Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173



Dynamics of singular complex analytic vector fields with essential singularities I

Authors: Alvaro Alvarez–Parrilla and Jesús Muciño–Raymundo
Journal: Conform. Geom. Dyn. 21 (2017), 126-224
MSC (2010): Primary 32S65; Secondary 30F20, 58K45, 32M25
Published electronically: March 16, 2017
Supplemental figure: Mathematica file for Figure 14
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We tackle the problem of understanding the geometry and dynamics of singular complex analytic vector fields $ X$ with essential singularities on a Riemann surface $ M$ (compact or not). Two basic techniques are used. (a) In the complex analytic category on $ M$, we exploit the correspondence between singular vector fields $ X$, differential forms $ \omega _{X}$ (with $ \omega _{X}(X)\equiv 1$), orientable quadratic differentials $ \omega _{X} \otimes \omega _{X}$, global distinguished parameters $ \Psi _{X} (z) = \int ^z \omega _{X}$, and the Riemann surfaces $ \mathcal {R}_{X}$ of the above parameters.
(b) We use the fact that all singular complex analytic vector fields can be expressed as the global pullback via certain maps of the holomorphic vector fields on the Riemann sphere, in particular, via their respective $ \Psi _{X}$.

We show that under certain analytical conditions on $ \Psi _{X}$, the germ of a singular complex analytic vector field determines a decomposition in angular sectors; center $ C$, hyperbolic $ H$, elliptic $ E$, parabolic $ P$ sectors but with the addition of suitable copies of a new type of entire angular sector $ \mathscr {E}$, stemming from $ X(z)=$$ \text {\Large e}^z \frac {\partial }{\partial z}$. This extends the classical theorems of A. A. Andronov et al. on the decomposition in angular sectors of real analytic vector field germs.

The Poincaré-Hopf index theory for $ \mathfrak{Re}\left (X\right )$ local and global on compact Riemann surfaces, is extended so as to include the case of suitable isolated essential singularities.

The inverse problem: determining which cyclic words $ \mathcal {W}_{X}$, comprised of hyperbolic, elliptic, parabolic and entire angular sectors, it is possible to obtain from germs of singular analytic vector fields, is also answered in terms of local analytical invariants.

We also study the problem of when and how a germ of a singular complex analytic vector field having an essential singularity (not necessarily isolated) can be extended to a suitable compact Riemann surface.

Considering the family of entire vector fields $ \mathcal {E}(d) =\{X(z)= \lambda$$ \text {\Large e}^{P(z)}\frac {\partial }{\partial z}\}$ on the Riemann sphere, where $ P(z)$ is a polynomial of degree $ d$ and $ \lambda \in \mathbb{C}^*$, we completely characterize the local and global dynamics of this class of vector fields, compute analytic normal forms for $ d=1, 2, 3$, and show that for $ d\geq 3$ there are an infinite number of topological (phase portrait) classes of $ \mathfrak{Re}(X)$, for $ X\in \mathcal {E}(d)$. These results are based on the work of R. Nevanlinna, A. Speisser and M. Taniguchi on entire functions $ \Psi _{X}$.

Finally, on the topological decomposition of real vector fields into canonical regions, we extend the results of L. Markus and H. E. Benzinger to meromorphic on $ \mathbb{C}$ vector fields $ X$, with an essential singularity at $ \infty \in \widehat {\mathbb{C}}$, whose $ \Psi _{X}^{-1}$ have $ d$ logarithmic branch points over $ d$ finite asymptotic values and $ d$ logarithmic branch points over $ \infty $.

