Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Totally disconnected Julia set for different classes of meromorphic functions


Authors: P. Domínguez, A. Hernández and G. Sienra
Journal: Conform. Geom. Dyn. 18 (2014), 1-7
MSC (2010): Primary 37F10; Secondary 30D05
DOI: https://doi.org/10.1090/S1088-4173-2014-00258-6
Published electronically: January 24, 2014
MathSciNet review: 3157720
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study a class of functions $ {\bf A}$ given by Epstein in Towers of finite type complex analytic maps, ProQuest LLC, Ann Arbor, MI, 1993, called finite-type maps. We extend a result related with the Julia set given by Baker, Domínguez in Some connectedness properties of Julia sets, Complex Variable Theory Appl. 41 (2000), 371-389, and Baker, Domínguez, and Herring in Dynamics of functions meromorphic outside a small set, Ergodic Theory Dynam. Systems 21 (2001), 647-672, to functions in class $ {\bf A}$.


References [Enhancements On Off] (What's this?)

  • [1] I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146-153. MR 0107015 (21 #5743)
  • [2] I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. I, Ergodic Theory Dynam. Systems 11 (1991), no. 2, 241-248. MR 1116639 (92m:58113), https://doi.org/10.1017/S014338570000612X
  • [3] I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. II. Examples of wandering domains, J. London Math. Soc. (2) 42 (1990), no. 2, 267-278. MR 1083445 (92m:58114), https://doi.org/10.1112/jlms/s2-42.2.267
  • [4] I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems 11 (1991), no. 4, 603-618. MR 1145612 (92m:58115), https://doi.org/10.1017/S0143385700006386
  • [5] I. N. Baker, J. Kotus, and Yi Nian Lü, Iterates of meromorphic functions. IV. Critically finite functions, Results Math. 22 (1992), no. 3-4, 651-656. MR 1189754 (94c:58166), https://doi.org/10.1007/BF03323112
  • [6] I. N. Baker and P. Domínguez, Some connectedness properties of Julia sets, Complex Variables Theory Appl. 41 (2000), no. 4, 371-389. MR 1785150 (2001e:30039)
  • [7] I. N. Baker, P. Domínguez, and M. E. Herring, Dynamics of functions meromorphic outside a small set, Ergodic Theory Dynam. Systems 21 (2001), no. 3, 647-672. MR 1836425 (2002e:37058), https://doi.org/10.1017/S0143385701001328
  • [8] A. Bolsch, Repulsive periodic points of meromorphic functions, Complex Variables Theory Appl. 31 (1996), no. 1, 75-79. MR 1423240 (98c:30033)
  • [9] A. Bolsch, Iteration of meromorphic functions with countably many singularities. Dissertation, Berlin (1997).
  • [10] A. Bolsch, Periodic Fatou components of meromorphic functions, Bull. London Math. Soc. 31 (1999), no. 5, 543-555. MR 1703869 (2000e:30046), https://doi.org/10.1112/S0024609399005950
  • [11] A. È. Erëmenko and M. Yu. Lyubich, Iterations of entire functions, Dokl. Akad. Nauk SSSR 279 (1984), no. 1, 25-27 (Russian). MR 769199 (86c:30044)
  • [12] A. È. Erëmenko and M. Yu. Lyubich, The dynamics of analytic transformations, Algebra i Analiz 1 (1989), no. 3, 1-70 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 3, 563-634. MR 1015124 (91b:58109)
  • [13] A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020 (English, with English and French summaries). MR 1196102 (93k:30034)
  • [14] A. L. Epstein, Towers of finite type complex analytic maps, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.), City University of New York. MR 2690048
  • [15] A.L Epstein, Dynamics of finite type complex analytic maps. I. Global structure theory, Manuscript.
  • [16] M.E. Herring, An extension of the Julia-Fatou theory of iteration. PhD thesis (1994), Imperial College, London.
  • [17] P. Fatou, Sur l'itération des fonctions transcendantes Entières, Acta Math. 47 (1926), no. 4, 337-370 (French). MR 1555220, https://doi.org/10.1007/BF02559517
  • [18] L. Keen and J. Kotus, Dynamics of the family $ \lambda \tan z$, Conform. Geom. Dyn. 1 (1997), 28-57 (electronic). MR 1463839 (98h:58159), https://doi.org/10.1090/S1088-4173-97-00017-9
  • [19] L. Rempe, P. J. Rippon, and G. M. Stallard, Are Devaney hairs fast escaping?, J. Difference Equ. Appl. 16 (2010), no. 5-6, 739-762. MR 2675603 (2011i:37061), https://doi.org/10.1080/10236190903282824

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 37F10, 30D05

Retrieve articles in all journals with MSC (2010): 37F10, 30D05


Additional Information

P. Domínguez
Affiliation: F.C. Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla; Av. San Claudio, Col. San Manuel, C.U., Puebla Pue., 72570, México
Email: pdsoto@fcfm.buap.mx

A. Hernández
Affiliation: F.C. Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla; Av. San Claudio, Col. San Manuel, C.U., Puebla Pue., 72570, México
Email: hralberto@hotmail.com

G. Sienra
Affiliation: Facultad de Ciencias, UNAM. Av. Universidad 3000, C.U. México, D.F., 04510, México.
Email: gsl@dimnamica1.fciencias.unam.mx

DOI: https://doi.org/10.1090/S1088-4173-2014-00258-6
Received by editor(s): September 24, 2012
Published electronically: January 24, 2014
Additional Notes: The authors were supported by CONACYT projects numbers 128005 and 153850
Dedicated: In Memory of I. N. Baker
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society