Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Conical limit points and the Cannon-Thurston map


Authors: Woojin Jeon, Ilya Kapovich, Christopher Leininger and Ken’ichi Ohshika
Journal: Conform. Geom. Dyn. 20 (2016), 58-80
MSC (2010): Primary 20F65; Secondary 30F40, 57M60, 37Exx, 37Fxx
DOI: https://doi.org/10.1090/ecgd/294
Published electronically: March 18, 2016
MathSciNet review: 3488025
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a non-elementary word-hyperbolic group acting as a convergence group on a compact metrizable space $ Z$ so that there exists a continuous $ G$-equivariant map $ i:\partial G\to Z$, which we call a Cannon-Thurston map. We obtain two characterizations (a dynamical one and a geometric one) of conical limit points in $ Z$ in terms of their pre-images under the Cannon-Thurston map $ i$. As an application we prove, under the extra assumption that the action of $ G$ on $ Z$ has no accidental parabolics, that if the map $ i$ is not injective, then there exists a non-conical limit point $ z\in Z$ with $ \vert i^{-1}(z)\vert=1$. This result applies to most natural contexts where the Cannon-Thurston map is known to exist, including subgroups of word-hyperbolic groups and Kleinian representations of surface groups. As another application, we prove that if $ G$ is a non-elementary torsion-free word-hyperbolic group, then there exists $ x\in \partial G$ such that $ x$ is not a ``controlled concentration point'' for the action of $ G$ on $ \partial G$.


References [Enhancements On Off] (What's this?)

