Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

A Cantor set with hyperbolic complement


Authors: Juan Souto and Matthew Stover
Journal: Conform. Geom. Dyn. 17 (2013), 58-67
MSC (2010): Primary 30F40, 57M50; Secondary 30F45
DOI: https://doi.org/10.1090/S1088-4173-2013-00249-X
Published electronically: April 22, 2013
MathSciNet review: 3045630
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a Cantor set in $ \mathbb{S}^3$ whose complement admits a complete hyperbolic metric.


References [Enhancements On Off] (What's this?)

  • 1. I. Agol, Tameness of hyperbolic $ 3$-manifolds, math.GT/0405568.
  • 2. M. L. Antoine, Sur la possibilité d'étendre l'homéiomorphie de deux figures à leur voisinages, C.R. Acad. Sci. Paris 171 (1920), 661-664.
  • 3. M. Bestvina and D. Cooper, A wild Cantor set as the limit set of a conformal group action on $ \mathbb{S}^3$, Proc. Amer. Math. Soc. 99 (1987), no. 4, 623-626. MR 877028 (88b:57015)
  • 4. R. H. Bing, A homeomorphism between the $ 3$-sphere and the sum of two solid horned spheres, Ann. of Math. 56 (1952), 354-362. MR 0049549 (14:192d)
  • 5. D. Calegari and D. Gabai, Shrinkwrapping and the taming of hyperbolic $ 3$-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385-446. MR 2188131 (2006g:57030)
  • 6. D. G. DeGryse and R. P. Osborne, A wild Cantor set in $ E^n$ with simply connected complement, Fund. Math. 86 (1974), 9-27. MR 0375323 (51:11518)
  • 7. M. Freedman, J. Hass and P. Scott, Least area incompressible surfaces in $ 3$-manifolds, Invent. Math. 71 (1983), no. 3, 609-642. MR 695910 (85e:57012)
  • 8. M. Freedman and R. Skora, Strange actions of groups on spheres, J. Differential Geom. 25 (1987), no. 1, 75-98. MR 873456 (88a:57074)
  • 9. D. Garity, D. Repovš and M. Željko, Rigid Cantor sets in $ \mathbb{R}^3$ with simply connected complement, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2447-2456. MR 2213719 (2007a:54020)
  • 10. W. Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics 43, American Mathematical Society, 1980. MR 565450 (81k:57009)
  • 11. K. Johannson, Homotopy Equivalences of $ 3$-manifolds with Boundary, Lecture Notes in Mathematics 761, Springer-Verlag, 1979. MR 551744 (82c:57005)
  • 12. T. Jørgensen and A. Marden, Algebraic and geometric convergence of Kleinian groups, Math. Scand. 66 (1990), no. 1, 47-72. MR 1060898 (91f:30068)
  • 13. M. Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics 183, Birkhäuser, 2001. MR 1792613 (2002m:57018)
  • 14. R. Kent and J. Souto, Geometric limits of knot complements, II: Graphs determined by their complements, accepted for publication in Mathematische Zeitschrift.
  • 15. A. Marden, Outer circles, an introduction to hyperbolic $ 3$-manifolds, Cambridge University Press, 2007. MR 2355387 (2008i:57001)
  • 16. R. Myers, Excellent $ 1$-manifolds in compact $ 3$-manifolds, Topology Appl. 49 (1993), no. 2, 115-127. MR 1206219 (94a:57034)
  • 17. J.-P. Otal, Thurston's hyperbolization of Haken manifolds, in Surveys in differential geometry, Vol. III, Int. Press, 1998. MR 1677888 (2000b:57025)
  • 18. R. Sher, Concerning wild Cantor sets in $ E^3$, Proc. Amer. Math. Soc. 19 (1968), 1195-1200. MR 0234438 (38:2755)
  • 19. R. Schoen and S. Yau, Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Ann. of Math. 110 (1979), 127-142. MR 541332 (81k:58029)
  • 20. R. Skora, Cantor sets in $ \mathbb{S}^3$ with simply connected complements, Topology Appl. 24 (1986), no. 1-3, 181-188. MR 872489 (87m:57009)
  • 21. W. P. Thurston, Hyperbolic structures on $ 3$-manifolds I: Deformation of acylindrical manifolds, Ann. of Math. 124 (1986), 203-246. MR 855294 (88g:57014)
  • 22. F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56-88. MR 0224099 (36:7146)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30F40, 57M50, 30F45

Retrieve articles in all journals with MSC (2010): 30F40, 57M50, 30F45


Additional Information

Juan Souto
Affiliation: Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada V6T 1Z2
Email: jsouto@math.ubc.ca

Matthew Stover
Affiliation: Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109–1043
Email: stoverm@umich.edu

DOI: https://doi.org/10.1090/S1088-4173-2013-00249-X
Received by editor(s): May 29, 2012
Published electronically: April 22, 2013
Additional Notes: The first author was partially supported by NSERC Discovery and Accelerator Supplement grants.
The second author was partially supported by NSF RTG grant DMS 0602191.
Dedicated: To Dick Canary on the occasion of his $50^{th}$ birthday
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society