References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0357743
  • [2] Lars V. Ahlfors, Complex analysis: An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics, 3rd ed., McGraw-Hill Book Co., New York, 1978. MR 510197
  • [3] A. Alvarez-Parrilla, Complex analytic vector field visualization without numerical integration, Preprint (2009).
  • [4] Alvaro Alvarez-Parrilla, Adrian Gómez-Arciga, and Alberto Riesgo-Tirado, Newton vector fields on the plane and on the torus, Complex Var. Elliptic Equ. 54 (2009), no. 5, 449-461. MR 2524140,
  • [5] Alvaro Alvarez-Parrilla, Martín Eduardo Frías-Armenta, Elifalet López-González, and Carlos Yee-Romero, On solving systems of autonomous ordinary differential equations by reduction to a variable of an algebra, Int. J. Math. Math. Sci. (2012), Art. ID 753916, 21. MR 2974702
  • [6] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maĭer, Qualitative theory of second-order dynamic systems, Halsted Press (A division of John Wiley & Sons), New York-Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem-London, 1973. Translated from the Russian by D. Louvish. MR 0350126
  • [7] Enrico Arbarello, Maurizio Cornalba, and Pillip A. Griffiths, Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a contribution by Joseph Daniel Harris. MR 2807457
  • [8] L. Arnold, C. Jones, K. Mischaikow, and G. Raugel, Dynamical systems, Lecture Notes in Mathematics, vol. 1609, Springer-Verlag, Berlin, 1995. Lectures given at the Second C.I.M.E. Session held in Montecatini Terme, June 13-22, 1994; Edited by R. Johnson. MR 1374106
  • [9] G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267-276, 479 (Russian). MR 534593
  • [10] Harold E. Benzinger, Plane autonomous systems with rational vector fields, Trans. Amer. Math. Soc. 326 (1991), no. 2, 465-483. MR 992604,
  • [11] Carlos A. Berenstein and Roger Gay, Complex variables: An introduction, Graduate Texts in Mathematics, vol. 125, Springer-Verlag, New York, 1991. MR 1107514
  • [12] Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373. MR 1344897,
  • [13] Bodil Branner and Kealey Dias, Classification of complex polynomial vector fields in one complex variable, J. Difference Equ. Appl. 16 (2010), no. 5-6, 463-517. MR 2642463,
  • [14] Louis Brickman and E. S. Thomas, Conformal equivalence of analytic flows, J. Differential Equations 25 (1977), no. 3, 310-324. MR 0447674,
  • [15] Joshua P. Bowman and Ferrán Valdez, Wild singularities of flat surfaces, Israel J. Math. 197 (2013), no. 1, 69-97. MR 3096607,
  • [16] Xavier Buff and Lei Tan, Dynamical convergence and polynomial vector fields, J. Differential Geom. 77 (2007), no. 1, 1-41. MR 2344353
  • [17] Alvaro Bustinduy, Luis Giraldo, and Jesús Muciño-Raymundo, Jacobian mates for non-singular polynomial maps in $ \mathbb{C}^n$ with one-dimensional fibers, J. Singul. 9 (2014), 27-42. MR 3249045
  • [18] Alvaro Bustinduy, Luis Giraldo, and Jesús Muciño-Raymundo, Vector fields from locally invertible polynomial maps in $ \mathbb{C}^n$, Colloq. Math. 140 (2015), no. 2, 205-220. MR 3371776,
  • [19] A. Douady, F. Estrada, P. Sentenac, Champs de vecteurs polynomiaux sur $ \mathbb{C}$, Preprint 2005.
  • [20] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431
  • [21] Freddy Dumortier, Jaume Llibre, and Joan C. Artés, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, Berlin, 2006. MR 2256001
  • [22] G. Elfving, Über eine Klasse von Riemannschen Flächen und ihre Uniformisierung, Acta Soc. Sci. Fennicae, N.S. 2, Nr. 3 (1934), 1-60.
  • [23] Martín-Eduardo Frías-Armenta and Jesús Muciño-Raymundo, Topological and analytical classification of vector fields with only isochronous centres, J. Difference Equ. Appl. 19 (2013), no. 10, 1694-1728. MR 3173513,
