Electronic Research Announcements

ISSN 1079-6762



Operator $K$-theory for groups which act properly and isometrically on Hilbert space

Authors: Nigel Higson and Gennadi Kasparov
Journal: Electron. Res. Announc. Amer. Math. Soc. 3 (1997), 131-142
MSC (1991): Primary 46L20
Published electronically: December 19, 1997
MathSciNet review: 1487204
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a countable discrete group which acts isometrically and metrically properly on an infinite-dimensional Euclidean space. We calculate the $K$-theory groups of the $C^{*}$-algebras $C^{*}_{\max }(G)$ and $C^{*}_{ \smash{\text{red}}}(G)$. Our result is in accordance with the Baum-Connes conjecture.

References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. (2) 19 (1968), 113–140. MR 0228000
  • 2. Paul Baum, Alain Connes, and Nigel Higson, Classifying space for proper actions and 𝐾-theory of group 𝐶*-algebras, 𝐶*-algebras: 1943–1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240–291. MR 1292018, 10.1090/conm/167/1292018
  • 3. M. E. B. Bekka, P.-A. Cherix, and A. Valette, Proper affine isometric actions of amenable groups, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993) London Math. Soc. Lecture Note Ser., vol. 227, Cambridge Univ. Press, Cambridge, 1995, pp. 1–4. MR 1388307, 10.1017/CBO9780511629365.003
  • 4. Bruce Blackadar, 𝐾-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867
  • 5. A. Connes, An analogue of the Thom isomorphism for crossed products of a 𝐶*-algebra by an action of 𝑅, Adv. in Math. 39 (1981), no. 1, 31–55. MR 605351, 10.1016/0001-8708(81)90056-6
  • 6. Alain Connes and Nigel Higson, Déformations, morphismes asymptotiques et 𝐾-théorie bivariante, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 2, 101–106 (French, with English summary). MR 1065438
  • 7. Patrick Delorme, 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles. Produits tensoriels continus de représentations, Bull. Soc. Math. France 105 (1977), no. 3, 281–336 (French). MR 0578893
  • 8. Steven C. Ferry, Andrew Ranicki, and Jonathan Rosenberg, A history and survey of the Novikov conjecture, Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993) London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 7–66. MR 1388295, 10.1017/CBO9780511662676.003
  • 9. Operator algebras and applications. Part 1, Proceedings of Symposia in Pure Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1982. Edited by Richard V. Kadison. MR 679691
  • 10. M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
  • 11. E. Guentner, N. Higson, and J. Trout, Equivariant $E$-theory, Preprint, 1997.
  • 12. Pierre de la Harpe and Alain Valette, La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
  • 13. N. Higson and G. Kasparov, A note on the Baum-Connes conjecture in $KK$-theory and $E$-theory, In preparation.
  • 14. N. Higson, G. Kasparov, and J. Trout, A Bott periodicity theorem for infinite-dimensional Euclidean space, Advances in Math. (to appear).
  • 15. Pierre Julg, 𝐾-théorie équivariante et produits croisés, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 13, 629–632 (French, with English summary). MR 625361
  • 16. G. G. Kasparov, Equivariant 𝐾𝐾-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147–201. MR 918241, 10.1007/BF01404917
  • 17. E. Kirchberg and S. Wassermann, In preparation.
  • 18. J. A. Mingo and W. J. Phillips, Equivariant triviality theorems for Hilbert 𝐶*-modules, Proc. Amer. Math. Soc. 91 (1984), no. 2, 225–230. MR 740176, 10.1090/S0002-9939-1984-0740176-0
  • 19. Gert K. Pedersen, 𝐶*-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
  • 20. Graeme Segal, Equivariant 𝐾-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151. MR 0234452
  • 21. J.-L. Tu, The Baum-Connes conjecture and discrete group actions on trees, Preprint.
  • 22. Simon Wassermann, Exact 𝐶*-algebras and related topics, Lecture Notes Series, vol. 19, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994. MR 1271145

Similar Articles

Retrieve articles in Electronic Research Announcements of the American Mathematical Society with MSC (1991): 46L20

Retrieve articles in all journals with MSC (1991): 46L20

Additional Information

Nigel Higson
Affiliation: Department of Mathematics, Pennsylvania State University, University Park, PA 16802
Email: higson@math.psu.edu

Gennadi Kasparov
Affiliation: Institut de Mathématiques de Luminy, CNRS-Luminy-Case 930, 163 Avenue de Luminy 13288, Marseille Cedex 9, France
Email: kasparov@iml.univ-mrs.fr

DOI: http://dx.doi.org/10.1090/S1079-6762-97-00038-3
Keywords: Baum-Connes conjecture, $C^{*}$-algebras, $K$-theory
Received by editor(s): October 25, 1997
Published electronically: December 19, 1997
Additional Notes: The first author was partially supported by an NSF grant.
Communicated by: Masamichi Takesaki
Article copyright: © Copyright 1997 American Mathematical Society