierstrass elliptic functions on square lattices, Proc. Amer. Math. Soc. 140 (2012), no. 6, 1963-1972. MR 2888184, https://doi.org/10.1090/S0002-9939-2011-11079-7
  • [6] Robert L. Devaney, Structure of the McMullen domain in the parameter planes for rational maps, Fund. Math. 185 (2005), no. 3, 267-285. MR 2161407 (2006c:37046), https://doi.org/10.4064/fm185-3-5
  • [7] Robert L. Devaney, Daniel M. Look, and David Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J. 54 (2005), no. 6, 1621-1634. MR 2189680 (2006i:37105), https://doi.org/10.1512/iumj.2005.54.2615
  • [8] R. Devaney, E. Russell, Connectivity of Julia Sets for Singularly Perturbed Rational Maps (preprint, 2012).
  • [9] Patrick Du Val, Elliptic functions and elliptic curves, Cambridge University Press, London, 1973. London Mathematical Society Lecture Note Series, No. 9. MR 0379512 (52:417)
  • [10] Jane Hawkins, A family of elliptic functions with Julia set the whole sphere, J. Difference Equ. Appl. 16 (2010), no. 5-6, 597-612. MR 2642468 (2011f:37080), https://doi.org/10.1080/10236190903257859
  • [11] Jane Hawkins and Lorelei Koss, Ergodic properties and Julia sets of Weierstrass elliptic functions, Monatsh. Math. 137 (2002), no. 4, 273-300. MR 1947915 (2003j:37066), https://doi.org/10.1007/s00605-002-0504-1
  • [12] Jane Hawkins and Lorelei Koss, Parametrized dynamics of the Weierstrass elliptic function, Conform. Geom. Dyn. 8 (2004), 1-35 (electronic). MR 2060376 (2005b:37089), https://doi.org/10.1090/S1088-4173-04-00103-1
  • [13] Jane Hawkins and Lorelei Koss, Connectivity properties of Julia sets of Weierstrass elliptic functions, Topology Appl. 152 (2005), no. 1-2, 107-137. MR 2160809 (2007b:37098), https://doi.org/10.1016/j.topol.2004.08.018
  • [14] Jane Hawkins and Mark McClure, Parameterized dynamics for the Weierstrass elliptic function over square period lattices, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 21 (2011), no. 1, 125-135. MR 2786816 (2012d:37091), https://doi.org/10.1142/S0218127411028301
  • [15] John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240 (2002i:37057)
  • [16] Yingqing Xiao and Weiyuan Qiu, The rational maps $ F_\lambda (z)=z^m+\lambda /z^d$ have no Herman rings, Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 4, 403-407. MR 2761768 (2012b:37124), https://doi.org/10.1007/s12044-010-0044-x

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 37F10, 37F45, 30D05, 30B99

Retrieve articles in all journals with MSC (2010): 37F10, 37F45, 30D05, 30B99


Additional Information

Jane M. Hawkins
Affiliation: Department of Mathematics, University of North Carolina at Chapel Hill, CB #3250, Chapel Hill, North Carolina 27599-3250
Email: jmh@math.unc.edu

DOI: https://doi.org/10.1090/S1088-4173-2013-00252-X
Keywords: Connected Julia sets, complex dynamics, iterated elliptic functions
Received by editor(s): July 15, 2012
Published electronically: February 14, 2013
Additional Notes: This work was partially funded by a University of North Carolina, University Research Council Grant
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society