Remote Access Conformal Geometry and Dynamics
Green Open Access

Conformal Geometry and Dynamics

ISSN 1088-4173

 
 

 

Hereditary circularity for energy minimal diffeomorphisms


Author: Ngin-Tee Koh
Journal: Conform. Geom. Dyn. 21 (2017), 369-377
MSC (2010): Primary 30C45, 31A05, 34B24
DOI: https://doi.org/10.1090/ecgd/315
Published electronically: December 13, 2017
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We reveal some geometric properties of energy minimal diffeomorphisms defined on an annulus, whose existence was established in works by Iwaniec et al. (2011) and Kalaj (2014).


References [Enhancements On Off] (What's this?)

  • [1] Martin Chuaqui, Peter Duren, and Brad Osgood, Ellipses, near ellipses, and harmonic Möbius transformations, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2705-2710. MR 2146217
  • [2] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. MR 752388
  • [3] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
  • [4] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
  • [5] Peter Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. MR 2048384
  • [6] A. W. Goodman and E. B. Saff, On univalent functions convex in one direction, Proc. Amer. Math. Soc. 73 (1979), no. 2, 183-187. MR 516461
  • [7] Erhard Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101-105. MR 0104933
  • [8] W. Hengartner and G. Schober, A remark on level curves for domains convex in one direction, Applicable Anal. 3 (1973), 101-106. Collection of articles dedicated to Eberhard Hopf on the occasion of his 70th birthday. MR 0393450
  • [9] W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. London Math. Soc. (2) 33 (1986), no. 3, 473-483. MR 850963
  • [10] Walter Hengartner and Glenn Schober, Univalent harmonic exterior and ring mappings, J. Math. Anal. Appl. 156 (1991), no. 1, 154-171. MR 1102603
  • [11] Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
  • [12] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
  • [13] Tadeusz Iwaniec, Ngin-Tee Koh, Leonid V. Kovalev, and Jani Onninen, Existence of energy-minimal diffeomorphisms between doubly connected domains, Invent. Math. 186 (2011), no. 3, 667-707. MR 2854087
  • [14] Tadeusz Iwaniec, Leonid V. Kovalev, and Jani Onninen, The Nitsche conjecture, J. Amer. Math. Soc. 24 (2011), no. 2, 345-373. MR 2748396
  • [15] David Kalaj, Energy-minimal diffeomorphisms between doubly connected Riemann surfaces, Calc. Var. Partial Differential Equations 51 (2014), no. 1-2, 465-494. MR 3247397
  • [16] Ngin-Tee Koh, Hereditary convexity for harmonic homeomorphisms, Indiana Univ. Math. J. 64 (2015), no. 1, 231-243. MR 3320525
  • [17] Ngin-Tee Koh, Harmonic mappings with hereditary starlikeness, J. Math. Anal. Appl. 457 (2018), no. 1, 273-286. MR 3702706
  • [18] N.-T. Koh and L. V. Kovalev, Area contraction for harmonic automorphisms of the disk, Bull. Lond. Math. Soc. 43 (2011), no. 1, 91-96. MR 2765553
  • [19] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463
  • [20] Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952. MR 0045823
  • [21] E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, Heft II, Teubner, Leipzig, 1913.

Similar Articles

Retrieve articles in Conformal Geometry and Dynamics of the American Mathematical Society with MSC (2010): 30C45, 31A05, 34B24

Retrieve articles in all journals with MSC (2010): 30C45, 31A05, 34B24


Additional Information

Ngin-Tee Koh
Affiliation: School of Mathematics and Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
Email: ngin-tee.koh@canterbury.ac.nz

DOI: https://doi.org/10.1090/ecgd/315
Keywords: Annulus, energy minimal diffeomorphisms, Sturm-Liouville theory
Received by editor(s): November 1, 2016
Received by editor(s) in revised form: August 20, 2017
Published electronically: December 13, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society