  • [1] I. Agol, Tameness of hyperbolic 3-manifolds, preprint, 2004; arXiv:0405568
  • [2] James W. Anderson, Petra Bonfert-Taylor, and Edward C. Taylor, Convergence groups, Hausdorff dimension, and a theorem of Sullivan and Tukia, Geom. Dedicata 103 (2004), 51-67. MR 2034952, https://doi.org/10.1023/B:GEOM.0000013844.35478.e5
  • [3] Beat Aebischer, Sungbok Hong, and Darryl McCullough, Recurrent geodesics and controlled concentration points, Duke Math. J. 75 (1994), no. 3, 759-774. MR 1291703, https://doi.org/10.1215/S0012-7094-94-07523-6
  • [4] O. Baker and T. R. Riley, Cannon-Thurston maps do not always exist, Forum Math. Sigma 1 (2013), e3, 11. MR 3143716, https://doi.org/10.1017/fms.2013.4
  • [5] O. Baker and T. Riley, Cannon-Thurston maps, subgroup distortion, and hyperbolic hydra, preprint, 2012; arXiv:1209.0815
  • [6] Alan F. Beardon and Bernard Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12. MR 0333164
  • [7] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992), no. 1, 85-101. MR 1152226
  • [8] Mladen Bestvina and Michael Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), no. 1, 1-51. MR 1147956, https://doi.org/10.2307/2946562
  • [9] M. Bestvina, M. Feighn, and M. Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997), no. 2, 215-244. MR 1445386, https://doi.org/10.1007/PL00001618
  • [10] Mladen Bestvina, Mark Feighn, and Michael Handel, The Tits alternative for $ {\rm Out}(F_n)$. I. Dynamics of exponentially-growing automorphisms, Ann. of Math. (2) 151 (2000), no. 2, 517-623. MR 1765705, https://doi.org/10.2307/121043
  • [11] Mladen Bestvina and Mark Feighn, A hyperbolic $ {\rm Out}(F_n)$-complex, Groups Geom. Dyn. 4 (2010), no. 1, 31-58. MR 2566300, https://doi.org/10.4171/GGD/74
  • [12] Mladen Bestvina and Mark Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014), 104-155. MR 3177291, https://doi.org/10.1016/j.aim.2014.02.001
  • [13] Mladen Bestvina and Patrick Reynolds, The boundary of the complex of free factors, Duke Math. J. 164 (2015), no. 11, 2213-2251. MR 3385133, https://doi.org/10.1215/00127094-3129702
  • [14] Oleg Bogopolski, Introduction to group theory, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. Translated, revised and expanded from the 2002 Russian original. MR 2396717
  • [15] Francis Bonahon, Bouts des variétés hyperboliques de dimension $ 3$, Ann. of Math. (2) 124 (1986), no. 1, 71-158 (French). MR 847953, https://doi.org/10.2307/1971388
  • [16] Brian H. Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), no. 3, 643-667. MR 1602069, https://doi.org/10.1090/S0894-0347-98-00264-1
  • [17] B. H. Bowditch, Convergence groups and configuration spaces, Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 23-54. MR 1714838
  • [18] Brian H. Bowditch, The Cannon-Thurston map for punctured-surface groups, Math. Z. 255 (2007), no. 1, 35-76. MR 2262721, https://doi.org/10.1007/s00209-006-0012-4
  • [19] B. H. Bowditch, Stacks of hyperbolic spaces and ends of 3-manifolds, Geometry and topology down under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, pp. 65-138. MR 3186670, https://doi.org/10.1090/conm/597/11769
  • [20] Martin R. Bridson and Daniel Groves, The quadratic isoperimetric inequality for mapping tori of free group automorphisms, Mem. Amer. Math. Soc. 203 (2010), no. 955, xii+152. MR 2590896, https://doi.org/10.1090/S0065-9266-09-00578-X
  • [21] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
  • [22] P. Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000), no. 5, 1071-1089. MR 1800064, https://doi.org/10.1007/PL00001647
  • [23] Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky, The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2) 176 (2012), no. 1, 1-149. MR 2925381, https://doi.org/10.4007/annals.2012.176.1.1
  • [24] Danny Calegari and David Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 385-446. MR 2188131, https://doi.org/10.1090/S0894-0347-05-00513-8
  • [25] James W. Cannon and William P. Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007), 1315-1355. MR 2326947, https://doi.org/10.2140/gt.2007.11.1315
