Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762



Geodesic length functions
and Teichmüller spaces

Author: Feng Luo
Journal: Electron. Res. Announc. Amer. Math. Soc. 2 (1996), 34-41
MSC (1991): Primary 32G15, 30F60
MathSciNet review: 1405967
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a compact orientable surface $\Sigma $, let $\mathcal {S}(\Sigma )$ be the set of isotopy classes of essential simple closed curves in $\Sigma $. We determine a complete set of relations for a function from $\mathcal {S}(\Sigma )$ to $\mathbf {R}$ to be the geodesic length function of a hyperbolic metric with geodesic boundary on $\Sigma $. As a consequence, the Teichmüller space of hyperbolic metrics with geodesic boundary on $\Sigma $ is reconstructed from an intrinsic combinatorial structure on $\mathcal {S}(\Sigma )$. This also gives a complete description of the image of Thurston's embedding of the Teichmüller space.

References [Enhancements On Off] (What's this?)

  • [Bo] F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), 139--162. MR 90a:32025
  • [De] M. Dehn, Papers on group theory and topology, J. Stillwell (ed.), Springer-Verlag, Berlin and New York, 1987. MR 88d:01041
  • [FK] R. Fricke and F. Klein, Vorlesungen über die Theorie der Automorphen Funktionen, Teubner, Leipizig, 1897--1912.
  • [FLP] A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, vol. 66--67, Astérisque, Société Mathématique de France, 1979. MR 82m:57003
  • [Ke] L. Keen, Intrinsic moduli on Riemann surfaces, Ann. Math. 84 (1966), 405--420. MR 34:2859
  • [Li] R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. Math. 72 (1962), 531--540. MR 27:1929
  • [Lu1] F. Luo, Geodesic length functions and Teichmüller spaces, preprint.
  • [Lu2] ------, Non-separating simple closed curves in a compact surface, Topology, in press.
  • [Mas] B. Maskit, On Klein's combination theorem, Trans. Amer. Math. Soc. 131 (1968), 32--39. MR 36:6618
  • [Ok] Y. Okumura, On the global real analytic coordinates for Teichmüller spaces, J. Math. Soc. Japan 42 (1990), 91--101. MR 90k:32071
  • [Ok1] ------, Global real analytic length parameters for Teichmüller spaces, Hiroshima Math. J. 26 (1) (1996), 165--179. CMP 96:10
  • [Sc] P. Schmutz, Die Parametrisierung des Teichmüllerraumes durch geodätishe Längenfunktionen, Comment. Math. Helv. 68 (1993), 278--288. MR 94g:32028
  • [So] T. Sorvali, Parametrization for free Möbius groups, Ann. Acad. Sci. Fenn. 579 (1974), 1--12.
  • [Th] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bul. Amer. Math. Soc. 19 (1988), 417--438. MR 89k:57023
  • [Wo] S. Wolpert, Geodesic length functions and the Nielsen problem, J. Diff. Geom. 25 (1987), 275--296. MR 88e:32032

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 32G15, 30F60

Retrieve articles in all journals with MSC (1991): 32G15, 30F60

Additional Information

Feng Luo
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, NJ 08903

Keywords: Hyperbolic metrics, geodesics, Teichm\"{u}ller spaces
Received by editor(s): April 9, 1996
Communicated by: Walter Neumann
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society