Weighted polynomial approximation in the complex plane

Authors:
Igor E. Pritsker and Richard S. Varga

Journal:
Electron. Res. Announc. Amer. Math. Soc. **3** (1997), 38-44

MSC (1991):
Primary 30E10; Secondary 30C15, 31A15, 41A30

DOI:
https://doi.org/10.1090/S1079-6762-97-00021-8

Published electronically:
May 2, 1997

MathSciNet review:
1445633

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a pair of an open bounded set in the complex plane and a weight function which is analytic and different from zero in , we consider the problem of the locally uniform approximation of any function , which is analytic in , by weighted polynomials of the form , where . The main result of this paper is a necessary and sufficient condition for such an approximation to be valid. We also consider a number of applications of this result to various classical weights, which give explicit criteria for these weighted approximations.

**1.**P. B. Borwein and Weiyu Chen,*Incomplete rational approximation in the complex plane*, Constr. Approx.**11**(1995), no. 1, 85–106. MR**1323965**, https://doi.org/10.1007/BF01294340**2.**P. B. Borwein, E. A. Rakhmanov and E. B. Saff,*Rational approximation with varying weights I*, Constr. Approx.**12**(1996), 223-240. CMP**96:13****3.**M. von Golitschek,*Approximation by incomplete polynomials*, J. Approx. Theory**28**(1980), no. 2, 155–160. MR**573329**, https://doi.org/10.1016/0021-9045(80)90086-6**4.**A. B. J. Kuijlaars,*The role of the endpoint in weighted polynomial approximation with varying weights*, Constr. Approx.**12**(1996), 287-301. CMP**96:13****5.**N. S. Landkof,*Foundations of modern potential theory*, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR**0350027****6.**G. G. Lorentz,*Approximation by incomplete polynomials (problems and results)*, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 289–302. MR**0467089****7.**G. G. Lorentz, M. von Golitschek, and Y. Makovoz,*Constructive approximation*, Springer-Verlag, Berlin, 1996. CMP**96:13****8.**Rolf Nevanlinna,*Analytic functions*, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. MR**0279280****9.**I. E. Pritsker and R. S. Varga,*The Szegö curve, zero distribution and weighted approximation*, to appear in Trans. Amer. Math. Soc. CMP**96:17****10.**E. B. Saff and V. Totik,*Logarithmic potentials with external fields*, Springer-Verlag, Heidelberg, 1996 (to appear).**11.**E. B. Saff and R. S. Varga,*On incomplete polynomials*, Numerische Methoden der Approximationstheorie, Band 4 (Meeting, Math. Forschungsinst., Oberwolfach, 1977) Internat. Schriftenreihe Numer. Math., vol. 42, Birkhäuser, Basel-Boston, Mass., 1978, pp. 281–298. MR**527107****12.**Vilmos Totik,*Weighted approximation with varying weight*, Lecture Notes in Mathematics, vol. 1569, Springer-Verlag, Berlin, 1994. MR**1290789****13.**M. Tsuji,*Potential theory in modern function theory*, Maruzen Co., Ltd., Tokyo, 1959. MR**0114894**

M. Tsuji,*Potential theory in modern function theory*, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR**0414898****14.**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR**0218587**

J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR**0218588**

Retrieve articles in *Electronic Research Announcements of the American Mathematical Society*
with MSC (1991):
30E10,
30C15,
31A15,
41A30

Retrieve articles in all journals with MSC (1991): 30E10, 30C15, 31A15, 41A30

Additional Information

**Igor E. Pritsker**

Affiliation:
Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242-0001

Email:
pritsker@mcs.kent.edu

**Richard S. Varga**

Affiliation:
Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242-0001

Email:
varga@mcs.kent.edu

DOI:
https://doi.org/10.1090/S1079-6762-97-00021-8

Keywords:
Weighted polynomials,
locally uniform approximation,
logarithmic potential,
balayage

Received by editor(s):
October 15, 1996

Published electronically:
May 2, 1997

Communicated by:
Yitzhak Katznelson

Article copyright:
© Copyright 1997
American Mathematical Society