  • [26] Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $ 3$-manifolds, Invent. Math. 118 (1994), no. 3, 441-456. MR 1296353, https://doi.org/10.1007/BF01231540
  • [27] Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988. MR 964685
  • [28] Thierry Coulbois and Arnaud Hilion, Botany of irreducible automorphisms of free groups, Pacific J. Math. 256 (2012), no. 2, 291-307. MR 2944977, https://doi.org/10.2140/pjm.2012.256.291
  • [29] Thierry Coulbois and Arnaud Hilion, Rips induction: index of the dual lamination of an $ \mathbb{R}$-tree, Groups Geom. Dyn. 8 (2014), no. 1, 97-134. MR 3209704, https://doi.org/10.4171/GGD/218
  • [30] Thierry Coulbois, Arnaud Hilion, and Martin Lustig, Non-unique ergodicity, observers' topology and the dual algebraic lamination for $ \mathbb{R}$-trees, Illinois J. Math. 51 (2007), no. 3, 897-911. MR 2379729
  • [31] Thierry Coulbois, Arnaud Hilion, and Martin Lustig, $ \mathbb{R}$-trees and laminations for free groups. I. Algebraic laminations, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 723-736. MR 2456901, https://doi.org/10.1112/jlms/jdn052
  • [32] Thierry Coulbois, Arnaud Hilion, and Martin Lustig, $ \mathbb{R}$-trees and laminations for free groups. II. The dual lamination of an $ \mathbb{R}$-tree, J. Lond. Math. Soc. (2) 78 (2008), no. 3, 737-754. MR 2456902, https://doi.org/10.1112/jlms/jdn053
  • [33] S. Dowdall, I. Kapovich, and S. J. Taylor, Cannon-Thurston maps for hyperbolic free group extensions, Israel J. Math., to appear; arXiv:1506.06974
  • [34] Sérgio Fenley, Ideal boundaries of pseudo-Anosov flows and uniform convergence groups with connections and applications to large scale geometry, Geom. Topol. 16 (2012), no. 1, 1-110. MR 2872578, https://doi.org/10.2140/gt.2012.16.1
  • [35] William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205-218. MR 568933, https://doi.org/10.1007/BF01418926
  • [36] Eric M. Freden, Negatively curved groups have the convergence property. I, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 333-348. MR 1346817
  • [37] David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447-510. MR 1189862, https://doi.org/10.2307/2946597
  • [38] Victor Gerasimov, Expansive convergence groups are relatively hyperbolic, Geom. Funct. Anal. 19 (2009), no. 1, 137-169. MR 2507221, https://doi.org/10.1007/s00039-009-0718-7
  • [39] Victor Gerasimov, Floyd maps for relatively hyperbolic groups, Geom. Funct. Anal. 22 (2012), no. 5, 1361-1399. MR 2989436, https://doi.org/10.1007/s00039-012-0175-6
  • [40] Victor Gerasimov and Leonid Potyagailo, Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2115-2137. MR 3120738, https://doi.org/10.4171/JEMS/417
  • [41] V. Gerasimov and L. Potyagailo, Similar relatively hyperbolic actions of a group, preprint, 2013; arXiv:1305.6649
  • [42] F. W. Gehring and G. J. Martin, Discrete quasiconformal groups. I, Proc. London Math. Soc. (3) 55 (1987), no. 2, 331-358. MR 896224, https://doi.org/10.1093/plms/s3-55_2.331
  • [43] Michael Handel and Lee Mosher, Axes in outer space, Mem. Amer. Math. Soc. 213 (2011), no. 1004, vi+104. MR 2858636, https://doi.org/10.1090/S0065-9266-2011-00620-9
  • [44] M. Handel and L. Mosher, Subgroup decomposition in $ Out(F_n)$: Introduction and Research Announcement, preprint, 2013; arXiv:1302.2681
  • [45] Woojin Jeon, Inkang Kim, Ken'ichi Ohshika, and Cyril Lecuire, Primitive stable representations of free Kleinian groups, Israel J. Math. 199 (2014), no. 2, 841-866. MR 3219560, https://doi.org/10.1007/s11856-013-0062-3
  • [46] W. Jeon and K. Ohshika, Measurable rigidity for Kleinian groups, Ergodic Theory and Dynamical Systems, to appear; published online June 2015; DOI: 10.1017/etds.2015.15
  • [47] Ilya Kapovich, A non-quasiconvexity embedding theorem for hyperbolic groups, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 3, 461-486. MR 1713122, https://doi.org/10.1017/S0305004199003862
  • [48] Ilya Kapovich, Algorithmic detectability of iwip automorphisms, Bull. Lond. Math. Soc. 46 (2014), no. 2, 279-290. MR 3194747, https://doi.org/10.1112/blms/bdt093
