Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Mappings of finite distortion from generalized manifolds


Author: Ville Kirsilä
Journal: Conform. Geom. Dyn. 18 (2014), 229-262
MSC (2010): Primary 30C65; Secondary 30L10
DOI: https://doi.org/10.1090/S1088-4173-2014-00272-0
Published electronically: November 17, 2014
MathSciNet review: 3278159
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a definition for mappings of finite distortion from a generalized manifold with controlled geometry to a Euclidean space. We prove that the basic properties of mappings of finite distortion are valid in this context. In particular, we show that under the same assumptions as in the Euclidean case, mappings of finite distortion are open and discrete.


References [Enhancements On Off] (What's this?)

  • [1] Daniel Aalto and Juha Kinnunen, The discrete maximal operator in metric spaces, J. Anal. Math. 111 (2010), 369-390. MR 2747071 (2012a:42027), https://doi.org/10.1007/s11854-010-0022-3
  • [2] J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), no. 3-4, 315-328. MR 616782 (83f:73017), https://doi.org/10.1017/S030821050002014X
  • [3] Zoltán M. Balogh, Kevin Rogovin, and Thomas Zürcher, The Stepanov differentiability theorem in metric measure spaces, J. Geom. Anal. 14 (2004), no. 3, 405-422. MR 2077159 (2005d:28008), https://doi.org/10.1007/BF02922098
  • [4] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428-517. MR 1708448 (2000g:53043), https://doi.org/10.1007/s000390050094
  • [5] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325 (41 #1976)
  • [6] Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160 (2000j:46063), https://doi.org/10.1090/memo/0688
  • [7] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • [8] Juha Heinonen and Stephen Keith, Flat forms, bi-Lipschitz parameterizations, and smoothability of manifolds, Publ. Math. Inst. Hautes Études Sci. 113 (2011), 1-37. MR 2805596 (2012h:30194), https://doi.org/10.1007/s10240-011-0032-4
  • [9] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1-61. MR 1654771 (99j:30025), https://doi.org/10.1007/BF02392747
  • [10] Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87-139. MR 1869604 (2002k:46090), https://doi.org/10.1007/BF02788076
  • [11] J. Heinonen and P. Koskela, N. Shanmugalingam, J. Tyson, Sobolev Spaces on metric measure spaces: an approach based on upper gradients, to appear.
  • [12] Juha Heinonen and Seppo Rickman, Geometric branched covers between generalized manifolds, Duke Math. J. 113 (2002), no. 3, 465-529. MR 1909607 (2003h:57003), https://doi.org/10.1215/S0012-7094-02-11333-7
  • [13] Juha Heinonen and Dennis Sullivan, On the locally branched Euclidean metric gauge, Duke Math. J. 114 (2002), no. 1, 15-41. MR 1915034 (2004b:30044), https://doi.org/10.1215/S0012-7094-02-11412-4
  • [14] Stanislav Hencl and Kai Rajala, Optimal assumptions for discreteness, Arch. Ration. Mech. Anal. 207 (2013), no. 3, 775-783. MR 3017286, https://doi.org/10.1007/s00205-012-0574-8
  • [15] Tadeusz Iwaniec and Vladimír Šverák, On mappings with integrable dilatation, Proc. Amer. Math. Soc. 118 (1993), no. 1, 181-188. MR 1160301 (93k:30023), https://doi.org/10.2307/2160025
  • [16] Pekka Koskela and Paul MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), no. 1, 1-17. MR 1628655 (99e:46042)
  • [17] J. Maly, A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math. 17 (1999), no. 1, 59-61. MR 1687460 (2000a:26012)
  • [18] Juan J. Manfredi and Enrique Villamor, Mappings with integrable dilatation in higher dimensions, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 2, 235-240. MR 1313107 (95m:30033), https://doi.org/10.1090/S0273-0979-1995-00583-5
  • [19] Pertti Mattila, Geometry of sets and measures in Euclidean spaces: Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. MR 1333890 (96h:28006)
  • [20] F. Morgan, Geometric measure theory A beginner's guide, Academic Press.
  • [21] Jani Onninen and Xiao Zhong, Mappings of finite distortion: a new proof for discreteness and openness, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), no. 5, 1097-1102. MR 2477453 (2009k:30029), https://doi.org/10.1017/S0308210506000825
  • [22] Kai Rajala, Remarks on the Iwaniec-Šverák conjecture, Indiana Univ. Math. J. 59 (2010), no. 6, 2027-2039. MR 2919747, https://doi.org/10.1512/iumj.2010.59.3946
  • [23] Seppo Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941 (95g:30026)
  • [24] S. Semmes, Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), no. 2, 155-295. MR 1414889 (97j:46033), https://doi.org/10.1007/BF01587936
  • [25] Nageswari Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243-279. MR 1809341 (2002b:46059), https://doi.org/10.4171/RMI/275
  • [26] C. J. Titus and G. S. Young, The extension of interiority, with some applications, Trans. Amer. Math. Soc. 103 (1962), 329-340. MR 0137103 (25 #559)
  • [27] Jussi Väisälä, Minimal mappings in euclidean spaces, Ann. Acad. Sci. Fenn. Ser. A I No. 366 (1965), 22. MR 0178454 (31 #2711)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30C65, 30L10

Retrieve articles in all journals with MSC (2010): 30C65, 30L10


Additional Information

Ville Kirsilä
Affiliation: Department of Mathematics and Statistics (P.O. Box 35 (MaD)), FI-40014 University of Jyväskylä, Finland
Email: ville.kirsila@jyu.fi

DOI: https://doi.org/10.1090/S1088-4173-2014-00272-0
Received by editor(s): June 26, 2014
Received by editor(s) in revised form: October 13, 2014
Published electronically: November 17, 2014
Additional Notes: The author was financially supported by the Finnish National Doctoral Programme in Mathematics and its Applications and by the Academy of Finland, project 257482.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society