  • [24] Antonio Garijo, Armengol Gasull, and Xavier Jarque, Normal forms for singularities of one dimensional holomorphic vector fields, Electron. J. Differential Equations (2004), No. 122, 7. MR 2108893
  • [25] Antonio Garijo, Armengol Gasull, and Xavier Jarque, Local and global phase portrait of equation $ \dot z=f(z)$, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 309-329. MR 2257435
  • [26] J. Gregor, Dynamické systémy s regulární pravou stranou I, Pokroky Mat. Fyz. Astron. 3 (1958), 153-160.
  • [27] J. Gregor, Dynamické systémy s regulární pravou stranou II, Pokroky Mat. Fyz. Astron. 3 (1958), 266-270.
  • [28] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • [29] Wilhelm Groß, Über die Singularitäten analytischer Funktionen, Monatsh. Math. Phys. 29 (1918), no. 1, 3-47 (German). MR 1548975,
  • [30] Carlos Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 17-44. MR 837974,
  • [31] Otomar Hájek, Notes on meromorphic dynamical systems. I, Czechoslovak Math. J. 16 (91) (1966), 14-27 (English, with Russian summary). MR 0194661
  • [32] Otomar Hájek, Notes on meromorphic dynamical systems. II, Czechoslovak Math. J. 16 (91) (1966), 28-35 (English, with Russian summary). MR 0194662
  • [33] Otomar Hájek, Notes on meromorphic dynamical systems. III, Czechoslovak Math. J. 16 (91) (1966), 36-40 (English, with Russian summary). MR 0194663
  • [34] Kevin Hockett and Sita Ramamurti, Dynamics near the essential singularity of a class of entire vector fields, Trans. Amer. Math. Soc. 345 (1994), no. 2, 693-703. MR 1270665,
  • [35] Xin-Hou Hua and Chung-Chun Yang, Dynamics of transcendental functions, Asian Mathematics Series, vol. 1, Gordon and Breach Science Publishers, Amsterdam, 1998. MR 1652248
  • [36] A. Hurwitz, Sur les points critiques des fonctions inverses, Comptes Rendus 143 (1906), 877-879; Math. Werke, Bd. 1, S. 655-656.
  • [37] Yulij Ilyashenko and Sergei Yakovenko, Lectures on analytic differential equations, Graduate Studies in Mathematics, vol. 86, American Mathematical Society, Providence, RI, 2008. MR 2363178
  • [38] F. Iversen, Recherches sur les fonctions inverses des fonctions méromorphes, Thèse, Helsingfors, 1914.
  • [39] James A. Jenkins, Univalent functions and conformal mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0096806
  • [40] H. Th. Jongen, P. Jonker, and F. Twilt, On the classification of plane graphs representing structurally stable rational Newton flows, J. Combin. Theory Ser. B 51 (1991), no. 2, 256-270. MR 1099075,
  • [41] Shoshichi Kobayashi, Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70. MR 0355886
  • [42] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry Vol. 2., John Wiley & Sons, New York, 1969.
  • [43] F. Klein, On Riemann's Theory of Algebraic Functions and Their Integrals, Dover Publications Inc., New York, 1963.
  • [44] Maxim Kontsevich and Anton Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003), no. 3, 631-678. MR 2000471,
  • [45] Jesús Muciño-Raymundo, Complex structures adapted to smooth vector fields, Math. Ann. 322 (2002), no. 2, 229-265. MR 1893915,
  • [46] N. A. Lukashevich, Isochronicity of a center for certain systems of differential equations, Differ. Uravn. 1 (1965), 295-302.
  • [47] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76 (1954), 127-148. MR 0060657,
  • [48] Howard Masur and Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089. MR 1928530,
  • [49] Jesús Muciño-Raymundo, Complex structures adapted to smooth vector fields, Math. Ann. 322 (2002), no. 2, 229-265. MR 1893915,
  • [50] Jesús Muciño-Raymundo and Carlos Valero-Valdés, Bifurcations of meromorphic vector fields on the Riemann sphere, Ergodic Theory Dynam. Systems 15 (1995), no. 6, 1211-1222. MR 1366317,