  • [49] Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39-93. MR 1921706, https://doi.org/10.1090/conm/296/05068
  • [50] Ilya Kapovich and Martin Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009), no. 3, 1805-1833. MR 2496058, https://doi.org/10.2140/gt.2009.13.1805
  • [51] Ilya Kapovich and Martin Lustig, Intersection form, laminations and currents on free groups, Geom. Funct. Anal. 19 (2010), no. 5, 1426-1467. MR 2585579, https://doi.org/10.1007/s00039-009-0041-3
  • [52] Ilya Kapovich and Martin Lustig, Invariant laminations for irreducible automorphisms of free groups, Q. J. Math. 65 (2014), no. 4, 1241-1275. MR 3285770, https://doi.org/10.1093/qmath/hat056
  • [53] Ilya Kapovich and Martin Lustig, Cannon-Thurston fibers for iwip automorphisms of $ F_N$, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 203-224. MR 3335244, https://doi.org/10.1112/jlms/jdu069
  • [54] Ilya Kapovich and Alexei Myasnikov, Stallings foldings and subgroups of free groups, J. Algebra 248 (2002), no. 2, 608-668. MR 1882114, https://doi.org/10.1006/jabr.2001.9033
  • [55] Ilya Kapovich and Hamish Short, Greenberg's theorem for quasiconvex subgroups of word hyperbolic groups, Canad. J. Math. 48 (1996), no. 6, 1224-1244. MR 1426902, https://doi.org/10.4153/CJM-1996-065-6
  • [56] Michael Kapovich, On the absence of Sullivan's cusp finiteness theorem in higher dimensions, Algebra and analysis (Irkutsk, 1989) Amer. Math. Soc. Transl. Ser. 2, vol. 163, Amer. Math. Soc., Providence, RI, 1995, pp. 77-89. MR 1331386
  • [57] Michael Kapovich and Bruce Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 647-669 (English, with English and French summaries). MR 1834498, https://doi.org/10.1016/S0012-9593(00)01049-1
  • [58] Richard P. Kent IV and Christopher J. Leininger, Shadows of mapping class groups: capturing convex cocompactness, Geom. Funct. Anal. 18 (2008), no. 4, 1270-1325. MR 2465691, https://doi.org/10.1007/s00039-008-0680-9
  • [59] Richard P. Kent IV and Christopher J. Leininger, Uniform convergence in the mapping class group, Ergodic Theory Dynam. Systems 28 (2008), no. 4, 1177-1195. MR 2437226, https://doi.org/10.1017/S0143385707000818
  • [60] Erica Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999), no. 5, 1031-1078. MR 1713300
  • [61] Christopher Leininger, Darren D. Long, and Alan W. Reid, Commensurators of finitely generated nonfree Kleinian groups, Algebr. Geom. Topol. 11 (2011), no. 1, 605-624. MR 2783240, https://doi.org/10.2140/agt.2011.11.605
  • [62] Christopher J. Leininger, Mahan Mj, and Saul Schleimer, The universal Cannon-Thurston map and the boundary of the curve complex, Comment. Math. Helv. 86 (2011), no. 4, 769-816. MR 2851869, https://doi.org/10.4171/CMH/240
  • [63] Gilbert Levitt and Martin Lustig, Irreducible automorphisms of $ F_n$ have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003), no. 1, 59-72. MR 1955207, https://doi.org/10.1017/S1474748003000033
  • [64] Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001), no. 1, 35-91. MR 1859018, https://doi.org/10.1007/PL00005809
  • [65] Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic $ 3$-manifolds, J. Amer. Math. Soc. 7 (1994), no. 3, 539-588. MR 1257060, https://doi.org/10.2307/2152785
  • [66] Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), no. 1, 1-107. MR 2630036, https://doi.org/10.4007/annals.2010.171.1
  • [67] M. Mitra, Ending laminations for hyperbolic group extensions, Geom. Funct. Anal. 7 (1997), no. 2, 379-402. MR 1445392, https://doi.org/10.1007/PL00001624
  • [68] Mahan Mitra, Cannon-Thurston maps for hyperbolic group extensions, Topology 37 (1998), no. 3, 527-538. MR 1604882, https://doi.org/10.1016/S0040-9383(97)00036-0
  • [69] Mahan Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998), no. 1, 135-164. MR 1622603
  • [70] H. Miyachi,
    Semiconjugacies between actions of topologically tame Kleinian groups, preprint, 2002.
  • [71] Mahan Mj, Ending laminations and Cannon-Thurston maps, Geom. Funct. Anal. 24 (2014), no. 1, 297-321. With an appendix by Shubhabrata Das and Mj. MR 3177384, https://doi.org/10.1007/s00039-014-0263-x
