Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Global contact and quasiconformal mappings of Carnot groups


Authors: Michael G. Cowling and Alessandro Ottazzi
Journal: Conform. Geom. Dyn. 19 (2015), 221-239
MSC (2010): Primary 30L10; Secondary 57S20, 35R03, 53C23
DOI: https://doi.org/10.1090/ecgd/282
Published electronically: September 29, 2015
MathSciNet review: 3402499
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that globally defined quasiconformal mappings of rigid Carnot groups are affine, but that globally defined contact mappings of rigid Carnot groups need not be quasiconformal, and a fortiori not affine.


References [Enhancements On Off] (What's this?)

  • [1] Andreas Čap and Jan Slovák, Parabolic geometries. I, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009. Background and general theory. MR 2532439 (2010j:53037)
  • [2] Luca Capogna and Michael Cowling, Conformality and $ Q$-harmonicity in Carnot groups, Duke Math. J. 135 (2006), no. 3, 455-479. MR 2272973 (2007h:30017), https://doi.org/10.1215/S0012-7094-06-13532-9
  • [3] L. Capogna and E. Le Donne, Smoothness of subriemannian isometries, submitted (2013).
  • [4] Michael Cowling, Filippo De Mari, Adam Korányi, and Hans Martin Reimann, Contact and conformal maps on Iwasawa $ N$ groups, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3-4, 219-232. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001). MR 1984102 (2004f:53028)
  • [5] Michael Cowling, Filippo De Mari, Adam Korányi, and Hans Martin Reimann, Contact and conformal maps in parabolic geometry. I, Geom. Dedicata 111 (2005), 65-86. MR 2155176 (2006d:53049), https://doi.org/10.1007/s10711-004-4231-8
  • [6] Michael G. Cowling and Alessandro Ottazzi, Conformal maps of Carnot groups, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 203-213. MR 3310079, https://doi.org/10.5186/aasfm.2015.4008
  • [7] David M. Freeman, Invertible Carnot groups, Anal. Geom. Metr. Spaces 2 (2014), 248-257. MR 3276133, https://doi.org/10.2478/agms-2014-0009
  • [8] Juha Heinonen and Pekka Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), no. 1, 61-79. MR 1323982 (96e:30051), https://doi.org/10.1007/BF01241122
  • [9] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1-61. MR 1654771 (99j:30025), https://doi.org/10.1007/BF02392747
  • [10] A. Korányi and H. M. Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985), no. 2, 309-338. MR 788413 (86m:32035), https://doi.org/10.1007/BF01388609
  • [11] A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1-87. MR 1317384 (96c:30021), https://doi.org/10.1006/aima.1995.1017
  • [12] E. Le Donne and A. Ottazzi, Isometries of Carnot groups and sub-Finsler homogeneous manifolds, J. Geom. Anal. (2014).
  • [13] Valentino Magnani, Contact equations, Lipschitz extensions and isoperimetric inequalities, Calc. Var. Partial Differential Equations 39 (2010), no. 1-2, 233-271. MR 2659687 (2012g:49100), https://doi.org/10.1007/s00526-010-0309-3
  • [14] Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103-147. MR 793239 (86k:46049), https://doi.org/10.1007/BF02392539
  • [15] Alessandro Ottazzi, Multicontact vector fields on Hessenberg manifolds, J. Lie Theory 15 (2005), no. 2, 357-377. MR 2147433 (2006c:22015)
  • [16] Alessandro Ottazzi and Ben Warhurst, Algebraic prolongation and rigidity of Carnot groups, Monatsh. Math. 162 (2011), no. 2, 179-195. MR 2769886 (2012b:22008), https://doi.org/10.1007/s00605-009-0170-7
  • [17] Alessandro Ottazzi and Ben Warhurst, Contact and 1-quasiconformal maps on Carnot groups, J. Lie Theory 21 (2011), no. 4, 787-811. MR 2917692
  • [18] Pierre Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129 (1989), no. 1, 1-60. MR 979599 (90e:53058), https://doi.org/10.2307/1971484
  • [19] Hans Martin Reimann, Rigidity of $ H$-type groups, Math. Z. 237 (2001), no. 4, 697-725. MR 1854087 (2002f:53064), https://doi.org/10.1007/PL00004887
  • [20] Noboru Tanaka, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1-82. MR 0266258 (42 #1165)
  • [21] Ben Warhurst, Contact and quasiconformal mappings on real model filiform groups, Bull. Austral. Math. Soc. 68 (2003), no. 2, 329-343. MR 2016308 (2005b:22013), https://doi.org/10.1017/S0004972700037710
  • [22] Ben Warhurst, Jet spaces as nonrigid Carnot groups, J. Lie Theory 15 (2005), no. 1, 341-356. MR 2115247 (2006a:22006)
  • [23] Ben Warhurst, Tanaka prolongation of free Lie algebras, Geom. Dedicata 130 (2007), 59-69. MR 2365778 (2008m:17026), https://doi.org/10.1007/s10711-007-9205-1
  • [24] Ben Warhurst, Contact and Pansu differentiable maps on Carnot groups, Bull. Aust. Math. Soc. 77 (2008), no. 3, 495-507. MR 2454980 (2009m:53074), https://doi.org/10.1017/S0004972708000440
  • [25] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR 722297 (84k:58001)
  • [26] X. Xie, Quasiconformal maps on model filiform groups, Michigan Math. J. (2015), 169-202.
  • [27] Keizo Yamaguchi, Differential systems associated with simple graded Lie algebras, Progress in differential geometry, Adv. Stud. Pure Math., vol. 22, Math. Soc. Japan, Tokyo, 1993, pp. 413-494. MR 1274961 (95g:58263)

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30L10, 57S20, 35R03, 53C23

Retrieve articles in all journals with MSC (2010): 30L10, 57S20, 35R03, 53C23


Additional Information

Michael G. Cowling
Affiliation: School of Mathematics and Statistics, University of New South Wales, UNSW Sydney 2052, Australia

Alessandro Ottazzi
Affiliation: CIRM, Fondazione Bruno Kessler, Via Sommarive 15, I-38123 Trento, Italy
Address at time of publication: School of Mathematics and Statistics, University of New South Wales, UNSW Sydney 2052, Australia

DOI: https://doi.org/10.1090/ecgd/282
Keywords: Carnot groups, quasiconformal mappings, contact mappings
Received by editor(s): April 14, 2015
Received by editor(s) in revised form: September 7, 2015
Published electronically: September 29, 2015
Additional Notes: Both authors thank the Australian Research Council for support (DP140100531), and the referee for reading the paper very carefully and helping to improve it. The second named author partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society