Prevalence of non-Lipschitz Anosov foliations

Authors:
Boris Hasselblatt and Amie Wilkinson

Journal:
Electron. Res. Announc. Amer. Math. Soc. **3** (1997), 93-98

MSC (1991):
Primary 58F15; Secondary 53C12

Published electronically:
September 11, 1997

MathSciNet review:
1465582

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give sharp regularity results for the invariant subbundles of hyperbolic dynamical systems and give open dense sets of codimension one systems where this regularity is not exceeded as well as open dense sets of symplectic, geodesic, and codimension one systems where the analogous regularity results of Pugh, Shub, and Wilkinson are optimal. We produce *open sets* of symplectic Anosov diffeomorphisms and flows with low transverse Hölder regularity of the invariant foliations *almost everywhere*. Prevalence of low regularity of conjugacies on large sets is a corollary. We also establish a new connection between the transverse regularity of foliations and their tangent subbundles.

**[A1]**D. V. Anosov,*Geodesic flows on closed Riemannian manifolds of negative curvature*, Trudy Mat. Inst. Steklov.**90**(1967), 209 (Russian). MR**0224110**

D. V. Anosov,*Geodesic flows on closed Riemann manifolds with negative curvature.*, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. MR**0242194****[A2]**D. V. Anosov,*Tangential fields of transversal foliations in 𝑈-systems*, Mat. Zametki**2**(1967), 539–548 (Russian). MR**0242190****[BCG]**Gérard Besson, Gilles Courtois, and Sylvestre Gallot,*Minimal entropy and Mostow’s rigidity theorems*, Ergodic Theory Dynam. Systems**16**(1996), no. 4, 623–649. MR**1406425**, 10.1017/S0143385700009019**[F]**Neil Fenichel,*Asymptotic stability with rate conditions*, Indiana Univ. Math. J.**23**(1973/74), 1109–1137. MR**0339276**

Neil Fenichel,*Asymptotic stability with rate conditions. II*, Indiana Univ. Math. J.**26**(1977), no. 1, 81–93. MR**0426056****[GPS]**Matthew Grayson, Charles Pugh, and Michael Shub,*Stably ergodic diffeomorphisms*, Ann. of Math. (2)**140**(1994), no. 2, 295–329. MR**1298715**, 10.2307/2118602**[G]**Leon W. Green,*The generalized geodesic flow*, Duke Math. J.**41**(1974), 115–126; correction, ibid. 42 (1975), 381. MR**0370659****[H1]**Boris Hasselblatt,*Regularity of the Anosov splitting and of horospheric foliations*, Ergodic Theory Dynam. Systems**14**(1994), no. 4, 645–666. MR**1304137**, 10.1017/S0143385700008105**[H2]**Boris Hasselblatt,*Horospheric foliations and relative pinching*, J. Differential Geom.**39**(1994), no. 1, 57–63. MR**1258914****[H3]**Boris Hasselblatt,*Periodic bunching and invariant foliations*, Math. Res. Lett.**1**(1994), no. 5, 597–600. MR**1295553**, 10.4310/MRL.1994.v1.n5.a7**[H4]**Boris Hasselblatt,*Regularity of the Anosov splitting II*, Ergodic Theory and Dynamical Systems,**17**(1997), 169-172. CMP**97:10****[HPS]**M. W. Hirsch, C. C. Pugh, and M. Shub,*Invariant manifolds*, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR**0501173****[HK]**S. Hurder and A. Katok,*Differentiability, rigidity and Godbillon-Vey classes for Anosov flows*, Inst. Hautes Études Sci. Publ. Math.**72**(1990), 5–61 (1991). MR**1087392****[KH]**Anatole Katok and Boris Hasselblatt,*Introduction to the modern theory of dynamical systems*, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR**1326374****[LM]**R. de la Llave and R. Moriyón,*Invariants for smooth conjugacy of hyperbolic dynamical systems. IV*, Comm. Math. Phys.**116**(1988), no. 2, 185–192. MR**939045****[N]**S. E. Newhouse,*On codimension one Anosov diffeomorphisms*, Amer. J. Math.**92**(1970), 761–770. MR**0277004****[P]**Ja. B. Pesin,*The existence of invariant foliations for a diffeomorphism of a smooth manifold*, Mat. Sb. (N.S.)**91(133)**(1973), 202–210, 287 (Russian). MR**0343307****[PS]**Charles Pugh, Michael Shub,*Stably ergodic dynamical systems and partial hyperbolicity*, Journal of Complexity,*to appear***[PSW]**Charles Pugh, Michael Shub, Amie Wilkinson,*Hölder foliations*, Duke Mathematical Journal,**86**(1997), no. 3, 517-546. CMP**97:07****[SS]**J. Schmeling and Ra. Siegmund-Schultze,*Hölder continuity of the holonomy maps for hyperbolic basic sets. I*, Ergodic theory and related topics, III (Güstrow, 1990) Lecture Notes in Math., vol. 1514, Springer, Berlin, 1992, pp. 174–191. MR**1179182**, 10.1007/BFb0097538**[W]**Amie Wilkinson,*Stable ergodicity of the time-one map of a geodesic flow*, Ergodic Theory and Dynamical Systems, to appear

Retrieve articles in *Electronic Research Announcements of the American Mathematical Society*
with MSC (1991):
58F15,
53C12

Retrieve articles in all journals with MSC (1991): 58F15, 53C12

Additional Information

**Boris Hasselblatt**

Affiliation:
Department of Mathematics Tufts University Medford, MA 02155-5597

Email:
bhasselb@tufts.edu

**Amie Wilkinson**

Affiliation:
Department of Mathematics Northwestern University Evanston, IL 60208-2730

Email:
wilkinso@math.nwu.edu

DOI:
http://dx.doi.org/10.1090/S1079-6762-97-00030-9

Keywords:
Anosov system,
hyperbolic system,
invariant foliations,
stable foliation,
Anosov splitting,
horospheric foliations,
holonomy,
H\"older structures,
conjugacy

Received by editor(s):
May 9, 1997

Published electronically:
September 11, 1997

Dedicated:
To the memory of Gunnar Hasselblatt, 19.8.1928–12.7.1997

Communicated by:
Krystyna Kuperberg

Article copyright:
© Copyright 1997
American Mathematical Society