  • [51] David Mumford, Curves and their Jacobians, The University of Michigan Press, Ann Arbor, Mich., 1975. MR 0419430
  • [52] D. J. Needham and A. C. King, On meromorphic complex differential equations, Dynam. Stability Systems 9 (1994), no. 2, 99-122. MR 1287510,
  • [53] Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. MR 0279280
  • [54] Rolf Nevanlinna, Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math. 58 (1932), no. 1, 295-373 (German). MR 1555350,
  • [55] Dean A. Neumann, Classification of continuous flows on $ 2$-manifolds, Proc. Amer. Math. Soc. 48 (1975), 73-81. MR 0356138,
  • [56] Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR 1429619
  • [57] Ronen Peretz, Maximal domains for entire functions, J. Anal. Math. 61 (1993), 1-28. MR 1253436,
  • [58] Bernhard Riemann, Collected papers, Kendrick Press, Heber City, UT, 2004. Translated from the 1892 German edition by Roger Baker, Charles Christenson and Henry Orde. MR 2121437
  • [59] M. Sabatini, Characterizing isochronous centres by Lie brackets, Differential Equations Dynam. Systems 5 (1997), no. 1, 91-99. MR 1656001
  • [60] Sanford L. Segal, Nine introductions in complex analysis, Revised edition, North-Holland Mathematics Studies, vol. 208, Elsevier Science B.V., Amsterdam, 2008. MR 2376066
  • [61] Michael Shub, David Tischler, and Robert F. Williams, The Newtonian graph of a complex polynomial, SIAM J. Math. Anal. 19 (1988), no. 1, 246-256. MR 924558,
  • [62] Steve Smale, A convergent process of price adjustment and global Newton methods, J. Math. Econom. 3 (1976), no. 2, 107-120. MR 0411577,
  • [63] Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1-36. MR 590817,
  • [64] A. Speiser, Untersuchungen über konforme und quasikonforme Abbildung, Dtsch. Math. 3 (1938).
  • [65] A. Speiser, Ueber Riemannsche Flächen, Comment. Math. Helv. 2 (1930), no. 1, 284-293 (German). MR 1509419,
  • [66] Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423
  • [67] Masahiko Taniguchi, Explicit representation of structurally finite entire functions, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 4, 68-70. MR 1829377
  • [68] Masahiko Taniguchi, Synthetic deformation space of an entire function, Value distribution theory and complex dynamics (Hong Kong, 2000) Contemp. Math., vol. 303, Amer. Math. Soc., Providence, RI, 2002, pp. 107-136. MR 1943529,
  • [69] William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
  • [70] E. P. Volokitin and V. V. Ivanov, Isochronicity and commutability of polynomial vector fields, Sibirsk. Mat. Zh. 40 (1999), no. 1, 30-48, i (Russian, with Russian summary); English transl., Siberian Math. J. 40 (1999), no. 1, 23-38. MR 1686982,
  • [71] Hung Hsi Wu, Function theory on noncompact Kähler manifolds, Complex differential geometry, DMV Sem., vol. 3, Birkhäuser, Basel, 1983, pp. 67-155. MR 826253,

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 32S65, 30F20, 58K45, 32M25

Retrieve articles in all journals with MSC (2010): 32S65, 30F20, 58K45, 32M25

Additional Information

Alvaro Alvarez–Parrilla
Affiliation: Grupo Alximia SA de CV, Ensenada, Baja California, México

Jesús Muciño–Raymundo
Affiliation: Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México

Keywords: Entire functions, entire vector fields, Riemann surfaces, essential singularities
Received by editor(s): February 20, 2014
Received by editor(s) in revised form: July 8, 2016, July 29, 2016, and December 14, 2016
Published electronically: March 16, 2017
Additional Notes: The first author was partially supported by UABC projects 1273 and 0196
The second author was partially supported by LAISLA
Dedicated: Dedicated to Luz Ximena; she loves the pictures.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society