  • [72] Mahan Mj, Cannon-Thurston maps for pared manifolds of bounded geometry, Geom. Topol. 13 (2009), no. 1, 189-245. MR 2469517, https://doi.org/10.2140/gt.2009.13.189
  • [73] Mahan Mj, Cannon-Thurston maps, i-bounded geometry and a theorem of McMullen, Actes du Séminaire de Théorie Spectrale et Géometrie. Volume 28. Année 2009-2010, Sémin. Théor. Spectr. Géom., vol. 28, Univ. Grenoble I, Saint-Martin-d'Hères, 2010, pp. 63-107. MR 2848212, https://doi.org/10.5802/tsg.279
  • [74] Mahan Mj, Cannon-Thurston maps and bounded geometry, Teichmüller theory and moduli problem, Ramanujan Math. Soc. Lect. Notes Ser., vol. 10, Ramanujan Math. Soc., Mysore, 2010, pp. 489-511. MR 2667569
  • [75] M. Mj, Cannon-Thurston Maps for Kleinian Groups, arXiv:1002.0996
  • [76] Mahan Mj, On discreteness of commensurators, Geom. Topol. 15 (2011), no. 1, 331-350. MR 2776846, https://doi.org/10.2140/gt.2011.15.331
  • [77] Mahan Mj, Cannon-Thurston maps for surface groups, Ann. of Math. (2) 179 (2014), no. 1, 1-80. MR 3126566, https://doi.org/10.4007/annals.2014.179.1.1
  • [78] Mahan Mj and Abhijit Pal, Relative hyperbolicity, trees of spaces and Cannon-Thurston maps, Geom. Dedicata 151 (2011), 59-78. MR 2780738, https://doi.org/10.1007/s10711-010-9519-2
  • [79] Martine Queffélec, Substitution dynamical systems--spectral analysis, 2nd ed., Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 2010. MR 2590264
  • [80] Igor Rivin, Zariski density and genericity, Int. Math. Res. Not. IMRN 19 (2010), 3649-3657. MR 2725508, https://doi.org/10.1093/imrn/rnq043
  • [81] J. Souto, Cannon-Thurston maps for thick free groups, preprint, 2006.
    http://www.math.ubc.ca/$ \sim $jsouto/papers/Cannon-Thurston.pdf.
  • [82] Dennis Sullivan, Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 57-73. MR 634434, https://doi.org/10.1090/S0273-0979-1982-14966-7
  • [83] Eric L. Swenson, Quasi-convex groups of isometries of negatively curved spaces, Topology Appl. 110 (2001), no. 1, 119-129. Geometric topology and geometric group theory (Milwaukee, WI, 1997). MR 1804703, https://doi.org/10.1016/S0166-8641(99)00166-2
  • [84] P. Tukia, A rigidity theorem for Möbius groups, Invent. Math. 97 (1989), no. 2, 405-431. MR 1001847, https://doi.org/10.1007/BF01389048
  • [85] Pekka Tukia, Convergence groups and Gromov's metric hyperbolic spaces, New Zealand J. Math. 23 (1994), no. 2, 157-187. MR 1313451
  • [86] Pekka Tukia, Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998), 71-98. MR 1637829, https://doi.org/10.1515/crll.1998.081
  • [87] W. P. Thurston, The geometry and topology of three-manifolds, Lecture Notes from Princeton University, 1978-1980.
  • [88] Asli Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004), 41-89. MR 2039323, https://doi.org/10.1515/crll.2004.007

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 20F65, 30F40, 57M60, 37Exx, 37Fxx

Retrieve articles in all journals with MSC (2010): 20F65, 30F40, 57M60, 37Exx, 37Fxx


Additional Information

Woojin Jeon
Affiliation: School of Mathematics, KIAS, Hoegiro 87, Dongdaemun-gu, Seoul, 130-722, Korea
Email: jwoojin@kias.re.kr

Ilya Kapovich
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
Email: kapovich@math.uiuc.edu

Christopher Leininger
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, Illinois 61801
Email: clein@math.uiuc.edu

Ken’ichi Ohshika
Affiliation: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Email: ohshika@math.sci.osaka-u.ac.jp

DOI: https://doi.org/10.1090/ecgd/294
Keywords: Convergence groups, Cannon-Thurston map, conical limit points, Kleinian groups
Received by editor(s): May 7, 2015
Received by editor(s) in revised form: January 29, 2016
Published electronically: March 18, 2016
Additional Notes: The second author was partially supported by Collaboration Grant no. 279836 from the Simons Foundation and by NSF grant DMS-1405146. The third author was partially supported by NSF grants DMS-1207183 and DMS-1510034. The last author was partially supported by JSPS Grants-in-Aid 70183225.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society