Remote Access Electronic Research Announcements

Electronic Research Announcements

ISSN 1079-6762

 

 

Weighted polynomial approximation in the complex plane


Authors: Igor E. Pritsker and Richard S. Varga
Journal: Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 38-44
MSC (1991): Primary 30E10; Secondary 30C15, 31A15, 41A30
Published electronically: May 2, 1997
MathSciNet review: 1445633
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a pair $(G,W)$ of an open bounded set $G$ in the complex plane and a weight function $W(z)$ which is analytic and different from zero in $G$, we consider the problem of the locally uniform approximation of any function $f(z)$, which is analytic in $G$, by weighted polynomials of the form $\left \{W^{n}(z)P_{n}(z) \right \}^{\infty }_{n=0}$, where $\deg P_{n} \leq n$. The main result of this paper is a necessary and sufficient condition for such an approximation to be valid. We also consider a number of applications of this result to various classical weights, which give explicit criteria for these weighted approximations.


References [Enhancements On Off] (What's this?)

  • 1. P. B. Borwein and Weiyu Chen, Incomplete rational approximation in the complex plane, Constr. Approx. 11 (1995), no. 1, 85–106. MR 1323965, 10.1007/BF01294340
  • 2. P. B. Borwein, E. A. Rakhmanov and E. B. Saff, Rational approximation with varying weights I, Constr. Approx. 12(1996), 223-240. CMP 96:13
  • 3. M. von Golitschek, Approximation by incomplete polynomials, J. Approx. Theory 28 (1980), no. 2, 155–160. MR 573329, 10.1016/0021-9045(80)90086-6
  • 4. A. B. J. Kuijlaars, The role of the endpoint in weighted polynomial approximation with varying weights, Constr. Approx. 12(1996), 287-301. CMP 96:13
  • 5. N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
  • 6. G. G. Lorentz, Approximation by incomplete polynomials (problems and results), Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 289–302. MR 0467089
  • 7. G. G. Lorentz, M. von Golitschek, and Y. Makovoz, Constructive approximation, Springer-Verlag, Berlin, 1996. CMP 96:13
  • 8. Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. MR 0279280
  • 9. I. E. Pritsker and R. S. Varga, The Szegö curve, zero distribution and weighted approximation, to appear in Trans. Amer. Math. Soc. CMP 96:17
  • 10. E. B. Saff and V. Totik, Logarithmic potentials with external fields, Springer-Verlag, Heidelberg, 1996 (to appear).
  • 11. E. B. Saff and R. S. Varga, On incomplete polynomials, Numerische Methoden der Approximationstheorie, Band 4 (Meeting, Math. Forschungsinst., Oberwolfach, 1977) Internat. Schriftenreihe Numer. Math., vol. 42, Birkhäuser, Basel-Boston, Mass., 1978, pp. 281–298. MR 527107
  • 12. Vilmos Totik, Weighted approximation with varying weight, Lecture Notes in Mathematics, vol. 1569, Springer-Verlag, Berlin, 1994. MR 1290789
  • 13. M. Tsuji, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959. MR 0114894
    M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
  • 14. J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR 0218588

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 30E10, 30C15, 31A15, 41A30

Retrieve articles in all journals with MSC (1991): 30E10, 30C15, 31A15, 41A30


Additional Information

Igor E. Pritsker
Affiliation: Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242-0001
Email: pritsker@mcs.kent.edu

Richard S. Varga
Affiliation: Institute for Computational Mathematics, Department of Mathematics and Computer Science, Kent State University, Kent, Ohio 44242-0001
Email: varga@mcs.kent.edu

DOI: https://doi.org/10.1090/S1079-6762-97-00021-8
Keywords: Weighted polynomials, locally uniform approximation, logarithmic potential, balayage
Received by editor(s): October 15, 1996
Published electronically: May 2, 1997
Communicated by: Yitzhak Katznelson
Article copyright: © Copyright 1997 American Mathematical Society